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The fundamental strategy of chemotherapy is to maximize tumor eradication within the
limits of tolerable toxicity to the organism. To demonstrate the use of mathematical
models in designing treatment protocols, we modeled the effect of chemotherapy on
tumor mass and simulated the outcome of several neoadjuvant protocols for breast
cancer disease. The model assumes unperturbed tumor growth, superimposed by
periods of tumor regression during treatment applications. It takes into account both cell
cycle specific (CCS) and cell-cycle non specific drugs (CCNS). Three possible modes of
growth (exponential, Gompertz and power laws) were simulated in the study. The model
parameters (such as cytotoxic activity of a given protocol) were estimated by best fit
procedure from the clinical data of tumor regression following neoadjuvant treatments.
The estimated parameters were then used to simulate various regimens that are employed
today in the treatment of adjuvant and metastatic breast cancer. Our results suggest
that although high dose chemotherapy (HDT) cannot eradicate overt metastatic disease,
it may lead to cure if applied early in the natural history of breast cancer. Moreover, the
simulations predict a better response for a rather toxic dose dense regimen, as compared

to a more conventional protocol. However, our simulations suggest that a well tolerable
continuous protocol is no less efficient. The results of the study provide insights into the
effectivity of chemotherapy and may assist in designing better protocols.

∗E-mail: shochate@netvision.net.il
†E-mail: agur@ccsg.tau.ac.il

599



600 E. Shochat, D. Hart & Z. Agur

1. Introduction

Over the past several decades, there has been steady progress in the understanding of

the pharmacokinetics and pharmacodynamics of cytotoxic agents.5,10,19,36,48,52,61,69

In addition, the mathematical properties of cell growth of different chemothera-

peutic regimens have been studied.1,2,11,37,45,65 This research provides important

insights as to the ways by which chemotherapeutic protocols can be improved for

better tumor control. For example, it is demonstrated mathematically, and sup-

ported by in vitro and in vivo experiments, that the efficacy of CCS drugs will be

increased if the frequency of their administration is modulated according to the fre-

quencies of the cell divisions in the drug-susceptible host and cancer tissues.3,12,67

Yet this quantitative knowledge is only rarely translated into the medical practice,

and most of the chemotherapy protocols employed today are derived by a tedious,

time and effort consuming, heuristic paradigms of clinical trials.18

The present work was aimed at theoretically examining the efficacy of several

protocols which are currently employed in the chemotherapy of breast cancer. To

do so we put forward a general model of chemotherapy in which we implemented

three alternative modes of tumor growth: exponential,59 Gompertz34,44 and power

law growth function,14,40 which was recently shown to reflect the growth of

primary breast cancer.22 The model parameters (such as cytotoxic activity of a

given protocol) were estimated by best fit procedure from the clinical data of tu-

mor regression following neoadjuvant treatments.9,55,57 We then simulated several

clinical scenarios in the treatment of breast cancer, namely, treatment of primary

tumor, of micrometastatic cancer, and of macrometastatic disease. The results of

this study may assist in identifying among the many combinations of drug dosage

and scheduling, the most promising protocols to be evaluated clinically.

2. The Basic Model

The mass specific growth rate of a tumor is the difference between the specific

growth rate, g, at which its cells proliferate, and the specific rate at which they die

per unit of tumor mass. The mass specific mortality rate is equal to the sum of

the natural mortality rate m0 and the mortality rate due to treatment, mT . We

assume that the specific growth and natural mortality rates g and m0 are a function

of the tumor size y. Moreover, we assumed that the specific treatment mortality

rate depends on tumor size and on the treatment type and intensity. Hence the law

of growth of an untreated tumor can be expressed in the form:

dy

dt
= (g −m0)y , (2.1)

while the dynamics of treated tumor is described by:

dy

dt
= (g −m0 −mT )y . (2.2)
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Let f(y) = g − m0 be the net mass specific growth rate of the tumor when left

untreated, so that (2.1) and (2.2) are now replaced by (2.3) and (2.4) respectively:

dy

dt
= f(y)y , (2.3)

dy

dt
= [f(y)−mT ]y. (2.4)

For exponential growth, the mass specific growth rate is a constant, γexp : f(y) =

γexp = ln 2/texp, where texp is the tumor doubling time. For Gompertz growth,

f(y) = −α ln(y/ymax) where α is a constant and ymax is the limiting tumor size.

For power law growth, f(y) = γpy
β−1 where γp and β are constants.

Both animal and cell culture experiments suggest that the mortality rate of cells

due to chemotherapy (the dose response relationship) is often proportional to the

drug concentration, c, and the mass of cells susceptible to the drug.24,30,41,48,69

Cytotoxic drugs are usually divided into two classes: CCS drugs that are toxic to

proliferating cells only, and CCNS drugs that are toxic to any living cell.16,19,54

We assumed that the effect of CCS drugs is proportional to the mass of those cells

that are actually proliferating. If we take as a reasonable approximation in actively

growing tumors that g is proportional to the net mass-specific growth rate f(y)

then the effect of CCS drugs will be proportional to the net growth rate. On the

other hand, the effect of CCNS drugs is simply proportional to the tumor mass y.

Thus the mass specific mortality rate due to chemotherapy is:

mT = rscs(t)f(y) + rncn(t) , (2.5)

where cn and cs are measures of the concentrations of CCNS and CCS drugs at time

t, respectively, and rn and rs are rate constants. The growth law during treatment

is therefore:
dy

dt
= {f(y)[1− rscs(t)]− rncn(t)}y . (2.6)

In practice, only the products, ks(t) = rscs(t) and kn = rncn(t) are needed for our

simulations. Thus, the growth rate for treated tumor now becomes:

dy

dt
= {f(y)[1− ks(t)] − kn(t)}y . (2.7)

3. Parameter Estimation

The parameters for the three possible growth laws for untreated tumors were

estimated from the data of Fournier et al.17 This study analyzes over 160 cases

where tumor growth could be seen by consecutive retrospective mammograms. They

reported an average tumor volume of 2.6 cc with a mean doubling time of seven

months. This gives an estimate for the net growth rate for the exponential law

of about γexp = 0.1 month−1. For the power law with β = 0.5, these data yield
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an estimate of γp = 0.135.22 In the case of Gompertz growth, using in addition a

limiting size of ymax = 3000 cc,46 the data give an estimate of α = 0.013. The cell

proliferation parameters for metastatic breast cancer were estimated from Spratt

and Spratt,58 using similar techniques (for the exponential law γexp = 0.25 month−1;

for the power law, β = 0.5, γp = 0.22; in the case of Gompertz growth, α = 0.03).

We first estimated the functions ks and kn for neoadjuvant chemotherapy

(primary breast cancer chemotherapy). This was then used to estimate the ks and

kn of various protocols that are currently employed in the treatment of metastatic

and adjuvant breast cancer. It was assumed, for the sake of simplicity, that there

is a similar drug sensitivity for the cells of primary and metastatic cancer.

Chemotherapy protocols differ in the combination of drugs being used and the

individual drug dosage and scheduling. To obtain a unified measure of drug efficacy

between various drug protocols we extended a method developed by Simon et al.32,56

Drugs in each category were converted to the dosage of a reference drug of the

same category that gives a similar response. In the current study, the CCNS drug

doses were all transformed to their equivalent doses of the drug doxorubicin; 1 mg

of the doxorubicin was taken to be equivalent to 24 mg of cyclophosphamide, to

0.9 mg of thiotepa and 5 mg of carboplatin.32 For the CCS drug category, 5-FU

(5 fluorouracil) was used as a standard; 1 mg of 5 FU was taken as equivalent to 0.1

mg of methotrexate32 and 0.1 mg of Taxol.13 The various drug regimens that were

simulated in this study are summarized in Table 1. The kill rate of combinations

of drugs was calculated assuming that the drugs interact linearly.

We focused our analysis on the data of two studies9,55 that provided the most

detailed information of the primary tumor size changes during treatment. We used a

less detailed study.57 to corroborate the parameter estimates. The original studies

report the tumor sizes before and following chemotherapy as assessed by clinical

examination. A complete clinical disappearance of the tumor was categorized as

a “complete response” (CR). If the tumor remained detectable after treatment,

but its cross-section was reduced by more than 50%, it was classified as a “partial

response” (PR). A response of less than 50% in the tumor cross-section was reported

as “no clinical response”(NR). In order to quantitatively estimate the pathological

tumor response to chemotherapy from this information, these data was coded as

follows: NR = tumor volume remains at baseline; PR = 50% reduction in the

cross-section of the tumor; CR = tumor size below the clinical detection threshold

(taken as 0.8 cm; note that all these numbers are conservative). The accuracy of

clinical size estimation was addressed by several authors23,33 and generally a very

good correlation was found between the clinical and the pathological size. Thus,

the consecutive estimations of the average tumor volumes following treatment were

taken as pathological size.

Numerous studies have shown that the most important factor governing the

magnitude of the response (i.e. the proportion of the initial over the final tumor

cross-section) of a drug during treatment is proportional to the total amount of
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drug administered over that time. This is proportional to the integral:∫ T

0

c(t) dt , (3.8)

where T is the total time of the treatment.26,29,35,41 Thus, to a first approximation,

a continuous constant drug dosage will have a similar effect to a sequence of pulses,

provided that they have the same total dose. The assumption of constant dosage al-

lows for considerable simplification in Eq. (2.7), as in most cases analytic solutions

can easily be obtained. We therefore simulated solutions to Eq. (2.7) assuming

that ks and kn were constant, and searched for values of these constants which

gave the least squares fit to the data, using the Levenberg–Marquardt algorithm39

as implimented in the Mathematica 3.0 computer package. Many different initial

parameters were tested in order to guarantee that the global least squares fit had

been obtained. From Eq. (2.6), the effect of a drug at any given time is propor-

tional to concentration of the drug at that time. From this fact and the parameter

estimates for constant dosage, the functions ks and kn could be estimated for pulse

treatment. We checked that the fit to the data remained good when the assumption

of a constant dosage was replaced with the actual pulse schedules (see for example

Fig. 1).

Fig. 1. Simulation of primary breast cancer response to pulse chemotherapy [Eq. (2.7)]. Parameters
were chosen as the best fit to data.17,55 The actual tumor volume is denoted by •. The simulation
with power law growth is denoted by a heavy solid line, Gompertz growth by a heavy dashed line,
and exponential growth by a light dashed line.

4. Chemotherapy Simulations

We used our model to analyze the effects of several currently employed treatments

of metastatic and adjuvant breast cancer. Each treatment protocol was simulated

in three clinical settings:

(a) an overt metastatic tumor burden of 1010 cells (tumor diameter of 3 cm);
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(b) micrometastases which are below the clinical detection threshold of 107 cells

(tumor diameter of 0.2 cm);

(c) very small micrometastases of 105 cells (tumor diameter of just 400 microns).

Figure 2 illustrates the simulation results of a conventional adriamycin based

chemotherapy protocol CAF (cyclophosphamide, doxorubicin and 5-FU).55 The

results of the study provide insights into the effectivity of chemotherapy and may

assist in designing better protocols. (The dosing schedules are listed in Table 2.)

Figure 2a gives the effect of this treatment for metastatic disease. It is evident

that the tumor burden is almost always incurable by such a regimen. This is true

also for substantially smaller micrometastatic tumor burden (Fig. 2b). One should

(a)

(b)

Fig. 2. Simulation of a conventional (CAF) pulsed chemotherapy of metastatic cancer. The
treatment protocol and the cell kill parameters are given in Table 2. The y-axis represents the
viable tumor cell number in log scale. The x-axis represents the duration of treatment in months.
The three modes of growth are denoted as in Fig. 1. Untreated growth following the power law
is denoted by a light solid line. (a) represents the treatment of overt metastatic disease (1010

cells). The clinical detection threshold of metastases is 109 cells; (b) illustrates a treatment of
micrometastatic disease (105 cells). The dotted line represents the maximal possible size of an
avascular tumor.
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note, though, that breast cancer kinetic parameters have large variances. As a

consequence, in very slow growing tumors, or in a very small metastatic disease,

our conclusions may be too pessimistic.

It has been suggested that continuous long term infusion of cytotoxic drugs

may provide better results than the conventional pulsed based protocols.4,57 The

simulation results of a continuous long term infusion are presented in Fig. 3. The

simulations of neoadjuvant treatment are similar to those observed clinically57

(Fig. 3a). The simulations of metastatic disease suggest that continuous long term

infusion may give relatively good tumor response and even a chance of cure for small

tumor burdens (Fig. 3c). However, note that a higher total dose was simulated in

Fig. 3, as compared to Fig. 2, in order to mimic the clinical protocols of continuous

drug administration (Table 2).

Our simulation technique was also used to evaluate the efficiency of high dose

chemotherapy (HDT) in the adjuvant and metastatic setting (Fig. 4). Here we

used doses of the drugs that were 3 to 15 times higher than those simulated in

our conventional protocols, as is routine in intensive chemotherapy6 (see Table 2).

There is evidence that in such toxic dosages, the effect of many drugs cannot be

characterized as only CCS or CCNS.68 Thus, we assumed that the drugs simulated

in Fig. 4 act through both mechanisms. From the model output, it is evident that

HDT cannot cure large tumor burdens but is efficient in smaller tumors.

Gompertz (and power law) growth predict that the specific growth rate is higher

in smaller tumors. This suggests that there will be an increased regrowth rate as

the tumor shrinks. An approach based on this idea, assuming the Gompertz mode

of growth,45 is currently being evaluated in several clinical trials.28 To combat re-

growth, these studies simultaneously employ several intriguing approaches such as

“late dose intensification” (increasing the dose level as therapy progresses), “dose

dense” therapies (decreasing the rest periods between treatment pulses by using

hematopoietic growth factors support), and “crossover intensification” (sequentially

switching between relatively intense doses of different drugs). The strategy of these

trials is simulated in Fig. 5 (see Table 2). Our results show that this intense treat-

ment has a higher efficacy, but is nevertheless not capable of fully eliminating the

tumor mass, except perhaps in very small tumors.

5. Discussion

The mathematical model presented here provides a way to compare between differ-

ent treatment strategies that are currently employed in breast cancer chemotherapy.

The simulations predict that small metastatic tumors (< 105 cells) can be elimi-

nated, but not overt metastatic tumors, which is in line with a recent meta-analysis

of HDT clinical trials.53 This work concludes that HDT does not improve the out-

come of overt metastatic disease, but may be beneficial if applied early in the natu-

ral history of breast cancer. As expected, the simulations predict a better response

for the rather toxic dose dense regimen,28 as compared to the conventional (CAF)
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(a)

(b)

(c)

Fig. 3. Simulation of a prolonged continuous 5-FU treatment combined with pulsed chemotherapy
for primary and metastatic cancer. The treatment protocol and the cell kill parameters are given in
Table 2. The graph settings are similar to Fig. 2. (a) illustrates a neoadjuvant chemotherapy of pri-
mary breast cancer (growth parameters and notations as in Fig. 1). The actual tumor sizes drawn
from a clinical trial using the same drug combination,57 is given for comparison; (b) represents the
treatment of overt metastatic disease (1010 cells); (c) illustrates a treatment of micrometastatic
disease (105 cells).
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(a)

(b)

(c)

Fig. 4. Simulation of HDT for metastatic disease. The treatment protocol and the cell kill
parameters are given in Table 2 (see Fig. 2 for notations). (a) represents the treatment of overt
metastatic disease; (b) illustrates a treatment of a substantial metastatic disease (107 cells), yet
below the threshold of clinical detection; (c) illustrates a treatment of micrometastatic disease
(105 cells).
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(a)

(b)

Fig. 5. Simulation of a pulsed dose dense chemotherapy for metastatic cancer. The treatment
protocol and the cell kill parameters are given in Table 2. The graph settings are similar to
Fig. 2. (a) represents the treatment of overt metastatic disease; (b) illustrates a treatment of
micrometastatic disease.

protocol. However, our simulations suggest that the well tolerable continuous 5FU

protocol57 is no less efficient (see Figs. 3 and 5). Moreover, it is evident from our

results that at least under the conditions simulated in this study, only HDT gives

some hope of cure.

The exact tumor growth function may influence the results of different chemo-

therapy protocols. We have simulated three possible modes of growth for each

chemotherapy protocol. Our results show that different modes of growth corre-

spond to different responses to chemotherapy. For large tumors (> 1010 cells), all

three modes of growth predict qualitatively similar response to chemotherapy. The

exponential growth predicted the poorest results since this mode of growth has the

highest net growth rate in this size range, and therefore the fastest regrowth af-

ter chemotherapy (see Fig. 2a). In smaller tumor sizes (< 107 cells), power and
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Gompertz law predict rapid regrowth of the tumor. Yet, the power law predicts

a much larger specific growth rate as the tumor shrinks (especially < 105 cells).

As a consequence, cells in very small tumors may be very sensitive to CCS drugs.

This implies a more efficient activity of these drugs in small tumors. In such a

case HDT may even eliminate relatively large metastatic burden of 107 cells. This

result should be regarded with some caution, as for very small tumors, the power

law gives an unrealistically large mass specific growth rate of f(y) > 30 month−1,

for tumor radius of 150µ (tumors with less than 105 cells). Note that this radius

corresponds to the largest distance to a feeding capillary that is compatible with cell

growth.62,64 It should also be borne in mind that the mode of growth of avascular

tumor may be different from that of large tumors, whose growth may be governed

by the rate of angiogenesis.25,63 In the current model, in the case of power law

growth this phenomenon was accounted for by constraining the value of f(y) from

above by 15 month−1.

In our model, we assumed that the effect of any given drug on metastatic

tumors is the same as on primary tumors. This may not be the case in advanced

disease, where a high probability of drug-resistance mutations exists.15,21 However,

the extent and the relevance of this phenomenon for breast cancer is not clear.47

Our model does not allow for drug resistance per se. Nevertheless, it is evident from

the simulations that the basic nature of Gompertz45 and the power law growth22

may provide an alternative explanation for the failure of chemotherapy protocols.

As the treated tumor shrinks in mass, its specific growth rate increases, with a

concomitant increase in the proliferation rate. The increasing growth rate of the

shrinking tumor will eventually counterbalance the effect of chemotherapy, with a

rapid regrowth as soon as treatment stops.50

The pharmacodynamical properties of chemotherapy modeled in the current

study are relatively simple. For example, a simplifying assumption of an immediate

reaction of cells to chemotherapy is implicit in the model. This is probably not

a serious limitation because studies show that cells are eliminated as fast as one

hour after chemotherapy application.5,30,36 Thus, it may be assumed that the cell

kill is instantaneous relative to the period of drug application simulated in the

model (e.g., 24–48 hours). This duration of the pulse was chosen to correspond

with the known pharmacokinetics of the drugs simulated in our study. Most of

the chemotherapeutic agents that are simulated here have a half-life between 12

and 48 hours, and their pharmacokinetics may often be approximated by first-order

kinetic rate equations.41 The same method may be used to evaluate the efficacy of

additional cytotoxic agents in new protocol design. In doing so one should remember

that the classification of cytotoxic agents into CCS/CCNS, although useful, may be

an over-simplification.

There is a great inter-patient variability in the cellular parameters7,49 and in

the response to cytotoxic agents.43,51 It should be emphasized that the current

analysis simulates only an average response of an average tumor. Treatment de-

signs for individual patient may therefore require patient-specific information of
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biological parameters such as Ki-67, TLI (thymidine labelling index) and S-phase

fraction.51,66,70,71 However, even though the simulations were based on rather crude

and limited data, the model output was similar to what is observed in the clinics.

Dedicated studies, using novel techniques, such as MRI and PET scan, for pri-

mary breast cancer,8,20,60 and tumor markers and radioactive tracers for metastatic

disease,31,38,42 are required in order to provide more accurate estimates of tumor

growth and response to chemotherapy.
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