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Theoretical results show that the measles ‘pulse’ vaccination strategy can be distin-
guished from the conventional strategies in leading to disease eradication at relatively
low values of vaccination. Using the SIR epidemic model we showed that under
a planned pulse vaccination regime the system converges to a stable solution with
the number of infectious individuals equal to zero. We showed that pulse vaccina-
tion leads to epidemics eradication if certain conditions regarding the magnitude of
vaccination proportion and on the period of the pulses are adhered to. Our theoret-
ical results are confirmed by numerical simulations. The introduction of seasonal
variation into the basic SIR model leads to periodic and chaotic dynamics of epi-
demics. We showed that under seasonal variation, in spite of the complex dynamics
of the system, pulse vaccination still leads to epidemic eradication. We derived
the conditions for epidemic eradication under various constraints and showed their
dependence on the parameters of the epidemic. We compared effectiveness and cost
of constant, pulse and mixed vaccination policies.
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1. INTRODUCTION

Currently, the guidelines for measles immunization in many areas of the Western
world recommend a first vaccination dose at 15 months of age and a second dose
at around 6 years. These guidelines are based on the conventional concept of
time-constant immunization strategies.

Recently, a new vaccination strategy against measles, pulse vaccination, has been
proposed. This policy is based on the suggestion that measles epidemics can be
more efficiently controlled when the natural temporal process of the epidemics
is antagonized by another temporal process (Agur, 1985; Agur and Deneubourg,
1985; Agur et al., 1993). Theoretical results show that the *pulse’ vaccination
strategy can be distinguished from the conventional strategies in leading to disease
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eradication at relatively low values of vaccination (Agur et al., 1993). In contrast,
it is predicted that conventional vaccination strategies lead to epidemic eradication
if the proportion of the successfully vaccinated individuals is higher than a certain
critical value, which is approximately equal to 95% for measles (Anderson and
May, 1995).

Pulse vaccination has gained in prominence as a result of its highly successful
application in the control of poliomyelitis and measles throughout Central and
South America (de Quadros et al., 1991; Sabin, 1991). Another example for the
application of this strategy is the United Kingdom, where, during November 1994,
children aged 5 to 16 years were offered a single vaccination pulse, in the form
of a combined measles and rubella (MR) vaccine. Coverage of 90% or more was
achieved in 133 of 172 district health authorities (77%), and the mean coverage
in England and Wales was 92%. As a result of this policy the number of cases
of measles notified to the Office of Population Censuses and Surveys has fallen
significantly. As a consequence it was concluded that pulse vaccination of all
children of school age is likely to have a dramatic effect on the transmission of
measles for several years and prevent a substantial toll of morbidity and mortality
(Ramsay et al., 1994).

However, some questions may arise concerning the expected impact of this strat-
egy. On a practical level it seems essential to determine a priori the pulse interval
required for the efficient implementation of the strategy. Simulations of the pulse
model show that for Israel an interval of about 5 years between successive vacci-
nation pulses prevents epidemics (Agur et al., 1993). A simplified analysis of the
model suggests that this interval is roughly similar to the average age of infection.
Evaluation of this parameter in unvaccinated populations in developed countries as
5 years (Sabin, 1991) supports this analysis (Agur er al.. 1993).

Recently, the pulse vaccination strategy has been explored in simple steady-state
and dynamic age-structured compartmental models (Nokes and Swinton, 1995).
The problem of pulsed mass-action chemostat has been considered by Funasaki
and Kot (1993) in a similar fashion.

The implementation of pulse strategy should depend on the ability to predict the
resulting dynamics. In this context it is important to note that chaotic dynamics have
been detected in measles epidemics in some European and American cities [notably
(Olsen and Schaffer, 1990; Sugihara and May, 1990) etc.] and that mathematical
models are able to predict the onset of chaotic epidemics (Schaeffer and Kot, 1985;
Grenfell, 1992; Engbert and Drepper, 1994) as the result of seasonal variation in the
contact rate (London and Yorke, 1973). Therefore, it seems important to examine
what effect a mass pulse vaccination strategy will have on the periodic and chaotic
epidemics dynamics which originate in seasonally forced measles models.
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2. THE SIR MODEL

We study a population which is composed of three groups of individuals: suscep-
tibles (S), infectious (/) and recovered (R), whose dynamics are modelled by the
standard SIR equations with vital dynamics:

g§—=m—(,81—i—m)5

dt

Ei—-1—=/5'15—(m-f—g)1 n
dt

dR

—L-j—t—=g1 —mR

The population has a constant size, which is normalized to unity:
S+ 1)+ R(t) =1. (2)

For this model, S represents the proportion of individuals susceptible to the disease,
who are born and die at the same rate m, and have mean life expectancy 1/m.
Susceptibles become infectious at a rate 8/, where [ is the proportion of infectious
individuals and B is the contact rate. Infectious individuals recover (i.e., acquire
long life immunity) at a rate g, so that 1/g is the mean infectious period. Infected
individuals who have recovered are denoted by the proportion R. In practice, the
equation for d R/dt is redundant because R can be obtained from the relation (2).
A detailed description of the model and its dynamics may be found in Anderson
and May (1995) and in Hethcote (1989). We note for future reference that in this
article we use typical parameters that are representative of measles dynamics, as
follows (Engbert and Drepper, 1994):

m = 0.02, g = 1800, g = 100. 3

The dynamical system (1) has two equilibrium points. The first, corresponding to
a population with no infected individuals. is referred to henceforth as the “infection-
free equilibrium’;

;=1 (4)

Here, as elsewhere below, the asterisk used in (4) indicates that the attached quantity
is evaluated at equilibrium.

The second equilibrium corresponds to the case in which there is a significant
group of infectious individuals, and which will be referred to as the ‘epidemic
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equilibrium’:
m+ g
§* =2 (5)
‘ B
. MRy—-1)
= ——-,
B

where the basic reproductive rate of the epidemic, Ry, is defined as in Anderson
and May (1993):

B s
Ro—m+g—l/5,. (6)

If Ry > 1, then on average, each infected individual infects more than one other
member of the population and a self-sustaining group of infectious individuals
will propagate. A simple linear analysis shows that in this case, the ‘epidemic
equilibrium’ point (S}, /1) is locally stable, while the ‘infection-free’ equilibrium
point (87, [7) is unstable. Conversely, if Ry < 1 the epidemic cannot maintain
itself because each infected individual on average, infects less than one member of
the population. The ‘epidemic equilibrium’ (S7, /7) is then unstable (in fact, /]
becomes negative), while the “infection-free’ equilibrium point (S, /;). is locally
stable. It has been shown that for both the above cases, local stability of the
equilibrium implies global stability in the meaningful domain for S and / (see
Hethcote, 1989).

3. VACCINATION STRATEGIES

3.1. Constant vaccination. According to the conventional constant vaccination
strategy, all new-born infants should be vaccinated, and p is the proportion of those
vaccinated successfully (with 0 < p < 1). In effect, constant vaccination reduces
the birth rate, m, of susceptibles (Schenzle, 1984), so that the first equation of (1)
becomes:

dS
—d—tz(l—p)n1—(ﬂl+m)5. (7N

An examination of the local stability of the equilibria of the SIR model with
constant vaccination (7) reveals that there is a critical vaccination proportion p,,

1
0

which governs the dynamics of the system as follows:
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(a) For relatively large vaccination levels, i.e., p > p., the ‘infection-free’ equi-
librium point (4) is stable, with new coordinates (15" =0,8 =0 -p)).

(b) For relatively weak vaccination, i.e., p < p., the ‘epidemic equilibrium’
point (5) is stable and has the new coordinates

"
| =57,

ni

I¥=1r- p.
| I

Hence, increasing the vaccination proportion, p, linearly reduces the equilibrium

number of infectious individuals, but the number of susceptibles remains unaffected.

It is useful to note that for the standard measles parameters (3),
pe > 0.95. 9

This means that for the constant vaccination scheme to be successful, i.e., for
stabilization of the ‘infection-free” equilibrium, it is necessary to immunize at least
95% of all children soon after birth. In practice, it is both difficult and expensive to
implement vaccination for such a large population coverage. We are therefore led
to examine the potential of other strategies such as pulse vaccination.

3.2. Pulsevaccination. Instead of constantly vaccinating an extremely large pro-
portion of all newborn susceptibles, the pulse vaccination scheme proposes to vac-
cinate a fraction p of the entire susceptible population in a single pulse, applied
every T years. Pulse vaccination gives life-long immunity to pS susceptibles who
are, as a consequence, transferred to the ‘recovered’ class (R) of the population.
Immediately following each vaccination pulse, the system (1) evolves from its new
initial state without being further affected by the vaccination scheme until the next
pulse is applied.

The theory of pulse vaccination has been outlined in Agur et al. (1993). The
underlying principle is to apply vaccination pulses frequently enough so as to prevent
the infectious population from ever growing, i.e., by maintaining d//dt < 0 for
all time. Such a strategy ensures that / (¢) is a decreasing function of time, and the
infectious population will eventually dwindle to zero. It is easy to see from (1) that
the condition 4/ /dr < O will always be fulfilled if S is permanently held below the
epidemic threshold, S. (Agur et al., 1993):

m+g_
B

The above discussion immediately suggests the strategy of applying pulse vacci-
nation whenever S(r) grows to a level that is close or equal to the threshold value

S(t) <

S.. (10)
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S.. It has been shown (Agur er al., 1993) that for this ‘threshold method’, periodic
pulsing can maintain S(¢) below S, as long as the period of pulsing T is kept below
a fixed critical value 7,,,,. Obviously, the longer the period between vaccination
pulses, the less often it is necessary to vaccinate the susceptible population. But
should the pulse interval exceed T,,,, the vaccination scheme may fail. One of
the main goals of this paper is to find a suitable technique for estimating this key
parameter, T,,,,.

4. DYNAMICS OF SIR MODEL UNDER PULSE VACCINATION

When pulse vaccination is incorporated into the SIR model (1), the system be-
comes non-autonomous and may be rewritten as follows:

43 B1+mS—p> ST )5 —nT)
—=m - ’ - n —n
dt " " pn:O
(1)
al BIS —(m+g)!
— = —(m .
dt 8
where
SinT™) = lirr(l)S(nT —€). €>0 (12)

is the left-hand limit of S(¢), and 8(¢) is the Dirac delta-function (Agur er al., 1993).
Pulse vaccination is applied as an impulse at the discrete times t+ = nT (n =
0.1.2,...). and the moment immediately before the n-th vaccination pulse 1s no-
tated here as t+ = n7~. The train of impulses generated by the delta-function in
(11) creates jump discontinuities in the variable S(r), which suddenly decreases by
the proportion p whenever t = nT.

We begin the analysis of (11) by first demonstrating the existence of an ‘infection-
free’ solution, in which infectious individuals are entirely absent from the population
permanently i.e.,

It)y=0. t >0. (13)

This is motivated by the fact that /* = O is an equilibrium solution for the variable
(1), asitleaves dl/dt = O [see (11)]. Under these conditions we show below that
the susceptible population § oscillates with period T, in synchronization with the
periodic pulse vaccination. In the section that follows we determine the stability
conditions of this ‘infection-free’ solution.

Assuming (13), the growth of susceptibles in the time-interval 1y = (n — )T <
t < nT must satisfy:

ds -
Z:m(l*S)—pS(nT Yo(t — nT). (14)
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and has the solution:

!
SO =1+ (S = De =0 _ p(1+(S" — l)e""T)/ 8(t —nT). (15)

Here, S = S(ty) is the number of susceptibles S immediately after the (n — 1)-th
vaccination pulse attime 1o = (n — 1)7. _
Using notation Q(¢) = 1 — (1 — STye=mt=1) we can rewrite the solution (15) as:

Q(1), to=n—DT <t <nT

SO=\ 1= pow, t=nT.

(16)

Thus, (16) consists of two terms. The first one Q(¢) is the number of susceptibles
between the two pulses occurring at t = (n — 1)T and t = nT, whereas (I —
p)Q(nT) represents the number of susceptibles immediately after the vaccination
pulse.

The initial condition S” may change from one pulse interval to another in a manner
that is straightforward to calculate. Setting S*(n) = S(nT) = S,,, it is possible to
deduce the stroboscopic map F such that:

SIH-I = F(Sn) (17

The map F determines the number of susceptibles, S(¢), immediately after each
pulse vaccination at the discrete times ¢+ = nT, and can be obtained from (16) and
(7:

Sus1 = F(S) = (1= p)(1 + (S, — De™T). (13)

The map F has the unique fixed point:

(1=p)e™™ -1
p—1+eT

S*=F(§" = (19)

The fixed point $* of the map F, implies that there is a corresponding cycle of period
T in the susceptible population S(z).
Under the assumption (13), the fixed point $* is locally stable because:

=1 =-pe <1 (20)

‘dF(Sn)
S,=8*

ds

Thus, pulse vaccination yields the sequence S, which must converge to the fixed
point S*.

Recall now that the map F determines the number of susceptibles S(¢), immedi-
ately after each pulse vaccination. As the orbit of the map converges to the fixed
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Figure 1. (a) Time-series of the susceptible population § evolving according to the pulse
vaccination SIR model (11) with p = 0.5, T = 2. The sequence S, [minima of S()],
defined by the map (17), are indicated by the asterisks and converge to the fixed point
§* 2 0.036 (19). The line at S & 0.0556 marks the ‘epidemic threshold’. (b) Time-series
for the corresponding infectious population / on a logarithmic scale.
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point S*, the evolution of the susceptible population S(r) converges to the periodic
cycle (15) [see Fig. 1.(a)]. Therefore, by setting S* = $* in (15), we obtain the com-
plete expression for the ‘infection-free’ periodic solution over the n-th time-interval
to=n~—DT <t <nT:

mT

. pe .
Sy=1-—= m(1—1ty)
( ) emT _ (1 _— p)e
mT t
pe -mT /
— |- ———c¢ §(t —nT) 20
"( e — (1= p) )

[(t) =0.
The solution is periodic in time: St + TY=S8),I¢t+T)=10).

4.1. Stability of the periodic ‘infection-free’solution. The stability of the ‘infect-
ion-free’ solution is found by linearizing the SIR equations (11) about the known
periodic solution (21) by setting:

St =S(t) +s

[()=1(t)+i

where s and i are small perturbations. Equation (11) can then be expanded in a
Taylor series and, after neglecting higher order terms, the linearized equations read:

ds = . &
7 =—ms—BS({t)i — ps(nT );80 —nT)

(23)

5’1_-(55([)_ )
dt_l m-—g).

Note that the function S(¢) is known explicitly and should be viewed as a periodic
coefficient of the variables s and i, respectively. The periodic solution of the full
model (11) will be locally stable if the equilibrium (i*, s*) = (0. 0) of the above
linearized model is locally stable (Looss and Joseph, 1980).

Floquet theory provides a well-defined framework for examining stability of linear
systems with periodic coefficients (Looss and Joseph, 1980). The first step requires
constructing the fundamental matrix A(¢) of the linear system defined over the time
interval 0 <t < T (Zwillinger, 1989):

si(t)  s2(2)
(A ]=| ) , (24)
0(t) (1)



10 B. Shulgin et al.

where (s1(¢), {1(t)) and (s5(t), i>(¢)) are solutions, still yet to be derived, of the
linear system (23) with the following initial conditions:

s100) =1 s2(0)=0

25
11(0)=0 iH(0) =1 )

Solving, we obtain:
i1(1)=0
t
si)y=e™ — pe""’/ 5(t —nT)dt
0
i7(t)=ej;;(ﬁ5'(l)—(m+;')\dl
There is no need to calculate the exact form of s5(¢) as it is not required in the
analysis that follows.

The ‘Floquet multipliers’ are defined as the eigenvalues u of the ‘rhonodrom_v
matrix’ A(T), i.e., they are solutions of the eigenvalue problem (Zwillinger, 1989):

Det([A(T)] — pu[1]) =0, (26)
or,
Ii (1 =pe™l —p 52(T) }
Det =0. (27)
. 0 io(T) — u

The two Floquet multipliers are thus:

pi=1—-pye <1

(28)

Uy = l’)(T) — elj;,r ﬁS(t)L/I—(IIl+g)T].

According to Floquet theory, the solution (21) is locally stable if the absolute value
of all Floquet multipliers are less than unity. Stability thus depends on whether:

fus| < 1. (29)

From (28) we see that the ‘infection-free’ solution to the SIR model under pulse
vaccination (11) is locally stable if:

L
—/ Stdr < ™8 g (30)
T Jy B
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Thus for stability, the mean value of S(r) averaged over a single pulse period must
be less than the threshold level S.. [This stability condition (30) can also be derived
by using the stroboscopic map for 7 (¢), see Appendix 1]. Our extensive numerical
investigations of the system (11) suggest that local stability of the ‘infection-free
solution’ implies global stability in the meaningful domain for the variables S and
l.

A typical solution of the SIR equation under pulse vaccination is shown in
Fig. 1(a), where we may observe how the variable S(¢) oscillates in a stable cycle
that periodically rises above the threshold level S... The oscillation is stable because
the mean value of S(¢) over the inter-pulse periods is less than the threshold level
S.. In contrast, the infected individuals /() rapidly decrease to zero.

The stability condition (30) can be fully specified by substituting the exact ex-
pression for S(t) (21), and integrating. In terms of the model’s parameters, local
stability of the cycle is ensured if:

(mT — p)e"T — 1) +mpT m+g
<< .
mT(p—1+enT) B

(3D

It is possible to obtain an expression for the maximum allowable period of the
pulse, T4y, in which the stability criterion above is satisfied. The maximum value
occurs when there is equality in (31). [This is a consequence of the fact that the
left-hand side of (31) is an increasing function of T'.] In order to calculate 7,,,, one
can simplify (31) by using Taylor expansions by reasonably assuming the period
of pulses is much shorter that the mean life-time, 7 <« 1/m, and that the mean
life-time of an individual is much longer than the duration of disease (m <« g).
After neglecting higher order terms we finally obtain:

NELNN.
~ Bm(l—-p/2—g/B)

We now examine the earlier pulse vaccination formulation mentioned in Section
2.2, where pulses are applied frequently enough to ensure d/(t)/dt < O for all
t, so that the number of infectious individuals is a decreasing function of time.
According to (1), it is possible to satisfy this condition if pulsing ensures that for
allr, S(tr) < S, = (m + g)/B, i.e., pulse vaccination is applied every time S(¢)
approaches the threshold S.. This “threshold method’ is amenable to analysis by
the techniques already discussed here. Assume that pulse vaccination is applied
periodically (with T < T,,) so that the susceptible population oscillates in a
stable limit cycle according to (21). All that remains is to determine the maximum
inter-pulse interval for which S(r) stays permanently subthreshold.

Recall that the minimum number of susceptibles occurs just after pulse vaccination
and is given by §*, while the maximum number of susceptibles occurs just before
vaccination and is equal to S*/(1 — p). Hence, to ensure S(¢) < S, we require:

4
Tmux (> 2)

§*/(1=p) < S (33)
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Figure 2. The maximum inter-pulse interval T,y as a function of vaccination proportion,
p. Curve 1: approximation (32). Curve 2: exact result (31), Curve 3: the result for the
‘threshold condition’ (34), (Agur et al., 1993).

We can immediately arrive at an expression for 7,,,, by evaluating (33) at equality
and making use of (19):

1 pS.
Tmu.\' = —| 1 34
—~ n( + = SL.> (34)

thus re-deriving the result in Agur et al. (1993).

Figure 2 compares the predictions for 7,,,, derived from the new criterion (32)
to the criterion of the earlier ‘threshold method’ (34) described in Agur et al.
(1993) (i.e., which keeps d//dt < 0). [The calculations are based on the standard
measles parameters given above (3).] The figure also shows clearly that the simple
expression approximating 7,,,, via (32) is an excellent predictor of the exact results
determined numerically by the criterion in (31). Also noteworthy is the fact that
while constant vaccination is ineffective if the successful vaccinated proportion p
is less than p. (9), the pulse vaccination leads to an ‘infection-free’ population even
at relatively small values of p if the period of pulse satisfies: T < Tpx.

If period of pulses T is more than 7,,,, the ‘infection-free solution’ becomes
unstable and variable / begins to oscillate with a large amplitude that corresponds to
periodic bursts of epidemics. If the period of pulses is further increased a sequence
of ‘period addings’ bifurcations interchanging with regions of chaos is observed

(Fig. 3).
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Poincaré section. (b) A magnified part of the Fig. 3(a).
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5. EFFECTS OF PULSE VACCINATION ON A SEASONALLY FORCED SIR
MODEL

The dynamics of the basic SIR model (1) are determined by the model’s two
equilibrium states (see Section 1). In the absence of external perturbation, all
variables S, [ and R eventually reach a constant equilibrium state. However, the
epidemiological data on measles rarely suggest that an equilibrium state exists in
practice. In contrast, measles data often demonstrate periodic or irregular outbreaks
of the epidemic [e.g. Anderson and May (1982) and Dietz (1976)]; dynamics which
the basic SIR model fails to capture. Moreover chaotic dynamics have been de-
tected in measles epidemics in some European and American cities (Schaeffer and
Kot, 1985; Grenfell, 1992; Engbert and Drepper, 1994). Yet the SIR model is
2-dimensional, and it is known that such systems never exhibit chaos.

More realistic dynamics may be achieved by taking into account the seasonal
nature of the epidemic. London and Yorke (1973), for example, showed the im-
portance of considering the contact rate 8, as a periodic (annual) function of time.
Sources of seasonal variation in the contact rate have been attributed to social be-
haviour, such as the timing of the school year, and seasonal changes in weather
conditions (London and Yorke, 1973; Engbert and Drepper, 1994). Seasonal forc-
ing in the SIR model is known to lead to more complex oscillatory and chaotic
dynamical regimes simply because its inclusion makes the system 3-dimensional
(the phase of periodic force can be written down as a new independent variable),
providing it with the potential to generate more complex oscillatory solutions.

[t is therefore important to examine how pulse vaccination will affect the complex
dynamics realized in seasonally forced epidemiological models. After the intro-
duction of seasonal variations in the contact rate, 8, the SIR system (11) becomes:

ds v > _
——=m= (BN +mS - p“X:(:)S(nT )8(t — nT)
35
ar_ IS —(m+g)l ()
- = m+g)l,
where
B(t) = Bo(l + Bycos2mr), Bt +1)=p(). (36)

where B, is a constant value of the contact rate, and 0 < B, < 1 determines the
amplitude of seasonal variation (i.e.. with a 1-year period).

In the absence of the vaccination (p = 0), the system (35) has a single ‘infection-
free’ equilibrium point (S;, /5) = (1, 0) whichisstableif Ry = Bp/(m+g) < 1(see
Appendix 2). However, for the measles parameters (3) Rg > | and the ‘infection-
free’ equilibrium is clearly unstable. The dynamics of the seasonally forced SIR
model is then very much dependent on the amplitude of the seasonal variation
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B1 [see Schwartz (1985) and references therein, and also Aron (1990)]. Roughly
summarized, as ) is increased from zero, the system changes from regular (limit-
cycle) oscillations representing periodically recurrent epidemics, to deterministic
chaos via a sequence of period doubling bifurcations. In the next section we show
that these dynamics are altered dramatically in the presence of pulse vaccination
(i.e., with p > 0).

5.1. Existence and stability of the ‘infection-free’ solution. It is not difficult to
see that the SIR equations (35) have the same ‘infection-free’ solution (21), both
with and without seasonal forcing. This stems from the fact that the ‘infection-free’
solution has / (z) = O at all times, making the solution S(¢) completely independent
of the seasonal forcing B(r) [see (35)]. However, seasonal forcing does affect the
stability of this periodic solution as we proceed to show.

In practice, the period of pulse vaccination, T, will be an integer valued number of
years. In this case the right-hand side of (35) has period T, and Floquet techniques
can be applied directly.

Linearizing the model (35) about the periodic solution, results in equations iden-
tical in form to (23) except that now the coefficient S(¢) is periodic in time. The
Floquet multipliers of the system are thus:

E

w=1=pre jul <1

(37)

iy = ir(T) = elo BOSWdi~m+)T

Again, stability of the periodic ‘infection-free’ solution is ensured if the Floquet
multiplier satisfies |ua| < 1, 1.e., if:

e .
—/ BH)St)dt <m+g. (38)
T Jy

As we know (), it is possible to explore this stability criterion further. First,
however, it is important to note that pulse vaccination may be applied at any time
of year. This introduces a phase-shift ¢y between oscillations of the susceptible
population S(r) and the seasonal variation of the contact rate 8(r). This phase-shift
should be introduced into the seasonal force (36) as follows:

B(t) = Bo+ BoBi cos(2mt + o).
Local stability of the ‘infection-free’ solution in seasonally forced model (35) is

then ensured if:

Bo((1 — €™ (p —mT) + mpT)
mT(p—1+e"T)

17 .
;/0 B)S()dr =

+,80ﬁ]p((1 — "1y (m cos @y — 27 sin gp)
T @r24+m2)(p—1+enT))

<m+g. (39)
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It is possible to obtain an expression for the maximum allowable period of the
pulse, T4y, In Which the stability criterion above is satisfied. The maximum value
occurs when there is equality in (39). [This is again a consequence of the fact that
the left-hand side of (39) is an increasing function of T.] After applying Taylor
expansions, assuming that 7 « 1/m, and that the mean lifetime of an individual
is much greater than the duration of the disease, m < g, and using that m « 27,
we finally obtain:

Tmux =~ TO + Tls

where

o pg ;- _ PBulmcos gy — 27 singy)
0% Bom(1—p/2—g/B0)" '~ 4ni(l—p/2—g/By)

Note that Ty is the maximal period of pulsing obtained earlier for the case when there
was no seasonal forcing (32). The term T, on the other hand, is directly dependent
on seasonal forcing, via the parameter §,. After substituting conventional measles
parameters (3) the ratio 7,/ Ty is found to be:

T B -2

— < = < 1/50. =1
=17 (1)

(40)

Thus T is less than 2% of Ty and is, for all practical purposes, negligible. Hence
the presence or absence of seasonal variations has little overall effect on T,,,,.
However, for another range of parameters the influence of seasonal forcing could
be more significant. In such cases, it may be necessary to check whether the phase
shift g significantly influences T,,,,. If so, one could ascertain the optimal time
of year to apply pulse vaccination. For example, for the given measles parameters,
one finds that 7,,,, has a maximum when:

0o = 37/2. (42)

This suggests that in an optimal scheme, pulse vaccination should be applied ap-
proximately 3 months after the maximum in the seasonal contact rate S(t) in order
to achieve the longest possible inter-pulse interval T,,,..

Assume now that the period of the product g(+)S(r) in (33) can be considered to
be irrational. In this case we average the condition of stability of *infection-free’
solution (38) by the equally distributed initial phase shift ¢y in the interval [0, 2 ]:

1 T 1 27 1 T
<—/ B(t; <P0)5(l)dl> = ——/ —f Bt o) S()dtdpy <m + g
T 0 . 2 0 T 0

or using (39):

L _ BomT (1~ p/2)
<F/0‘ 5([‘ wO)S(I)dt>% = —p:nT_ <m—+ 8. (43)
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Evaluating (43) at equality, we obtain the expression for Ty,

124 =T
Bom (1l — p/2 — g/Bo)

Once again our result show that the seasonal force does not affect the pulse
vaccination scheme. But at the same time if there is no pulse vaccination (p = 0)
the SIR system demonstrates periodic and chaotic behaviour as the result of seasonal
forcing.

Tmux =

(44)

6. MIXED VACCINATION STRATEGY

Nokes and Swinton (1993) investigate an interesting strategy in which constant
and pulse vaccination are applied simultaneously. Such a scheme is amenable to
analysis by the methods we have described. With a mixed vaccination strategy the
SIR dynamics are governed by:

dS = -
o =m(l—p)—Bl+m)S—p ”E:O SnT™)Y8(t —nT)
(43)
al BIS — (m+ ¢g)]
p—— —(m
dt S

where p. is the proportion of susceptibles who receive constant vaccination, and p
is the proportion who receive pulse vaccination.

Once again there is a periodic ‘infection-free’ solution whose dynamics in the
interval (n — DT > <nT n=0.1.2...are given by:

S([) =(1- pc) + (S_ — (1 — pt))e"”(f—m)
—p((l = p)+ (S' - (1= pc))e—lnT).‘/ 5(t — nT),
0]

(46)
[(t) =0,

where now,
§" = (1 - p)S* (47)
and S* is given in (19).
The criterion for stability of the periodic ‘infection-free’ solution (46) may be

found by the methods from Section 3.1 having as the result:

(L=p) (A =e"p=mT)+mpT] m+g
mT{(p—1+e"T) B

(48)
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Figure 4. The maximum inter-pulse interval Ty, as a function of vaccination proportion,

p. Curve 1. for the mixed vaccination strategy (constant vaccination proportion was set at

pe = 0.85). Curve 2. pulse vaccination only. Curve 3: with mixed vaccination scheme,
which is safer, we can reach more longer periods of pulses.

The maximum pulse interval T,,,, for which the periodic solution is locally stable
may be found by simplifying (48) at equality (as in Sections 3.1 and 4.1). After
assuming that T < (1 — p.)1/m we obtain:

. &pr 1 D
C o Bm (= p)(1—p/2)y—g/B]  L=p

where Ty is maximal period of pulses for pulse vaccination only (32).

In other words the maximum inter-pulse interval 7,,,, for the pulse vaccination
scheme is a factor (1 — p.) shorter than the mixed scheme with constant vaccination
proportion p.. This big advantage of the mixed scheme is seen in the numerical
simulations in Fig. 4, where we have plotted 7,4, as a function of the pulse vacci-
nation proportion p, having set p. = 0.85. The results show lie only in the realistic
range T, < 20 where the approximation (49) is reasonable. For comparison we
have also plotted T,,,, as a function of p, for the pulse vaccination scheme only,
i.e., without constant vaccination (p. = 0).

Dnax (49)

7. ADDING REALISM TO THE SIR MODEL

One of the shortcomings of the SIR models is that the infective population may
drop to unrealistically low levels of / = 1020 or less, while the value of /, corre-
sponding to a single individual in a typical city of one million people, is / = 10-¢
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(Engbert and Drepper, 1994; Anderson and May, 1982). In this case the SIR model
simulates infectious populations of less than one individual. This feature is prob-
lematical when studying extinction dynamics where it is important to preserve the
integer structure of the population.

Different schemes have been devised to solve the problem of unrealistic population
levels. One approach is to make use of a stochastic version of the SIR model (Engbert
and Drepper, 1994). Alternatively, for deterministic SIR-like models it is possible
to prevent the population from dropping below the level of a single individual
by buffering it with immigration and/or interaction that arises from contact with
surrounding populations. The latter interaction is usually introduced viathe ‘force of
infection’ (Engbert and Drepper, 1994) term 8/ [see (1)] which should be modified
to:

B +wlp). (50)

The term /7 is given by (5), and should be viewed as a surrogate for the size of
the spatially averaged surrounding populations, while w represents the ‘coupling
constant’ that links the populations.
The coupling changes the dynamics of the model considerably. For example,
consider the second equation of the model (11):
dl

I:l(ﬁS—(m—i—g))-%—ﬂwll*S. (51

The solution / = 0 is no longer an equilibrium state (i.e.. with d//dr = 0) for the
infected population as previously, because now w > 0. Numerical computations
show that even for very small inter-pulse intervals T, the infected population now
oscillates rather than decays to zero (as would happen when w = 0 and there is an
‘infection-free’ solution). Asthere is no ‘infection-free’ solution we are led to define
an epidemic outbreak when the infectious population / reaches a magnitude that
is greater than some predefined threshold level /.. For the purposes of analytical
calculations detailed elsewhere (Shulgin, unpublished) we defined this threshold
level to be:

m. I}
B (Ry—=1)

Simulations reveal that increasing the inter-pulse interval T, increases the am-
plitude of the oscillations of the infectious population 7(¢). In the simulations we
gradually increased T until the peak of the oscillation attained the threshold level
I.. The value of T at which this occurred was defined as the maximum inter-pulse
interval Ty

The dependence of 7,,,, on the vaccination proportion p is displayed in Fig. 5 for
the modified model (51). Comparing these results with the unrealistic case, w = 0.
one notes that when the infected population drops to unrealistic levels. the predicted
values of Ty, (30) can be up to 100% larger (for p > 0.5) than those obtained for
w > 0.

[, = (32)
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Figure 5. The maximum inter-pulse interval 7,4y as a function of vaccination proportion.
p: Curve I: condition (31) for the SIR model. Curve 2: for the modified model (51). Curve
3: condition S(r) < S, (34).

8. CoST EFFECTIVENESS OF THE TWO VACCINATION SCHEMES

Recall that the constant vaccination scheme leads to a stable “infection-free’ equi-
librium only if the vaccination proportion is greater than a critical value, which is
approximately p = 0.95 for measles. In contrast, under pulse vaccination scheme
the ‘infection-free’ equilibrium can be stable for arbitrarily small values of the vac-
cination proportion p, as long as an appropriate inter-pulse interval T is maintained.
However, one needs to keep in mind that the number of people requiring immuniza-
tion every T years under pulse vaccination, might be comparable with the number
of infants requiring vaccination over the same 7 years, in the constant vaccination
scheme. In the following section we attempt to compare the ‘cost’ (in terms of the
mean number of individuals per year requiring vaccination) of the two strategies.

In the case of the constant vaccination the number of individuals vaccinated per
year, N(p), can be derived from (7):

N(p) = pm, (53)

where, as before, the total population size has been normalized to unity (2). For the
pulse vaccination scheme, the average number of people requiring vaccination per
year is N(p, T), which may be calculated as:

N(p,T)= % pS(nT™), (54)

S Ry

AR
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where pS(nT~) is the number of people vaccinated by a pulse of vaccination
appliedatt = nT, n=0,1,2.... Because S(nT~) = Q(nT) (15) and S* = §*
[discussion before (21)], then:

et — | _ mT

ShT™) = i~ .
(T p—1+e"™  p+mT
Thus,
pm :
N(p,T) >~ ————. 55
(p,T) o tmT (55)

One can see that for a given value of p, (55) is minimized by choosing T = T4,
(32) and may be evaluated for measles as:

mg

N( ,Tnmx):m_—'—— >~ m
g B(l—p/2)

(56)

We have obtained the minimum number of individuals requiring vaccination while
simultaneously ensuring an ‘infection-free’ solution. This minimum number is
approximated by m, and is largely independent of p. The interesting conclusion is
that no matter what value of p or T, is chosen, the minimum number of individuals
to be vaccinated in this scheme is always the same. For an optimal pulse vaccination
schedule, it makes little difference if pulses are applied every year (T, = 1) or
every 10 years (T, = 10); almost the same number of people will be vaccinated.

Plotting (Fig. 6) the number of individuals requiring vaccination N(p, T) as a
function of p, showed that in this range constant vaccination scheme is superior to
pulse vaccination, for p < p. =~ 0.95. Note, however, that constant vaccination
is ineffective when p < p. = 0.95, because it does not lead to eradication of the
infection. For p > p., the ‘cost’, N(p, T), of the two vaccination schemes is
practically the same.

The main advantage of pulse vaccination is that it maintains a stable ‘infection-
free’ solution for far smaller levels of the vaccination proportion, p. In practice,
it is a much simpler task to target an intermediate proportion, say 70%, of the
susceptible population in a campaign every few years (pulse vaccination) than to
constantly ensure that a tight 95% coverage is achieved through every year (constant
vaccination).

9. DISCUSSION

In this paper we analyse the pulse vaccination strategy (Agur et al., 1993) in the
SIR epidemic model [see also Stone et al. (in press)] We first examined the standard
SIR model in which the system dynamics is characterized by two equilibria—an
unstable ‘infection-free’ equilibrium and a stable‘epidemic equilibrium’. Earlier,
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Figure 6. The proportion of people that are vaccinated per annum under constant and pulse
schemes for various vaccination levels. Curve 1: constant vaccination, NV (p) = mp. Curve
2: approximation N (p. T) = m for the pulse vaccination. Curve 3: equation (56) for the
pulse vaccination.

Agur et al. (1993) showed that for the scheme to be successful in this model pulses
should be applied frequently enough to keep S(¢) below the epidemic threshold S...
In this case an epidemic outbreak can never occur by the definition of the epidemic
threshold. Here we extended this study and showed that under pulse vaccination
the system reaches a state of “infection-free’ even if S(7) crosses the threshold
for some time during the inter-pulse interval, but the mean value of S(t) during of
inter-pulse interval is kept under the threshold. This new condition allows us to use
considerably longer periods of pulses (but recall the unrealistic aspects of the SIR
model discussed above).

We have studied pulse vaccination in the seasonally forced SIR model, where
periodic and chaotic epidemic outbreaks appear as a result of seasonal variations in
the contact rate. We have shown that pulse vaccination suppresses these complex
dynamics of the model and leads to the “infection-free’ solution, if the period of the
pulses corresponds to the obtained criterion.

The advantage of the pulse vaccination strategy over the constant vaccination
scheme is that in the former, low vaccination percentages suffice for preventing the
epidemic outbreaks; in the case of constant vaccination p > 0.95 should be used.
Note that pulse vaccination allows non-vaccination of part of the population. This
can hardly be acceptable from a moral point of view. Another complication is that
immigration of infection can cause epidemics when S(¢) crosses the threshold. For
these reasons we suggest considering the mixed vaccination scheme as a possible
alternative to the currently used strategy of a double dose constant vaccination. Inthe
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mixed scheme the first (constant) vaccination, reduces the number of susceptibles by
means of a high coverage vaccination percentage, and the second (pulse) vaccination
of relatively low coverage with very long inter-pulse intervals, renders the ‘infection-
free’ state a stable solution of the system. We have found the cost of the two schemes
in units of people to be vaccinated to be approximately equal.
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APPENDIX 1
The condition for stability of the ‘infection-free’ solution in pulse vaccinated SIR

model (30) can also be studied with the stroboscopic map for / () via the period of
pulses T':

ln-H = F(]n)v
where [, is the number of infectious individuals at the moment of time following

the n-th pulse.
From the second equation of the SIR model (11), we have:

[(1) = I(IO)eﬁf':) Stdi—(m+g)1=t) (57)
We can write a stroboscopic map for 7 (¢) via the period of pulses:
1 = 1?07 SOU=n0T) g, (58)

The map (58) has afixed point /* = F(/*) = 0, corresponding to an ‘infection-free’
population, which is stable if

— eﬁf;:’;“” S()ydt—(m+¢)T < 1. (59)

}dF(In)
In=1*

dl

From (59) we obtain

(n+DT
l/ s(ydr < T8 (60)
T nT :6

which approaches (30) when /(r) tends to zero.
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Note that from (11) we can calculate the per-capita growth of infective and the
stability condition (30) may then be rearranged as follows:

d[/dt 1 n+0T
< : > :7(/r /SS(z)dt—(m+g)T)<O. 1)
T n

This means that for the ‘infection-free’ solution to be locally stable, the per-capira
growth of the infected population should, on average, be negative over the pulse

period T.

APPENDIX 2

In the absence of vaccination (p = 0), the seasonally forced SIR model (35) has
the unique equilibrium point (S; = 1, [J = 0). In this appendix we use Floquet
theory to analyse the stability of the equilibrium.

Linearized about the equilibrium, the SIR equations (35) read:

ds . e
YT —ms — B(t)i — ps(nT )ZS([ —nT)

n=0
(62)

4y (1) )
‘[E—l(ﬁ —m-—=2_g),

where s and 7 are perturbations defined as in (22).
Following the procedures in Section 3.1, the Floguet multipliers of this system
are found to be:

-mT

ur= (- pe <1,

(63)

Uy = i(T) = elj;,r(ﬁ(t)dz—(nt+qJT]‘
Thus, the equilibrium is locally stable if

lual < 1.

Rearranging (63) we see that the equilibrium point (S = 1, / = 0) is locally stable
if

Po
m+ g

=R()<l.
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