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Accelerating the Development of Personalized 
Cancer Immunotherapy by Integrating 
Molecular Patients’ Profiles with Dynamic 
Mathematical Models
Zvia Agur1,*, Moran Elishmereni1, Urszula Foryś2 and Yuri Kogan1

We review the evolution, achievements, and limitations of the current paradigm shift in medicine, from the “one-size-
fits-all” model to “Precision Medicine.” Precision, or personalized, medicine—tailoring the medical treatment to the 
personal characteristics of each patient—engages advanced statistical methods to evaluate the relationships between 
static patient profiling (e.g., genomic and proteomic), and a simple clinically motivated output (e.g., yes/no responder). 
Today, precision medicine technologies that have facilitated groundbreaking advances in oncology, notably in cancer 
immunotherapy, are approaching the limits of their potential, mainly due to the scarcity of methods for integrating 
genomic, proteomic and clinical patient information. A different approach to treatment personalization involves 
methodologies focusing on the dynamic interactions in the patient-disease-drug system, as portrayed in mathematical 
modeling. Achievements of this scientific approach, in the form of algorithms for predicting personal disease 
dynamics in individual patients under immunotherapeutic drugs, are reviewed as well. The contribution of the dynamic 
approaches to precision medicine is limited, at present, due to insufficient applicability and validation. Yet, the time is 
ripe for amalgamating together these two approaches, for maximizing their joint potential to personalize and improve 
cancer immunotherapy. We suggest the roadmap toward achieving this goal, technologically, and urge clinicians, 
pharmacologists, and computational biologists to join forces along the pharmaco-clinical track of this development.

HISTORICAL BACKGROUND: A PARADIGM SHIFT IN 
MEDICINE
In the last decade, we have witnessed a paradigm shift in medicine, 
from the one-size-fits-all concept to precision medicine. The one-
size-fits-all paradigm, applying the same treatment to all patients 
of a specific disease, embodied the rationale of therapy in the 20th 
century. However, the unavoidable low response rates to most 
medical therapies, which help only a relatively small subset of the 
patients, hampers the success of the one-size-fits-all approach. The 
response to one of the most efficacious chemotherapeutic drugs, 
docetaxel, ranging from 6–38%,1–6 illustrates this problem. Thus, 
30 years after the declaration of “the War on Cancer” by the US 
Federal Government (1971), it was sadly acknowledged as a fail-
ure: “while there have been substantial achievements since the cru-
sade began with the National Cancer Act in 1971, we are far from 
winning the war. So far away, in fact, that it looks like losing.”7

The genomic revolution
Today, we know that the efficacy of a particular therapy depends 
on the specific physiological and disease attributes of the individ-
ual patient. This recognition is grounded on the achievements of 
the Genome Project (1990), whose underlying premise was that 
identifying human genetic variation would allow clinicians to 

subclassify patient populations and personalize medical treat-
ment. In 2003, the achievements of the Genome Project drove 
the director of the National Cancer Institute (NCI), Andrew 
von Eschenbach, to prophesy that by 2015 suffering and death 
due to cancer would end: “Cancer will become a chronic disease 
that we will manage much the same way we manage high blood 
pressure or diabetes.” von Eschenbach projected that this would 
be accomplished by the tools of genomics, identifying mutations 
that affect response to drugs, and using this knowledge to validate 
biomarkers for distinguishing patients likely to benefit from new 
treatments.8

The “Precision Medicine Initiative” of President Obama (2015) 
was initiated to leverage advances in the Genome Project for ac-
celerating biomedical discoveries, fueling the development of new 
treatments, and catalyzing a new era of databased and more pre-
cise medical treatment. Essentially, precision medicine is the view 
that incorporating information encoded in the human genome as 
the dominant factor in the prediction, diagnosis, and treatment 
of human disease will improve human health. The first precision 
medicine drug approved for the treatment of people with ad-
vanced non-small cell lung cancer (NSCLC), bearing mutations of 
the epidermal growth factor receptor (EGFR), was erlotinib—an 
oral EGFR tyrosine kinase inhibitor. However, the advantage of 
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erlotinib, shown in terms of progression-free survival (PFS), did 
not translate to an advantage in overall survival, implying a possi-
ble limitation of this molecularly targeted drug.9 Notwithstanding 
such hindrances, the Precision Medicine Initiative has generated 
new successful targeted drugs, new research areas, and a rich rep-
ertoire of new technologies, including genome sequencing, me-
tabolomics, pharmacogenomics, proteomics, magnetic resonance 
imaging, bioinformatics, machine learning (ML), and the elec-
tronic record of personal or familial medical history. These are 
innovative approaches now available for advancing the aims of pre-
cision medicine.10

Achievements of precision medicine
In recent years, there has been remarkable progress in medicine, 
based on the achievements of precision medicine. Improved un-
derstanding of the underlying genomics allows identification of 
inherited syndromes, early detection and prevention of diseases, 
and prescription of molecularly targeted treatments that are most 
likely to benefit the individual patient. Numerous actionable mo-
lecular targets have been found due to next-generation genomic 
sequencing, transcriptomics, and proteomics, and currently over 
70 targeted agents have already been approved by the US Food 
and Drug Administration (FDA) for the treatment of solid and 
hematologic malignancies. Concurrently, genomic markers, such 
as BCR-ABL, KIT, BRAF, ALK, and EGFR gene aberrations, 
were most efficiently used to identify individuals who will benefit 
from associated targeted inhibitors.11 These new advances already 
begin to show fruits. A meta-analysis of 346 clinical trials (phase 
I) studied the impact of a biomarker-based oncologic treatment 
strategy by comparing response rates and PFS in arms that used 
biomarker selection to those that did not. Results show a signif-
icant association between the use of a biomarker-based approach 
and improved outcomes, vis-à-vis the response rate, and PFS. 
Studies that used targeted agents without a biomarker had negli-
gible response rates.12

Challenges of precision medicine
Nevertheless, some experts questioned the success of precision med-
icine, suggesting that it is less successful than usually advocated. 
This view rests on the doubtful validation of both gene expres-
sion profiles and response biomarkers, as well as on failed proof-
of-concept trials. A prominent example of the latter is the SHIVA 
open-label clinical trial, measuring PFS in patients with solid 
tumor cancers who had already undergone all conventional treat-
ments to prolong survival. In this trial, the patients were treated 
by pathway-directed therapy (denoted Precision Oncology), or by 
treatment of choice, as a control. The results of the SHIVA trial 
failed to show improvement of the PFS in the Precision Oncology 
arm of the trial. Experts believe that for becoming more success-
ful, precision medicine needs to undergo substantial adjustments, 
principally, more rigorous testing, for ensuring a significant clini-
cal benefit over the standard unguided treatment.13

Big data
The use of genomics, transcriptomics, proteomics and metabolo-
mics technologies, and large sample sizes, has generated massive 

amounts of data, collectively known as “Big Data.” The avalanche 
in the volume, velocity, and variety of the information available 
today has become a major bottleneck in the progress of precision 
medicine, requiring the implementation of new and more sophisti-
cated computational and statistical technologies. Indeed, artificial 
intelligence and ML algorithms, computational biology methods, 
and digital biomarkers are developed at present for translating the 
accumulating data into actionable information.14 In particular, 
a growing range of ML methods allows the extraction of hidden 
patterns, or trends, in the patient populations, directly from the 
databases themselves.15

However, at present, there are several challenges that make 
healthcare data difficult to be fully beneficial. Data retrieval is com-
plicated, and in the medical institutions it is usually segmented, or 
siloed, in an isolated controlled departmental repository. No won-
der, then, that retrieval of patients’ data from conventional medical 
registries is not a cost-effective labor for healthcare providers, who 
show reluctance to perform this task. Protection of the patient’s 
privacy is another obstacle, hampering the efficient extraction of 
knowledge from healthcare data, and obstructing the useful ex-
ploitation of healthcare data for advancing precision medicine.15,16 
The solution of the technological, legal, administrative, and con-
ceptual challenges in the retrieval of big data will clear the scene 
for answering the main question, namely, how to use the analysis of 
healthcare big data for improving the efficiency of care delivery.17 
At present, the contribution of methods of data analytics, such as 
new data mining technologies, predictive modeling, population 
health, and quality measurement to health care has been rather 
limited. The big ascent in clinical care, thus far, achieved by preci-
sion medicine, using targeted therapy and response biomarkers, is 
reaching a plateau.

Medical biomathematics
Since the 1980s, the concept and the technology of personalized 
medicine has been developed in the field of biomathematics, in-
dependently of the molecular approaches to precision medicine. 
In the preliminary stage of the scientific development, it was nec-
essary to prove that relatively simple mathematical models could 
offer medically relevant predictions, which would be validated 
experimentally. Thus, Agur and colleagues suggested an improved 
strategy of oncology drug application, based on the analysis of a 
mathematical model. In vitro and in vivo experiments of the the-
ory followed thereafter, proving that simple mathematical models 
could identify better chemotherapy regimens, which prolong the 
survival of cancer-bearing animals.18–20 This first, albeit modest, 
success motivated the scientists to introduce the Virtual Patient 
concept and computer methodology, and confirm it experimen-
tally in mice receiving supportive treatment. Thus, a heuristic op-
timization method was then developed for identifying improved 
drug regimens, which was tested in mice and in Rhesus monkeys 
for the chemotherapy-induced thrombocytopenia drug thrombo-
poietin.21 The model’s predictions of individual monkey responses 
to new protocols of thrombopoietin were validated, proving suf-
ficient robustness in providing high prediction accuracy with 
limited input data. Scientific development of the virtual patient 
population approach followed thereafter (Figure 1). According 
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to this approach, a collection of virtual patients is created, each 
characterized by a set of model parameters drawn from the distri-
butions of these parameters in the real patient population. Virtual 
patient populations can undergo virtual clinical trials, end points 
of which are those used in research, for example, for analyzing 
properties of individual patients, which may affect phenomena 
on the level of patient population (see below),22 or in drug devel-
opment projects23 e.g., for examining how shelved drugs can be 
rescued).24

Personalized models
The next step in the biomathematical effort to establish a com-
putational personalization methodology was to turn the virtual 
patient, until now representing nonspecific members of the popu-
lation, to representing specific patients. To develop this methodol-
ogy, Agur and her colleagues introduced the concept of heuristic 
treatment personalization, whereby clinicians could individualize 
the treatment regimen based on predictions of a model, which was 
personalized in conjunction with the patient’s clinical characteris-
tics and metrics25 (Figure 1).

A case study, identifying an improved treatment schedule for 
a patient having a rare cancer disease, mesenchymal chondrosar-
coma, provided a proof-of-concept of the virtual patient idea. 
This was an original project investigating how personalization 
of oncologic treatments can be done by integrating computa-
tional work with gene expression analysis, experiments in mice, 
xenografted with the patient’s tumor, and clinical work. Thus, 
growth curves and gene expression analysis of xenografts derived 
from a patient’s lung metastasis served for creating a mathe-
matical model of xenograft progression. The pharmacokinetics 
(PK) and pharmacodynamics (PD) of several chemotherapeu-
tic and antiangiogenic drugs were modeled, model parameters 
being adjusted by patient-specific chemosensitivity tests. The 
xenografted animals were treated by various monotherapy and 
combination drug schedules, and the mathematical xenograft 
model was simulated under the same treatment scenarios. 
Model-simulated results of tumor growth inhibition were com-
pared with the experimentally observed results, showing good 
predictability. The computational xenograft growth model 
was then upscaled to retrieve the patient’s tumor progression 

Figure 1  The Virtual Patient – design and application. The Virtual Patient concept states that a multi-module model can efficiently describe a 
patient, by integrating pathophysiological processes with drug-related efficacy and toxicity, including the pharmacokinetics/pharmacodynamics 
(PK/PD). By incorporating diagnostic intelligence and patient data from various databases, the virtual patient model can be personalized, 
and a collection of Virtual Patients can be formed, each characterized by a set of model parameters drawn from the distributions of these 
parameters in the real-patient population. Virtual Patients can be simulated to pinpoint improved general and personal treatment schemes 
and predict clinical outcomes. Additionally, virtual clinical trials can be simulated for designing trials and rescuing drugs.
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under different treatment schedules; upscaling was done using 
gene expression analysis of several key proteins, such as angio-
poietin, vascular endothelial growth factor, etc., in the biopsied 
lung metastasis of the patient. Subsequently, the personalized 
model of the patient was simulated assuming the application of a 
docetaxel and bevacizumab combination in different schedules. 
The potentially optimal schedule was administered to the real 
patient, resulting in the stabilization of his galloping metastatic 
disease, relief of his life-risking pancytopenia, and extension of 
his life span. Yet, this case study was unique in the richness of the 
patient’s molecular and clinical information, becoming available 
through an extraordinary experimental effort to evaluate the pa-
tient-specific cytokine excretion rates, tumor cell growth rates, 
gene expression analysis, etc. Because in the daily clinical routine 
one cannot rely on the accessibility of similarly rich data, the 
model personalization methodology developed in ref. 26 is not 
operational in the current clinical reality.

Efforts to identify routinely accessible clinical or molecular 
measures to aid in the personalization of the mathematical model 
have not been fruitful until recently. This is because the analyses 
of the patients’ measured clinical parameters, retrieved from the 
few accessible clinical trial datasets, have not shown any statistical 
correlation with the patient’s response. Moreover, big clinical data-
bases have been scarce and intensive data mining has not been an 
option. Additionally, massive computations, which were necessary 
for simulating large virtual clinical trials, were hard to perform due 
to the relatively weak computer capacity of the early 21st century. 
Therefore, despite the progress in the understanding that personal 
dynamic differences between patients can affect their responses, 
and that mathematical models can retrieve those and use them for 
tailoring drug regimens to individual patients’ data, the develop-
ment of these concepts came to a quasi-standstill in the first decade 
of the 2000s.

Lately, however, these problems have largely dissipated. This 
has been mainly due to the US health authorities acknowledging 
the necessity to render big clinical databases approachable to pro-
fessionals, as an important means to improve healthcare. In 2010, 
leaders from the US government, federal agencies, healthcare 
delivery systems, and others, directed to catalyze the formation 
of a new “Community Health Data Initiative,” by harnessing the 
power of information to improve health. HealthData.gov was 
activated, and today it includes thousands of health-related data-
sets, motivating the authorities in many other countries around 
the world to create their open-access data sites. The accessibil-
ity of a growing number of globally collected public and private 
databases emphasizes the need for much-increased computing 
power to facilitate the analysis of the accumulating data. The new 
cloud-computing technology satisfied this need by providing an 
internet-based platform with myriads of services and system re-
sources and allowing large storage and computation capacity with 
no information technology infrastructure costs for the end-users.

This breakthrough in the availability of health and computing 
resources allows precision medicine and medical biomathematics 
to converge. As precision medicine matures, a growing body of 
personal clinical information, such as molecular biomarkers, cir-
culating tumor DNA, etc., are regularly evaluated. The improved 

information on the patient provides biomathematicians with bet-
ter means to liaise the mathematical models to real-life patients, 
create personalized models, and use them to individualize medi-
cal treatments. This review aims to describe this evolution in the 
field of cancer immunotherapy, where treatment personalization 
is most necessary and where signs of a breakthrough already 
appear.

A PARADIGM SHIFT IN CANCER IMMUNOTHERAPY
Precision cancer medicine
Advances in cancer genomics and molecular profiling have shown 
that the same mutations or signaling pathways can drive different 
cancers, and treatment based on the molecular abnormality rather 
than on the anatomic origin can be efficacious. Such molecularly 
targeted strategies have been termed Precision Cancer Medicine.

Personalizing cancer immunotherapy
Immunotherapy by checkpoint blockers (ICBs) has emerged as a 
successful targeted therapeutic modality, reactivating effector T 
lymphocytes which were previously blocked by cancer.27,28 This 
underlines the fundamental distinction between cytotoxic che-
motherapy, attacking generic cell-cycle mechanisms, hence be-
fitting the “one-size-fits-all” paradigm in medicine, and targeted 
drugs, interfering with specific aberrant biologic pathways in can-
cer cells or boosting specific immune capabilities, which befits the 
precision medicine approach.

Complex dynamics characterize the interactions among the 
patient’s immune system, the growing tumor, and the immuno-
therapeutic drug. In the most successful example to date—cancer 
therapy by ICBs—the immuno-inhibitory receptor expressed on 
T and B cells, programmed cell death protein 1 (PD-1), and its li-
gand, PD-L1, are key players in the regulation of adaptive cellular 
immunity. Cancer cells “piggyback” on this natural immune reg-
ulation, by expressing PD-L1 molecules that bind to PD-1 recep-
tors on effector T lymphocytes, pushing these cells into apoptosis. 
This weakens the immune response prematurely and hampers can-
cer cell clearance. The ICBs pembrolizumab, atezolizumab, and 
others disrupt this cancer-induced evasion of immunity by block-
ing this receptor-ligand binding, thereby reactivating exhausted 
effector T lymphocytes.29

Immunotherapy by ICBs is an exemplar case for the need to re-
place the “one-size-fits-all” paradigm by precision medicine. The 
efficacy of the patient’s response to ICBs depends largely on the 
vigor of the patient-specific cellular immune arm. The latter de-
pends on personal immune parameters, such as immune cell infil-
tration and functionality within the tumor microenvironment, etc. 
Tumor immunogenicity—which determines the intrinsic ability to 
induce adaptive immunity—depends on the frequency of neoanti-
gens present on the tumor surface following somatic mutations, a 
patient-specific and versatile process in itself.30 For these reasons 
and more, the response to ICBs is highly variable among patients, 
substantiating the personalization requirement for the treatment 
by ICBs. It is not surprising that biomarkers, such as high microsat-
ellite instability, deficient MisMatch Repair, or tumor mutational 
burden (TMB), prove efficient in classifying potential responders 
to ICBs.11
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In the case of ICBs, treatment personalization is essential, also 
considering the unusual related phenomena, such as hyper-pro-
gressive disease (HPD), manifested in 9–16% of patients with 
different cancer types, and in 13–37% of patients with NSCLC, 
depending on the definition of HPD.31,32 The occurrence of pa-
tients with HPD, experiencing accelerated tumor growth and 
clinical deterioration after the onset of ICB administration, raises 
serious concerns about the use of these drugs and emphasizes the 
critical need to predict the patient response before treatment. 
Another hurdle is the high cost of the drug, imposing an unac-
ceptable burden on the patients. This cost is even less justified 
if the patient is a nonresponder. Taken together, the necessity to 
personalize interventions with ICBs is compelling. Yet to date, 
this important requirement remains with no satisfactory answers.

In this review, we make a clear distinction between two devel-
opmental tracks—scientific and pharmaco-clinical. Along the 
scientific track, scientists develop personalization concepts and 
predictive technology, and retrospectively validate them by pa-
tients’ information. Along the pharmaco-clinical track, the journey 
only begins after reaching the final destination along the scientific 
track. It involves the implementation of the scientifically developed 
technology in diagnostic or prognostic medical decision support 
tools and their testing in prospective clinical trials for accuracy and 
medical benefits.

The scientific development track of computational therapy per-
sonalization methods consists of constructing mathematical models 
that reflect the complex biology (milestone S1), demonstrating that 
predictions of the mathematical models can be supported exper-
imentally (milestone S2), showing that mathematical models can 
be clinically relevant (milestone S3), and exhibiting clinical prag-
matism and sufficient accuracy in retrospective clinical trials (mile-
stone S4). The pharmaco-clinical track involves translation of the 
model or computational tool developed along the scientific track 
into a predictive technology to be used as a decision support tool 
for the treating oncologists (milestone PM1). The next milestones 
comprise prospective clinical trials to validate the accuracy of the 
developed technology in predicting patients’ response to treatment 
(milestone PM2) and in improving desired clinical measures, such 
as time to progression (TTP) and overall survival (milestone PM3). 
The point of view of the present paper is that, conceptually, most 
of the long and rocky scientific track has been trodden already. To 
complete the process successfully, the development along the phar-
maco-clinical track must be initiated and fully executed. Below, we 
will glimpse into exemplary works along the scientific track and sug-
gest where we stand today and how to accelerate the development 
along the pharmaco-clinical track, namely, the clinical implementa-
tion of the computational-based personalization technology.

CURRENT PERSONALIZATION APPROACHES IN CANCER 
IMMUNOTHERAPY: PREDICTING THE PATIENT’S RESPONSE 
BY ANALYSIS OF MOLECULAR PROFILES
The limitations of currently approved diagnostics in cancer 
immunotherapy hold back the institutionalization of 
precision oncology
At present, the only companion or complementary diagnostics 
approved by the FDA for use in cancer immunotherapy are based 

on the assessments of PD-L1 expression. These markers use sim-
ple cutoff models, dichotomizing assay outcomes according to a 
predefined threshold (e.g., 1% or 50%). They generally show low 
accuracy, allow for a large proportion of false negatives and false 
positives,33,34 and show little success in classifying good respond-
ers that have low PD-L1 expression, or nonresponders that have 
a high PD-L1 expression.35 This inaccuracy, possibly due to the 
variability in the biomarker assays, points to the insufficiency 
of PD-L1 expression as a sole predictor of patient response.35,36 
Indeed, the mechanisms determining the efficacy of ICB treat-
ments are intricate, encompassing the timing and extent of the 
effector T cell response, the expression of related cytokines, sig-
naling pathways associated with the PD1 receptors in T cells, var-
ious evasion strategies used by cancer cells, and perturbations that 
may be caused by ICBs to all these factors. This suggests that more 
extensive and detailed personal information, beyond the expres-
sion level of a single receptor, may be required to personalize the 
treatment selection faithfully and accurately.37

Current attempts to improve the stratification of patients with 
cancer considered for immunotherapy mostly focus on develop-
ing biomarkers that are more precise. These efforts capitalize on 
various experimental technologies for retrieving multidimensional 
patient information. Examples include transcriptome analysis38 
or genetic sequencing methods, such as whole genome sequenc-
ing, whole exome sequencing, and next-generation sequencing.39 
These technologies create high-dimensional datasets, whose inter-
pretation requires more advanced modeling and computational 
approaches; simple statistical tests and linear regression models 
are not sufficiently powerful and are prone to bias and overfit-
ting. Additionally, the clinical validity of a new biomarker must 
be demonstrated before its introduction to the clinical market. 
The success of this elaborate task depends, among others, on the 
ability of the associated computational algorithm to interpret the 
results of the experimental assays with respect to the patient’s clin-
ical response.37,39 This task becomes even more intricate when the 
information on the individual patient is diverse. In such a case, it is 
essential to apply computational models that can process high-di-
mensional inputs effectively. Despite the awareness of biomarker 
developers to this important need, no general unified methodology 
exists for the specific task of building such predictive algorithms. 
Recently, this requirement motivated the introduction of various 
ML methodologies, which allow robust identification of statistical 
correlations between the extensive input variables and the patient’s 
response to the ICB drug. However, the multidimensional data 
analyses are yet to be verified by yielding improved predictive bio-
markers for the application in clinical immuno-oncology. Below, 
we outline several developments in this direction. In Table 1, we 
list biomarkers under development and their associated computa-
tional methodologies.

A straightforward way to interpret multivariate data is by pro-
cessing multidimensional input to yield a simple index, indicative 
of the expected treatment efficacy in a given patient. The best 
established among these newly developed indices are TMB and 
deficient MisMatch Repair estimates,40,41 where computation-
ally straightforward algorithms use quantile-based thresholds of 
genomewide mutational load to classify patients, demonstrating 
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significant enrichment for responding patients in several cancer 
indications.42–44 Another method is based on the evaluation of 
immune infiltration into cancer tissue, such as a semiqualitative 
immunoscore, based on the assessment of immune cell subsets, 
and shown to be associated with disease prognosis.45,46 The re-
cently developed Immunophenoscore method uses ML to find 
the major determinants of cancer immunogenicity in genome 
data, mined from the cancer genome atlas (TCGA). This score 
evaluates immune infiltration and cancer-related neoantigens, 
having a high predictive value for patients with melanoma 
treated with ICBs.47 Another recently developed method uses 
data from over 100 studies to identify a gene signature of T 
cell dysfunction, applying statistical interaction test with a pro-
portional hazards Cox model to evaluate the effect of different 
genes on T cell activity in the tumor. The results in patients with 
melanoma suggest that the scores of tumor immune dysfunction 
and exclusion are associated with the rate of infiltration of cyto-
toxic T cells into the tumor, immune evasion by the tumors, and 
eventually, response to ICBs.48 Another work uses multivariate 
regression models to predict the patient’s response to immuno-
therapy.49 Other examples for the application of ML to multi-
dimensional genetic and transcriptomic profiles, in the aim of 
producing predictive response signatures to ICBs, are listed in 
Table 1.53,54

Awareness of the complexity of the interactions among tumor 
genomics, cell signaling, chemokines, and immunosuppressive 
molecule expression, motivated Brogden and colleagues to apply 
an ordinary differential equation (ODE) model of an extensive 
intracellular signaling network to personal mutation profiles in a 
dataset of 34 patients with NSCLC. Taking the patient’s reported 
mutations as an input, the model simulations enabled to predict 
the personal changes in the levels of 24 proteins, including PD-L1. 
The authors used ML to develop and validate a decision tree model 
for predicting the patients’ responses to pembrolizumab from the 
simulated personal protein levels, generated by the individual 
mathematical pathway models.52 Other scientists used image anal-
ysis, based on artificial intelligence methodologies and the patients’ 

computed tomography scans, to define radiomic biomarkers for 
predicting the response to ICBs. Retrospective analysis of patient 
data showed significant accuracy of this method in patients with 
NSCLC.53

The main limitation of the approaches involving static mo-
lecular profiles is their construction from single snapshots that 
are processed by statistical methods. This enables the evaluation 
of the relationships among the features extracted from the input 
data (e.g., TMB), or gene expression pattern, and a simple, clin-
ically motivated, strictly categorized, output, such as “yes/no 
responder.” However, even though the implicated assays focus 
on hand-picked components of the system, which are known 
to be highly relevant to the response to immunotherapy, this is 
insufficient. The current methodologies mostly ignore the rich 
interactions between different parts of the system, and the com-
putational models that are used are oblivious to the vast biological 
knowledge on the involved processes. Instead, purely statistical, 
essentially, correlation-based analysis is applied. Although the re-
sults of this analysis can be statistically significant, and can even 
yield an acceptable level of accuracy, most of these approaches 
have not been translated to development along the pharma-
co-clinical track, and are likely nearing their maximum potential. 
The main reason for this may be the exclusive reliance on sin-
gle-type features for response prediction, perhaps resulting from 
technological incapacity to integrate information from different 
sources and scales.

To improve the performance of the available technologies, it will 
be necessary to develop new models for integrating genomic, pro-
teomic, metabolomic, and other relevant information on patients. 
To do this, one should use methods that take into account what, 
owing to their generic nature, the statistical approaches neglect—
the dynamic interactions between the main forces in the system. 
We discuss such methods in the next section.

CURRENT COMPUTATIONAL APPROACHES IN CANCER 
IMMUNOTHERAPY: ALLOWING FOR SYSTEM’S COMPLEXITY 
BY MODELING DISEASE DYNAMICS
Mathematical modeling is a powerful tool for succinctly describ-
ing complex biological systems and for examining the relative 
influence of various, sometimes contradicting, biological forces 
on the overall dynamics. Being an intricate balance of several ele-
ments, the immune system has provided a perfect arena for math-
ematical modeling to do its thing. In cancerous conditions, to 
achieve effective immunity, the immune system must be steered 
toward productive, but not excessive, cellular effector-based im-
munity, while keeping the other arms of immunity—humoral and 
regulatory—at bay. Such natural balances of the system’s activity 
provide a fertile ground for the development of dynamic-based 
models for immunotherapy. Mathematical analysis is especially 
essential for scrutinizing the variation between patients in the 
response to immunotherapy, and for suggesting new avenues for 
biomarker development. In this section, we glimpse into the evo-
lution of mathematical modeling in cancer immunotherapy, from 
the first theoretical explorations until now, that the scientific de-
velopment is almost ripe for the transition to the pharmaco-clini-
cal development track.

Table 1  Molecular and clinical information in recent 
development in precision oncology and the corresponding 
computational approaches used for their employment in 
therapy personalization

Types of individual 
patient data

Computational approaches for 
personalization References

Expression of 
single receptors

IHC measurement cutoff 
value

33–35

Tumor mutational 
burden

Mutations score + cutoff 
value

40–44

Pathology – im-
mune infiltration

Semiqualitative score 45–47

Genetic/transcrip-
tomic signatures

Multivariate regression and 
ML

48–51

Cell signaling data ODE model and ML 52

CT scans AI (radiomics, feature 
selection, ML)

53
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Milestone S1: Theoretical mathematical models of cancer 
immunotherapy
Dynamic mathematical immunotherapy models have come a long 
way in the last decades. Early models were fully theoretical, toying 
with immune-modulating cancer treatment on several levels, but 
providing insight into the parameters governing the coevolution 
of the immune system, the tumor, and the particular treatment. 
We will show that even simple theoretical models, examples of 
which are discussed herein, can have some power to uncover un-
known relationships that more faithfully reflect the real clinical 
scenario.

One of the early models describing important features of the 
immune response to cancer is due to Kuznetsov et al.54 This work 
proposes a simple model for the growth and regression of B cell 
lymphoma 1 in the spleen of chimeric mice. The model reproduces 
major tumor-immune interactions, such as immuno-stimulation, 
tumor dormancy, and tumor evasion. For evaluating model param-
eters, Kuznetsov and colleagues relied on published experimental 
data of BALB/c mice, bearing different loads of B cell lymphoma 
1.55,56 Model analysis identified important system parameters and 
showed a region in the space of parameters, within which any ex-
ternal stimulation toward increased numbers of cytotoxic T cells 
can be detrimental. This result was initially counterintuitive, as it 
was expected that increased numbers of effector T cells always rein-
force the immune response. However, a more elaborate mathemati-
cal scrutiny of Kuznetsov’s model predicts no cycles in the number 
of lymphocytes, contrary to observations in certain leukemias,57,58 
hence, questioning the model’s suitability to describe the dynamics 
of this disease. Other simple theoretical models for tumor-immune 
interactions have also provided interesting insights.59

After approval of the first cancer immunotherapy—the cytokine 
interleukin (IL-)2—for the treatment of renal cell carcinoma and 
melanoma in the 1990s, biomathematicians began raising ques-
tions concerning the action mechanisms of cytokines, optimal 
regimens to administer cytokine drugs, etc.60–62 In one of the first 
models, Kirschner and Panetta focused on the impact of IL-2 on 
the immune reaction to cancer.63 Optimal IL-2 treatment, maxi-
mizing the sum of effector T cells and IL-2 while minimizing the 
tumor load and cost of treatment, was also studied based on the 
latter Kirschner and Panetta’s model.64 Analysis shows that the op-
timal treatment schedule of IL-2 is always “bang-bang,” namely, an 
intermittent application of the maximal admissible IL-2 dose. As 
this strategy relies on a much-simplified model, where each model 
parameter stands for a combination of several other more “natural” 
parameters, it was not clinically applicable because there was no 
easy way for parameter estimation.

A more complex model for adoptive T cell transfer in high-grade 
malignant glioma was suggested, comprising six coupled ODEs, 
which describe the interactive dynamics of tumor cells, T cells, and 
their respective secreted cytokines and immune mediating recep-
tors.65 Theoretical analysis of the model, supported by results of 
murine experiments and by clinical information on glioma case re-
ports, suggests that in untreated patients, the physiological system 
always converges to a steady-state of a large tumor mass. An increase 
in the patient’s pro-inflammatory activity only marginally reduces 
tumor load at the steady-state, suggesting that the patient’s natural 

immune system is never sufficient for eliminating glioma. In con-
trast, infusion rates above a certain computable threshold value, 
guarantee a cure from any initial state of the system. This work 
provided insight into practical guidelines for improving glioma 
immunotherapy by T cell infusion, and into the necessity to per-
sonalize the application regimens of this immunotherapy modality. 
Notwithstanding the support by experimental and clinical data to 
the qualitative results of the model simulations, at its current state, 
the model is still an intellectual exercise. It has yet to undergo ret-
rospective validation by patient information before moving to the 
pharmaco-clinical developmental track for its implementation.

Mathematical modeling enables the comparison of the benefits 
and drawbacks of different cancer immunotherapeutics. In 2003, 
Szymanska proposed models for two cancer immunotherapy mo-
dalities: adoptive immunotherapy, involving transfer of T helper 
cells, and active immunotherapy, administering attenuated cancer 
cells or their antigens. Theoretical model analysis suggests that 
adoptive immunotherapy is safer for the patient. Specifically, in 
the case of active vaccination, the model predicts a massive increase 
in the number of T helper cells, which may critically boost in the 
levels of various cytokines, potentially causing a life-threatening 
cytokine storm.66

The exposure of such findings to the medical community should 
have motivated studies of potential adverse consequences of immu-
no-stimulation. However, in the early 2000s, hardly any biomath-
ematical research news could transcend the walls of the isolated 
small interdisciplinary community. Thirteen years later, the public 
was shocked to learn of six healthy volunteers, enrolled in a phase I 
trial of a novel immunomodulatory drug, who suffered unexpected 
severe systemic inflammatory response. They became critically ill 
and were admitted to an intensive care unit in a London hospi-
tal within minutes of receiving a single intravenous drug, theral-
izumab, an antibody activating T helper cells. These events shed 
some light on the immune-mediated cytokine storm, which leads 
to multi-organ failure in the absence of infection.67 Even though 
there may have been several reasons for this mishap, we dare spec-
ulate that much of the drama could have been avoided by timely 
consulting the mathematical model and joining forces for its 
validation.

We can already see that mathematical models of immune inter-
actions in cancer describe processes occurring on different scales 
and organization levels—from the molecular to the macroscopic 
level. Until recently, this caused difficulties in estimating values of 
parameters. However, today, with increasing access to clinical data 
and advanced statistical and numerical methods, like nonlinear 
mixed effects modeling,68 intensively developed in the context of 
PK,69 model parameters referring to different organization levels 
of the biological system can be jointly estimated from the experi-
mental and clinical data.

Milestone S2: Experimentally supported mathematical 
models for cancer immunotherapy
Until recently, to obtain substantial experimental support for a 
mathematical model was a tedious task, due to the little flow of data 
between experimental and theoretical disciplines. Therefore, only 
a few mathematical immunotherapy models were corroborated 
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by sufficient real-life data. In one of the first instances, de Pillis 
et al.,70 proposed a model accounting for different roles of natu-
ral killer cells and tumor-specific CD8+ T cells. The aim of this 
work was to learn how the immune system interacts with a grow-
ing tumor, and which components of the immune system play a 
role in responding to cellular immunotherapy. Model simulations 
were compared with experimental studies in which murine tumor 
cell lines were modified to express higher levels of immune-stim-
ulating ligands. Fits to data of two patients with metastatic mel-
anoma, treated by tumor-reactive T cells, support the generality 
of the tumor growth model and its relevance to human patients 
with cancer.

Immunotherapy of solid cancers by the cytokine IL-21 was 
similarly modeled as an ODE system, representing stimulation 
of innate immunity, followed by adaptive, tumor-specific immu-
nity. The model was initially fitted using mouse experiments in 
melanoma and renal cell carcinoma, and collaboration with the 
drug developers resulted in model expansion to include PK/PD 
data, and subsequent model validation by independent murine 
experiments. The model predicted that a fractionated or low-
dose regimen would reduce the tumor mass as efficiently or even 
better than the original regimen—predictions that were corrobo-
rated experimentally. This joint effort, although realized preclin-
ically, demonstrated the potential of using in silico-guided design 
and rationalization of cancer immunotherapy in the clinic.71–73

Milestone S3: Clinically corroborated personalization 
models for cancer immunotherapy
The above biomathematical efforts have mostly remained in the 
domain of theory, as they still require showing precision in human 
subjects. For models to make a meaningful contribution, particu-
larly in onco-immunology, they should be able to represent actual 
patients, and be implemented in simple-to-execute algorithms. 
Recent progress in precision medicine warrants the transition 
from theoretical analyses and basic dynamic modeling to complex 
statistical, mathematical, or computational modeling to guide cli-
nicians toward improved cancer care. The overflow of heterogenic 
patient data from clinical trials and hospital registries, as well as 
the availability of powerful computational resources, represent 
a unique opportunity for the development of effective immuno-
therapy personalization technologies.

One way to address patient variability issues is to develop indi-
vidual patient-tailored models. The model of Kronik et al.,74 de-
signed for vaccination immunotherapy of patients with prostate 
cancer, was one of the first examples of personalized model de-
velopment for a clinical cohort, with the patient’s tumor dynam-
ics serving for both training and retrospective model validation. 
Thus, with prostate-specific antigen (PSA) as a surrogate marker 
for tumor burden, pretreatment and initial in-treatment PSA data 
of a given patient served for model personalization (training set), 
and subsequent PSA measurements of that same patient served 
for retrospective model validation (validation set). The person-
alized models accurately predicted PSA dynamics over the entire 
measured period (ca. 1 year) in 12 of the 15 responsive patients. 
This was a creative new approach to validating personalized mod-
els (in contrast to population-based model training and testing). 

Model analysis further illuminated the futility of single vaccination 
schemes and supported periodic treatment in such patients.75

A novel interactive modeling approach, proposed by Kogan 
et al., took the in-treatment personalization concept one step 
further, offering real-time design and validation of a patient-spe-
cific model.76 Kogan and his colleagues used the above vacci-
nation model74 as a basis for developing a clinically applicable 
algorithm that builds the patient’s own model ad hoc to the level 
of a sufficiently good personal model obtained as early as possi-
ble after treatment onset.76 This in-treatment personalization/
validation methodology involves three major steps (Figure 2): 
iterative integration of longitudinally measured patient data into 
the mathematical model, until the point of sufficient personal 
model validation; application of the validated personal model 
to predict the patient’s response to the currently applied treat-
ment regimen; if necessary, simulation of the validated personal 
model to identify a regimen that is more beneficial. The major 
drawback of this approach is the scarcity of situations in which 
regimen personalization of a given treatment can be clinically 
feasible after treatment onset. Yet, below we suggest why this ap-
proach can be of value in immunotherapy drug development and 
how it can be effectuated in clinical trials of immunotherapeutic 
molecules.

What is the benefit of personal models for the specific challenges 
of ICB therapy?. A mechanistic model that formalizes the 
interactions among cellular immunity, advanced melanoma, 
and the ICB, pembrolizumab, was recently put forward by 
Perlstein and colleagues for studying this question. The 
model (Figure 3)77 is new in considering adaptive immunity 
as a developing tissue, as suggested by Gattinoni et al.,78 and 
incorporates both senescence and exhaustion—two dominant 
cellular immunity mechanisms in the context of PD-L1/PD-1 
blockade. Model simulations successfully capture the atypical 
disease dynamics in an individual patient from a hospital cohort 
(box in Figure 3). Computational analysis of the model sheds 
light on the predictive power of existing and potential response 
markers. The inter-patient variation in the values of the T 
cell toxicity parameter explains the rich variation in response, 
including a pattern roughly resembling HPD. Virtual clinical 
trials (see above) in the Perlstein and colleagues’ model77 
successfully retrieve real-life clinical trial results, showing that 
the ratio of reinvigoration rate to baseline tumor load can serve 
to cluster patients according to the predicted quality of their 
response.79 Such endeavors demonstrate how multiple personal 
model parameters, which are impossible to estimate in the 
clinical setting, can be combined into one quantifiable measure 
helping to classify responsive/nonresponsive patients. Pending 
validation, implementation of such models in the clinic can help 
in developing efficient predictive biomarkers.

Milestone S4: Clinical pragmatism and sufficient accuracy 
in retrospective clinical trials
Ultimately, only a minority of models are clinically oriented and 
contain personalization attributes to make them medically geared. 
Inspired by the personalization approach developed hitherto, Tsur 
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and her colleagues developed a medically feasible and easily im-
plementable innovative algorithm for navigating ICB treatment of 
advanced melanoma.80 The goal was to use a mathematical model 
that could input molecular and clinical metrics available before 
treatment, of the nature and sampling frequency used in the 
clinic, and be able to generate personal predictions interpretable 
by known clinical criteria, such as Response Evaluation Criteria 
in Solid Tumors (RECIST 1.1). Obviously, this meant devising 
a new methodology for integrating information on different or-
ganization levels of the biological system within PK/PD and dy-
namic disease modeling. In tandem with collecting hospital data 
of 54 patients with melanoma given pembrolizumab, a mechanis-
tic model for the interactions of the ICB drug with the tumor and 
immune system was developed. Analysis of correlations between 
personal pretreatment metrics of the 54 patients and the model 
parameters showed that the baseline tumor load, the Breslow 
tumor thickness, and the status of nodular melanoma were sig-
nificantly correlated with the model parameter for activation rate 
of CD8 + T cells and the net tumor growth rate, which was in line 
with biological findings.81,82

Embedding the discovered correlation functions and personal 
measurements of the correlates in the model, the resulting per-
sonalization algorithm enabled prediction of the TTP for every 
individual patient in the hospital cohort (Table 2). The predictive 
ability of the algorithm was checked by leave-one-out cross-vali-
dation; moderate predictive accuracy was obtained at this first 
step, with increased accuracy expected upon further validation in a 
larger group of patients. This is the first algorithm, which enables 
to predict an important clinical outcome—TTP, by combining 
clinical metrics collected before treatment with a simple mech-
anistic model for the cancer-immune system network affected 
by ICB. The methodology suggested by Tsur and colleagues is 

scale-independent, allowing integration of information collected 
on different organization levels for predicting the response of indi-
vidual patients to ICBs. Following retrospective clinical testing for 
completing the algorithm’s initial validation (milestone S4), this 
algorithm, and others like it, will be ready to move from the scien-
tific development track to the pharmaco-clinical track to undergo 
implementation as medical software devices (milestone PM1), and 
prospective clinical trials to prove their prediction capacity (mile-
stone PM2) and medical impact (milestone PM3).

FUTURE DIRECTIONS
How to personalize immunotherapy by integrating complex 
genomic, transcriptomic, metabolomic, or other patients’ data 
with mechanistic PK/PD models is a critical question at pres-
ent. The plethora of available new technologies does not offer 
effective personalization solutions, mainly because these tech-
nologies cannot efficiently integrate information from differ-
ent profiling scales. The road to successful personalization of 
cancer immunotherapy is the one that merges two different 
tracks, which call for a new impetus to their further progress: 
the analysis of clinical and molecular profiles, and the math-
ematical modeling of the complex interactive dynamics in the 
host-disease-drug system. Studies like Tsur et al., 2019, demon-
strate the promise as they integrate massive information from 
different organization levels in one framework, facilitating the 
personalization process in a scale-insensitive way, to ultimately 
determine personal drug-disease-host dynamics and predict 
personal responses to ICBs.

The understanding, emerging from the analysis of the mathe-
matical models, that relatively small changes in personal parame-
ters can significantly affect a patient’s response, as suggested, for 
example, for T cell functionality,77 forces one to revisit the basics 

Figure 2  An interactive modeling approach for personalization of a patient-specific model and its clinical application in real-time. A novel 
interactive modeling approach, proposed by Kogan et al., for patient-specific real-time modeling,76 developed based on the whole-cell 
vaccination prostate cancer model in ref. 74. The operation of the algorithm begins by model training on the initial data of the patient, followed 
by iterative integration of subsequent data until reaching model validation at sufficient accuracy. Once a validated personal model is reached, 
it may be simulated for predicting patient outcomes and improving treatment regimens. The timeline exemplifies how, for a given patient, 
a validated model may not be reached in time to predict initial patient outcomes (such as the response rate or time of progressive disease 
(PD) to the first-line treatment), but may be available for simulating such outcomes to further treatment by the same drug or by second-line or 
subsequent-line treatment. Blue open circles mark patient data; and the red line portrays model simulation.
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of drug development. The “one-size-fits-all” paradigm is still the 
central pillar in drug development, in which the performance of 
an investigational new drug is evaluated by the response of hun-
dreds, or even thousands, of patients to one specific treatment 

protocol. However, today, the large variation in the response to 
ICBs is evident, and the necessity and feasibility in the adjustment 
of therapy to the individual patient under ICBs have also been elu-
cidated. Therefore, one cannot use the population response to a 

Figure 3  A model for cancer immunotherapy by the checkpoint blocker pembrolizumab, and its simulation of tumor load in an advanced 
melanoma patient from a hospital registry.77 Immunity is represented by T cell subsets (tori; increasing shading represents increased 
maturity). Naïve T cells (TN) differentiate (solid arrow) into stem cell memory cells (TSCM), then into central memory cells (TCM), then into 
effector memory cells (TEM). Those differentiate into effector cells (TEFF), which gradually differentiate into fully exhausted cells (TEXH). Self-
renewal occurs in gradually decreasing rates (curled arrows). Cell death of gradually increasing rates (diagonal dashed arrows) is assumed for 
all T cell compartments. TEFF and TEM target the proliferating cancer cells causing them to die, but this activity is inhibited by the binding of 
cancer-expressed programmed cell death ligand protein 1 (PD-L1 to programmed cell death protein 1 (PD-1) receptors on the effector cells. 
Cancer cells also act to inhibit proliferation and functionality of TEFF and TEM cells via PD-1/PD-L1 ligation. Pembrolizumab, a PD-1 antibody, 
is injected (freehand arrow) and blocks the PD-1/PD-L1 pathway, preventing the inhibition of TEM and TEFF. Dendritic cells are activated by 
cancer antigens and stimulate the proliferation of TSCM and TCM cells. Lower box shows model simulations of tumor load in an individual 
patient from a hospital cohort (solid line), where the clinical response to pembrolizumab was retrieved (empty circles stand for clinically 
observed tumor load; bars represent SD).

Table 2  Comparison between the TTP derived from model predictions of the personalization algorithm, and the clinically 
measured TTP80 

Clinic. TTP
Pred. TTP 0–90 days 90–150 days 150–365 days No PD during follow-up

0–90 days 6 (11.1%) 0 (0%) 2 (3.7%) 2 (3.7%)

90–150 days 0 (0%) 2 (3.7%) 0 (0%) 3 (5.6%)

150–365 days 0 (0%) 0 (0%) 1 (1.8%) 0 (0%)

No PD during follow-up 4 (7.4%) 2 (3.7%) 2 (3.7%) 30 (55.6%)

Each cell includes the number of cases and percentage from the total number of patients in the cohort (in brackets; N = 54).80 The bold numbers represent the 
number of cases for which the algorithm correctly predicted whether disease progression will occur during a 1 year follow-up, and correctly predicted the time 
interval in which it occurred. Note that the algorithm predicted no progression during the 1-year follow-up period for 30 of the 35 patients who had not shown 
clinical progression during that period (bottom right cell). Cohen’s κ = 0.489.
PD, progressive disease; Pred., predicted; TTP, time to progression.
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single treatment protocol as a criterion for evaluating the efficacy 
of a drug, whose application to the patient needs to be attuned on 
a personal basis. In cancer immunotherapy, this “one-size-fits-all” 
strategy would result in underestimation of the efficacy of the de-
veloped drug.

How can we introduce a personalization scheme during 
clinical trials of immunotherapeutic drugs?
Agur and Vuk-Pavlovic addressed this question, calling for a 
conceptual change in the design of clinical trials for immuno-
therapy drugs, and suggesting a new approach clinical testing of 
drugs whose schedules are to be personalized (denoted P-trials).83 
In P-trials, the regulatory authorities should replace the state-of-
the-art procedure, by allowing testing of a few, a priori selected, 
dosing schedules that vary within a certain range, restricted by, 
for example, drug toxicity. Within the allowed range, the selection 
of the individual regimen would be left to the discretion of the 
treating physician, based on the clinical parameters of the partic-
ular patient.84 Tools like the recently developed personalization 
algorithm predicting TTP80 would be instrumental in such a clin-
ical decision-making process once it is soundly validated. This will 
hopefully lead to improved individual responses and, collectively, 
increase the response rates in studies of new immunotherapeutic 
agents.

In the targeted therapy realm, molecular response biomarkers 
enrich patient enrollment, and their use increases the likelihood 
rate of regulatory drug approval from 55% to 76%.85 However, 
the lack of efficient methods to identify and validate potential bio-
markers creates a shortage of approved diagnostics, holding back 
the institutionalization of precision oncology. Particularly in can-
cer immunotherapy, the poor predictive value of the first response 
biomarkers associated with PD-1/PD-L1 expression illustrates the 
urgent need for more reliable immunotherapy biomarkers, but the 
search for these is limited by our incomplete understanding of how 
immunotherapies modify the already complex immune response to 
cancer. As outlined in this review, the gap can be bridged by com-
putational analyses of mathematical models, used for analyzing 
the sensitivity of decisive system parameters. We expect this will 
highlight new, potentially efficient, simple or composite, response 
predictors.

In conclusion, technologies that process patient data from 
hospital registries, along with mathematical models for the un-
derlying interactive dynamics, can help creating personalization 
algorithms for facilitating prediction of the patient’s response. 
Such efforts could only be a product of a fruitful collaboration 
between clinicians divulging real-world data, and experienced 
mathematicians formalizing the pertinent pharmacological-bio-
logical interactions and working out the model personalization 
methodology. We believe that clinicians, pharmacists, and bio-
mathematicians should join forces to accelerate the maturation of 
precision medicine.
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