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The coronavirus  disecase 2019
(COVID-19) pandemic has had a
profound impact on our world and has
cost millions their lives. It has disrupted
economies and education systems and
has taken away means of support from
masses of people around the world. No
wonder this pandemic is like a black
hole, drawing in all resources and all
expertise. In the scientific arena, the
pandemic has created a tremendous op-
portunity for new and exciting synergies
between different disciplines. One of the
most prominent synergies in the fight
against the COVID-19 pandemic uses
machine learning to diagnose and prog-
nosticate the disease.

Machine learning is responsible for
some of the most sensational techno-
logical advancements in modern times,
including self-driving vehicles, for ex-
ample, or the discovery of hundreds of
exoplanets—planets that orbit stars other
than the sun. Machine learning algo-
rithms automatically build a computa-
tional model that uses sample data, also
known as training data, to make decisions
without being explicitly programmed
to make those decisions. This property
renders machine learning especially at-
tractive when medicine faces a global
outbreak of a fast-spreading new disease
caused by an unfamiliar virus that threat-
ens to inflict damage of biblical dimen-
sions. The enormous gap between the
almost non-existent knowledge about the

disease, on the one hand, and the urgen-
cy in finding efficient solutions to it, on
the other, underscores the potential value
of a method enabling the prediction of
processes, such as personal disease pro-
gression, with no prior knowledge on the
driving forces underlying these process-
es. Indeed, since the disease outbreak,
machine learning has been the backbone
of thousands of publications suggesting
models for the diagnosis or prognosis of
people with COVID-19.

Machine learning traces its roots to the
1950s when Arthur Samuel of IBM de-
veloped a computer program for playing
checkers. He coined the term Machine
Learning for mechanisms he designed,
which allowed his program to improve
on its own [1]. But machine learning
remained a niche area for decades, tak-
ing off only in the 21st century when
increasing computing power and gigan-
tic amounts of data converged to finally
take full advantage of machine learning
algorithms, which require massive data
and fast processing speed to be useful.
Yet, until recently, the contribution of
this field to healthcare was limited. The
COVID-19 pandemic has changed this,
providing the impetus for the increasing
willingness of physicians to join forces
with data scientists in the quest for solu-
tions for the long list of unknowns of the
current crisis.

The downside of this exciting devel-
opment is the need to implement the new
synergy straightaway, whereas fruitful
collaboration depends on thorough in-
terdisciplinary understanding, which de-
mands time and effort: the data scientists
should understand the crucial needs of
the physicians, and their practical lim-

itations, while the physicians should be
able to evaluate the quality and the feasi-
bility of applying the proposed machine
learning tools. Unfortunately, most of the
machine learning-based prediction mod-
els for COVID-19 published thus far, are
fraught with faults in both the methodol-
ogy itself, the suitability of the data used
for model development, the validation of
model accuracy, and the applicability to
the clinic [2-5].

Take, for example, the work by Yad-
aw and colleagues [6] from the Icahn
School of Medicine at Mount Sinai, New
York, USA. Yadaw and colleagues pre-
sented machine learning models predict-
ing mortality during medical encounters
of unspecified duration in patients with
COVID-19, who had been admitted to
the Mount Sinai Health System in the
New York City area. The researchers
highlighted a model they developed,
which was based on three features: pa-
tient's age, minimum oxygen saturation
throughout their medical encounter, and
type of patient encounter (inpatient, out-
patient, or telehealth visits). They used a
relatively large patient dataset for model
development (n=3841). The number of
patients who died (n=313) seems appro-
priate for the statistical analysis [7], and
high accuracy is achieved in model val-
idation (area under the curve [AUC] of
0.91). The authors suggested using this
model in clinical settings to guide the
management and prognostication of pa-
tients affected by the COVID-19 disease.

However, the experienced reader may
not be convinced by the proposition of
Yadaw and colleagues. In their article
[6], the authors mentioned some of the
caveats hampering the clinical use of
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the model, notably, insufficient exter-
nal validation of its accuracy. But the
unmentioned methodological problems
in the work seem to be insurmountable.
Essentially, the highlighted model pre-
dicts death using measurements collected
throughout the entire encounter of the
patient with the health system, with no
specific moment at which the prediction
is generated and tested.

This situation raises questions about
the actual prognostic value of the only
time-varying model parameter: the min-
imum oxygen saturation, and about when
and how the model should be used. As
the predictive value of time-varying clin-
ical parameters tends to increase when
measured closer to the outcome, in this
case death of the patient, it remains un-
clear how to interpret the reported perfor-
mance measurement (i.e., AUC of 91%)
vis-a-vis the time of measurement of this
time-varying predictor) [3]. The mere
definition of the minimum saturation as
the lowest value of oxygen saturation
over the entire encounter [6] implies
that the prediction itself becomes imma-
terial at the time it is created when the
patient is already dying or discharged.
Furthermore, patients who did not die by
the end of the study were considered as
remaining alive. But since the death of
these patients might have occurred after
the study ended, the actual incidence of
mortality could be underestimated, put-
ting in doubt the value of the minimum
oxygen saturation as a sole time-vary-
ing predictor [3]. A possible solution for
such a conundrum may be to fix a short-
term prediction scope, such as, "predict
death in the coming 96 hours." But from
the applicability point of view, the fixed
follow-up window should be carefully
determined to allow sufficient time for
efficacious relief of the predicted fatal
outcome (e.g., by corticosteroids [8]).

The result of Yadaw and colleagues
[6] that the minimum oxygen saturation
is responsible for the high predictive ca-
pacity of the model is striking also from
another point of view. Even though the
leading cause of death of critically ill

patients with COVID-19 is a refracto-
ry respiratory failure (45%), more than
half of the deceased patients died from
other causes, such as cardiac arrest or
hemorrhagic events [9]. Therefore, it is
not clear how minimum oxygen satura-
tion represents almost all the potentially
deceased patients in [6]. Overestimation
of the model accuracy is conceivable in
this case, due to potential correlations
between the consecutive measurements
over time in the same patients.

The analysis of the work of Yadaw
and colleagues [7] describes how some
of the prerequisites for prediction models
could become more helpful in the clinic.
Better collaboration is necessary among
researchers from different backgrounds,
specialties, and institutes for determining
the clinical need and for sharing patient
data from COVID-19 studies and regis-
tries. Another issue is the requirement
for external model validation, currently
complicated by the incompatibility of
recording systems in different hospi-
tals. Consensual representation of the
patient's follow-up and treatments is re-
quired to allow for external validation of
prediction models and their subsequent
generalization. Most important, in this
context, is the necessity to adhere to
unified sets of criteria for evaluating pre-
diction models, such as the Transparent
Reporting of a multivariable prediction
model for Individual Prognosis Or Diag-
nosis (TRIPOD) set of recommendations
[10], or the Prediction Model Risk Of Bi-
as Assessment Tool criteria (PROBAST),
which enable accurate evaluation of the
risk of bias and applicability of a predic-
tion model [2]. Another important way to
refine the prognostic model landscape is
by a critical analysis of the diverse mod-
eling efforts and by recommendations for
their improvement.

At present, there is an urgent need to
separate the wheat from the chaff and
underline those predictive models that
can become useful in the clinic. But
how can one do this? The pandemic has
created huge amounts of information,
which the traditional method of aca-

demic reporting cannot encompass. As
a result, atlases and catalogs, covering
extensive disease-related data, acquire
a special status these days. An example
is the multi-omics blood atlas of im-
mune profiles of patients with varying
COVID-19 severity, back-to-back with
the immune profiles of patients with
influenza or sepsis, and healthy vol-
unteers. This massive dataset, by more
than 200 scientists from many research
centers could aid future drug develop-
ers and designers of precision medicine
modalities [11]. Another example is the
COVID-19-related mortality dataset
by Karlinsky and Kobak [12], which
the authors used to compute the excess
mortality in each country during the
COVID-19 pandemic and identify the
countries that have been substantially
underreporting their COVID-19 deaths.

The review article by Shapiro and
colleagues [13], from Tel Aviv Sourasky
Medical Center, Israel, joins this new
class of publications. They worked to
separate the wheat from the chaff in
the multitude of prognostic models for
COVID-19 by cataloging and scruti-
nizing the major models for classifying
patients at risk of deterioration. The
authors discussed the tools at our dis-
posal for critical model assessment and
evaluated the clinical adequacy of the
analyzed models. First, Shapiro and col-
leagues discussed scoring systems, both
established scores and scores designed
specifically for COVID-19 patients.
Next, they listed and analyzed models
that use machine learning to predict risk
in COVID-19 patients. Shapiro and col-
leagues provided a comprehensive table
of models and their main attributes, and
added their point of view on the high-
lights and difficulties in each of the
models. Their research can serve as a
concise navigation map in the turbulent
water of machine learning risk predic-
tors for COVID-19.

CONCLUSIONS
Ultimately, prediction models should be
objectively tested in prospective clin-
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ical trials and evaluated to understand
how they improve the clinical outcomes.
These models may be used to better tri-
age patients to an appropriate level of
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STING-induced regulatory B cells compromise NK function in cancer immunity

An immunosuppressive tumor microenvironmentis a major
obstacle inthe control of pancreatic and other solid cancers.
Agonists of the stimulator of interferon genes (STING)
protein trigger inflammatory innate immune responses
to potentially overcome tumor immunosuppression.
Although these agonists hold promise as potential cancer
therapies, tumor resistance to STING monotherapy
has emerged in clinical trials and the mechanism(s) is
unclear. Li et al. showed that the administration of five
distinct STING agonists, including cGAMP, results in
an expansion of human and mouse interleukin (IL)-35+
regulatory B cells in pancreatic cancer. Mechanistically,
cGAMP drives expression of IL-35 by B cells in an IRF3-

Endosomal changes tied to disease

Frontotemporal dementia and amyotrophic lateral
sclerosis share key genetics and pathology, but the
connection between different known facets of their disease
biology is not always clear. Shao et al. discovered an
interplay between the disease-associated genes C9orf72
and TBK1. Large repeats of glycine-alanine, which are
produced by an expansion in C90rf72, sequestered TBK1
into inclusions, inhibiting its function and impairing the

dependent but type | interferon-independent manner.
In several preclinical cancer models, the loss of STING
signaling in B cells increases tumor control. Furthermore,
anti-IL-35 blockade or genetic ablation of IL-35 in B cells
also reduces tumor growth. Unexpectedly, the STING-IL-
35 axis in B cells reduces proliferation of natural killer (NK)
cells and attenuates the NK-driven anti-tumor response.
These findings reveal an intrinsic barrier to systemic
STING agonist monotherapy and provide a combinatorial
strategy to overcome immunosuppression in tumors.

Nature 2022; 610: 373
Eitan Israeli

downstream endosomal pathway. A mutation in TBK1
worsened these defects, enhancing disease phenotypes
in mice. Remarkably, the disruption of the endosomal
pathway also proved sufficient to induce the aggregation
of TAR-DNA binding protein 43 (TDP-43), a key driver of
degeneration in these diseases.

Science 2022; 378: 94
Eitan Israeli
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