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Abstract-Based on a theory of population dynamics in perturbed environments, it was hy- 
pothesized that measles epidemics can be more efficiently controlled by pulse vaccination, i.e., by a 
vaccination effort that is pulsed over time (11. Here, we analyze the rationale of the pulse vaccination 
strategy in the simple SIR epidemic model. We show that repeatedly vaccinating the susceptible 
population in a series of “pulses, ” it is possible to eradicate the measles infection from the entire 
model population. We derive the conditions for epidemic eradication under various constraints and 

show their dependence on the parameters of the epidemic model. @ 2000 Elsevier Science Ltd. All 
rights reserved. 
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1. INTRODUCTION 

apply a first vaccination dose to all infants 15 months of age and a second dose at approximately 
six years. These guidelines are based on the conventional concept of continuous time-constant 
immunization strategies. However, in such strategies, vaccination affects the amplitude and the 

period of the epidemics, but it does not antagonize the natural dynamics of the disease. In 
contrast, a theory of population dynamics in harshly varying environments [2,3] suggests that 
when the environmental pattern imposed on the population takes the form of discrete episodes of 
devastation, it is the spacing of these episodes that determines population extinction. Based on 
this theory, it was hypothesized that measles epidemics can be more efficiently controlled when 
the natural temporal process of the epidemics is antagonized by another temporal process, i.e., by 
a vaccination effort that is pulsed in time rather than uniform and continuous. This policy was 
referred to as pulse vaccination and it was shown theoretically that pulse vaccination in which 
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children aged one to seven years are immunized once every five years, may suffice for preventing 

the epidemics [ 11. 

Recently, pulse vaccination has gained in prominence as a result of its reasonably successful ap 

plication to the control of poliomyelitis and measles throughout Central and South America [4,5]. 

The strategy has also been examined in the United Kingdom, where children aged five to 16 years 

were offered a combined measles and rubella (MR) vaccine in November 1994. Coverage of 90% 

or more was achieved in 133 of 172 district health authorities (770/o), and the mean coverage in 

England and Wales was 92%. As a result of this policy, the number of cases of measles notified to 

the Office of Population Censuses and Surveys fell significantly. Consequently, it was concluded 

that pulse vaccination of all children of school age is likely to have a dramatic effect on trans- 

mission of measles for several years and prevent a substantial toll of morbidity and mortality. If 

sufficiently high coverage is achieved, interruption of transmission should occur [6]. 

However, some serious questions may arise concerning the expected impact of this strategy. 

On the practical level, it seems essential to determine a priori the pulse interval (i.e., time 

between successive vaccination pulses) required for the efficient implementation of the strategy. 

Simulations of the pulse model [l] show that for Israel, an interval of about five years between 

successive vaccination pulses prevents epidemics. A very simplified analysis of the model suggests 

that this interval is roughly similar to the average age of infection, and evaluation of the average 

age of infection of unvaccinated population in developed countries as five years [5] support the 

analysis. Recently however, the pulse vaccination strategy has been explored in a steady-state 

and dynamic age structured compartmental models, and it has been suggested that changes, due 

to pulses, in the age distribution of susceptibles, imply uncertainty in defining the optimal pulse 

interval [7]. 

Another problem which needs consideration when recommending a vaccination strategy is 

that chaotic population fluctuations in measles epidemics have been detected in some European 

and American cities (notably [8-111, etc.). As mathematical models have been able to predict 

the onset of chaotic epidemics [ll-131, it seems important to examine what effect mass pulse 

vaccination strategies will have on the dynamics of the epidemic. 

In this paper, we focus on the problem of epidemic eradication under pulse vaccination policy. 

By analyzing this strategy in a simple SIR model, we determine the maximal interpulse interval 

which still ensures eradication of the disease. Elsewhere we examine the influence of the pulse 

vaccination on the nonlinear and chaotic behavior of the SIR model, with seasonal forcing [14]. 

2. THE SIR MODEL 

In our study, we analyze the dynamics of the SIR model of a population of susceptible (S), 

infective (I), and recovered (R) individuals, governed by the following system of ordinary differ- 

ential equations: 

dS 
- =m- (PI+m)S, 
dt 

g =ms-(m+g)I, 

The population has a constant size, which is normalized to unity 

Here, S represents the proportion of individuals susceptible to the disease, who are born at 

a rate m and die at the same rate, having mean life expectancy l/m. Susceptibles become 

infectious at a rate /?I, where I is the proportion of infectious individuals and p is the contact 

rate. Infectious individuals recover (i.e., acquire lifelong immunity) at a rate g, making the mean 

infectious period l/g. The variable R represents the proportion of recovered individuals. In 

practice, the equation for z is not required since R(t) can always be retrieved from (2). A 

S(t) + I(t) + R(t) = 1. (2) 
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detailed description of the model and its dynamics may be found in [15,16]. We note for future 
reference that typical parameters representative of measles dynamics used here are [13] 

77% = 0.02, p = 1800, g = 100. (3) 

The dynamical system (1) has two equilibrium points. The “trivial” equilibrium, or “infection- 
free” equilibrium, corresponds to a state in which there are no infectious individuals and thus 

complete eradication of the disease 

s, = 1, I,* = 0. (4) 

Here, as elsewhere below, the asterisk used in (4) indicates that the attached quantity is to be 

evaluated at equilibrium. 
The “nontrivial” equilibrium point corresponds to “epidemic equilibrium”, 

m+g s;=---, 
P 

I* = m(R0 - 1) 
1 P ’ 

where Ro is defined as the basic reproductive rate of the infectious disease 

&)=P-+ 
m+g 1 

From stability analysis, it is easy to show that if RQ > 1, the “epidemic equilibrium” (S;, I;) is 
locally stable, while the “infection-free equilibrium” (S,*, 1,‘) is unstable. Conversely, if Ro < 1, 
the “epidemic equilibrium” (S;, I;) is unstable (in fact, 1; is negative), while the “infection-free 
equilibrium” (S,*, I,*) is locally stable. It has been shown that for both the above cases, local 
stability of the equilibrium implies global stability in the meaningful domain for S and 1 (see [16]). 

2.1. The Strategy of “Constant Vaccination” 

The constant vaccination strategy attempts to vaccinate a designated proportion p of the 
newborn population. This is conventionally formalized in the SIR model by reducing the effective 

birth rate (m) of the population, so that (1) becomes 

g =(l-p)m-(pl+m)S. 

An examination of the local stability of the model’s equilibria reveals that there is a critical 
vaccination proportion 

PC&J- 
Ro’ 

(6) 

which governs the dynamics of the system as follows. 

(a) For relatively large vaccination levels, i.e., p > p,, the “infection-free equilibrium” is locally 
stable with coordinates 

S,*’ = (1 - p), I,*’ = 0. (7) 

The “epidemic equilibrium” point (S;, 1;) is unstable. 
(b) For relatively weak vaccination, i.e., p < p,, the “epidemic equilibrium” is locally stable 

and has the coordinates 

SF’ = ST, I;’ = 1; - mp. 
m+g 

In this case, constant vaccination linearly decreases the equilibrium number of infectious individ- 
uals (Figure l), but the number of susceptibles at equilibrium remains unchanged. 

For the standard measles parameters (3) p, x 95%, implying that for constant vaccination to 

succeed (i.e., for the stabilization of the “infection-free” equilibrium), it would be necessary to 

immunise at least 95% of all newborn infants. The high coverage required for this vaccination 
scheme is thus difficult to implement in practice. 
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Figure 1. Constant vaccination strategy. Time evolution of the proportion of infec- 
tious individuals I before and after the initiation of constant vaccination at t = 80. 

Note that the system relaxes to a new equilibrium point (8) after constant vaccination 
is applied. Model parameters as given in (3). 

3. PULSE VACCINATION STRATEGY 

Instead of constantly vaccinating an extremely large proportion of all newborn susceptibles, the 

pulse vaccination scheme proposes to vaccinate a fraction p of the entire susceptible population in 

a single pulse applied every T years. Pulse vaccination gives life-long immunity to pS susceptibles 

who as a consequence “recover”, as modelled in (1). Immediately following each vaccination pulse, 

the system (1) evolves from its new initial state without being further affected by the vaccination 

scheme until the next pulse is applied. In terms of the SIR model, this can be formulated as 

S(L) = (1 -P)S (tn) 7 tn+l = t, + T, 

where T is the period of pulse vaccination, t, is the time at which we apply the nth pulse, and t; 

is the time just before applying the nth pulse. 

We will show that if the period of pulses T is shorter than a fixed critical value Tmax (to be 

derived below), then the epidemic must eventually die out. 

3.1. The Model’s Periodic “Infection-Free” Solution 

We first show the existence of a periodic solution to the SIR model subject to the pulse 

vaccination scheme detailed above. The stability of this solution is examined in the section that 

follows. 
It is easy to see that the infected population I(t), which evolves according to (1) , has the trivial 

steady state I* = 0. We initially assume that the infected population I remains unperturbed 

at this steady state for all time, and then seek the steady-state behaviour (if it exists) of the 

susceptible population S(t) between two consecutive vaccination pulses occurring at times t, and 

tn+i = t, + T. 
Since we make the assumption that I = 0 for all time, equation (1) for the growth of the 

susceptible population S(t) simplifies to 

dS 
- = m(1 - S), 
dt 

subject to the pulse vaccination scheme 

S(L) = 0 - P)S (G) 7 tn+l = t, + T. (11) 
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In the time interval t, I t 5 t *+I, equations (10) and (11) have the following solution: 

Q(t) = 1 + (St - 1) e-m(t-t”), t, I t < &+I, 

t = tn+l. 
(12) 

Here, St = S(t,) is the number of susceptibles S immediately after the nth vaccination pulse, 

and may be viewed as the initial condition for (10) in the time interval [tn, &+I). The initial 

condition may change from one pulse interval to another in a manner that is straightforward to 

calculate. Setting S, = S(t,), it is possible to deduce the stroboscopic map F such that 

S n+1 = F(%). (13) 

The map F determines the number of susceptibles, S(t), immediately after each pulse vaccination 

at the discrete times t = t,, and can be obtained from (12) and (13) 

S n+l = F(&) = (1 - p) (1 + (S, - l)eemT). (14) 

The map F has the unique fixed point 

,‘J* = F( s*) = (’ ; p)fimel; ‘) , (15) 

It is important to note that if the orbit of the map converges to the fixed point S* , then the evolu- 

tion of the susceptible population S(t) converges to a cycle of period T. This is the “infection-free” 

periodic solution in which the susceptible population S cycles with period T while the infective 

population is at the equilibrium I(t) = I* = 0. 

In order to obtain the complete expression for the “infection-free” periodic solution, it is 

necessary to deduce the initial condition S t. But, since the map F determines the number 

of susceptibles S(t,) immediately after each pulse vaccination, it is easy to see that to obtain a 

periodic solution, we must have St = S. 

The “infection-free” solution (12) over the nth time-interval t, 5 t L tn+l = t, + T may thus 

be rewritten as 

S(t) = 

{ 

pemT 
‘-I- 1 -emT-pe 

-m(t-L) 1 tn<t<tn+1, 

s*, t = tn+1, 
(16) 

I”(t) = 0. 

3.2. Stability of the “Infection-Free” Solution 

In order to determine the local stability of the “infection-free” solution (16) found above, it is 

necessary to linearize the SIR equations (1) about this periodic solution by setting 

S(t) = S(t) + s(t), I(t) = 0 + i(t), (17) 

where s and i are small perturbations of susceptibles and infectives, respectively. Equation (1) 

can then be expanded in a Taylor series, and after neglecting higher-order terms, the linearized 

equations read 
ds 
- = -ms - @(t)i, 
dt 

2 = i (&i?(t) - m -g) , (18) 

subject to the pulse vaccination scheme 

s(tn> = (1 - PMt,>Y tn+l = t, + T. (19) 
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Figure 2. (a) The proportion of susceptibles S when pulse vaccination is applied 
(p = 0.5, and T = 2) to the SIR model (1). The susceptibles are attracted to a 
periodic “infection-free” solution (16). The line at SC x 0.0556 marks the “epidemic 
threshold” (22). (b) Time-series for the corresponding rapidly decreasing infectious 
population I. Note the logarithmic scale employed. Model parameters as given in (3). 

Note that the function S(t) is known explicitly (16) and should be viewed as a periodic coefficient 

of the variables s and i, respectively. The periodic solution of the full model (1) will be locally 

stable if the equilibrium (i*, s*) = (0,O) of the above linearized model is locally stable [17]. 

Examine first the equation for $ which is a function of the variable i(t) only. The equation 

can be readily integrated in the time interval t, 5 t 5 t n+r = t, +T, i.e., over one pulse interval, 

vielding 

where we have used the notation i, = i(tn). 

Obviously, the number of infectives i, will always decrease exponentially fast if 

1’“” (@(t) - (m + 9)) dt < 0. (21) t,, 
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Note that in time, as i(t) approaches sufficiently close to zero, it follows from (18) that s(t) must 

also converge to zero. We make this conclusion more rigorous in a follow-up paper where the 

stability of the periodic solution is characterized via Flouquet theory [14]. 

From (21), we see that the ‘?nfection-free” solution to the SIR model under pulse vaccination 

is locally stable if 
1 

s 

‘1 

%I 
$t)dt < y = S,, (22) 

where S, is sometimes referred to as the “epidemic threshold” [15]. Thus, for local stability, the 

mean value of the “infection-free” solution S(t) averaged over a single pulse period must be less 

than the threshold level SC. We will examine the ramifications of this stability criterion in the 
section that follows. Our numerical investigations of the system suggest that local stability of 

the “infection-free” solution implies global stability. 

A typical solution of the SIR equation under pulse vaccination is shown in Figure 2. The figure 

makes clear how the variable S(t) converges to a stable limit cycle that periodically rises above 

the threshold level S,. The oscillation is stable since the mean value of S(t) over the interpulse 

period is less than the threshold level S,. In contrast, the proportion of infected individuals I(t) 

rapidly decreases to zero. 

0’ I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Vaccination proportion, p 

Figure 3. The maximum interpulse interval Tmax as a function of vaccination pro- 

portion, p. Curve 1: approximation (24); Curve 2: exact result (23); Curve 3: the 

approximation (25) suggested in [l]. Model parameters as given in (3) 

3.3. Calculation of the Maximum Interpulse Interval, T,,, 

The stability condition (22) can be fully specified by substituting the exact expression for 

S(t) (16), and integrating. One finds that the periodic “infection-free” solution is locally stable 

if 
(p-mT)(l-emT)+mpT m+g 

mT(p- l+emT) 
<p. (23) 

This stability condition makes it possible to obtain an expression for the maximum allowable 

interpulse period, Tmax, for which the “infection-free” solution is stable. Clearly, it would be 

inadvisable in practice to employ an interpulse interval T larger than T,,,, for there would 

no longer be a stable “infection-free” solution and this could possibly eventuate in an epidemic 

outbreak. The maximum allowable value for T occurs when there is equality in (23). (This is a 

consequence of the left-hand side of (23) being an increasing function of T.) In order to calculate 
T max 7 it is helpful to simplify (23) by making use of Taylor expansions, by reasonably assuming 
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that T < 100, and that the mean lifetime of an individual is much greater than the duration of 
disease (m < g). After neglecting negligible higher-order terms, we finally obtain 

T 
1 

m=-jE (l-p,2-g,p)’ 

The dependence of the maximal period of the pulses, T,,,, on vaccination proportion, p, 
in equation (23), is shown in Figure 3. In contrast to these exact results, we have plotted the 
predictions for Tmax according to the scheme found in [l], where the approximate and conservative 

estimate is 

(25) 

4. DISCUSSION 

As we can see from Figure 3, condition (23) allows periods of pulses that are, for high vac- 
cination levels p, up to twice as large as those predicted in previous analyses [l]. However, the 
maximal value of T as obtained via (23), although accurate for the SIR model, may be an overes- 
timate for real community-wide epidemics in human populations. This is due to the inappropriate 
structure of the SIR equations when the system is close to extinction. In certain cases, during 
the evolution of the solution of the SIR model under pulse vaccination, the variable I takes un- 

realistic values, such as I = 10V2’, . . . , 10m4’ and even less. Considering the normalization used 
here (2), such a situation becomes senseless when the model is applied to measles epidemics of 
humans [13,15] where populations are of the order of lo6 individuals. Clearly, the SIR model 
fails to take into account the integer structure of populations, where, should the number of in- 
fectious individuals become “less than one”, the epidemic will die out and will not erupt again 
until external introduction of the disease later. 

It is possible to overcome this unrealistic scenario, by either using a stochastic model based 
on master equations instead of differential equations or by adding an additional term to the SIR 
model corresponding to the immigration of infectious individuals [13]. The immigration term 
prevents $ and I from taking unrealistically small values for lengthy periods of time. Numerical 
results of this modification and its effect on T,,, are shown in Figure 4, and are discussed further 

in [14]. 
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Figure 4. The maximum interpulse interval T max as a function of vaccination pro- 
portion, p. Curve 1: exact result (23) for the SIR model; Curve 2: condition for the 
model with immigration incorporated according to scheme found in [13,14]; Curve 3: 
condition (25) suggested in [l]. Model parameters as given in (3). 
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In this paper, we analyze the rationale of the pulse vaccination strategy [l] in the simple SIR 

epidemic model. It should be noted that in the theory of dynamical systems, pulse vaccination 

corresponds to a system of differential equations with impulses. The strict mathematical consid- 

erations of pulsed differential equations can be found in the work of Bainov [18]. By a simplified 

approach, here we deduce the existence and stability of a periodic “infection free” solution to the 

pulsed SIR model. We show analytically that under planned pulse vaccination, the SIR system 

may achieve a stable steady state free of infected individuals. This happens when the mean 

fraction of susceptibles averaged over the interpulse interval is less than a critical value defined 

by the parameters of the epidemic. We derive the exact conditions for epidemic eradication, 

under different constraints. This enables us to provide an accurate estimate of the maximal 

period of pulse vaccination which still ensures an “infection-free” steady state in the SIR model, 

thereby extending the results of [l]. The nonlinear behaviour of the SIR model under the pulse 

vaccination policy is comprehensively studied elsewhere [14]. 
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