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Online Abstract: 

Stem cells (SCs) control tissue development and maintain tissue homeostasis. The SC fate decision 
– continued replication or commitment to maturation – is decided in a dynamical mechanism 
according to the changing requirements of the tissue. According to cancer stem cell (CSC) theory, 
derangements of SC fate decision allow CSCs to stimulate and control tumor progression. 
This chapter reviews a series of mathematical models aimed at elucidating fate decision 
mechanisms in SC and CSC populations. The first, general tissue model was designed to decipher 
the basic regulation of SC fate decision. The model assumes negative feedback through SC-to-SC 
interactions, referred to as quorum sensing (QS). Analysis shows that QS is the simplest fate 
decision model sufficient for maintaining tissue homeostatic properties. Further refinement and 
analysis of the model confirm that excessive SC proliferation, which can cause a homeostatic tissue 
to become cancerous, may be triggered by a change in the intensity of intercellular communication. 
Subsequently, a model describing the behavior of a cancerous tissue was developed. Its simulations 
suggest the necessity of combinational therapy, targeting both proliferation and differentiation, in 
order to effectively eliminate CSC population. In vitro experiments with CSCs from breast cancer 
cell-line supported the concept of QS, and also confirmed model prediction that tumor radius grows 
linearly with time, implying power law tumor growth rate. 
A separate model is aimed to identify the molecular mechanism underlying fate decision control in 
a single SC, by incorporating intracellular signaling pathways that are sensitive to 
microenvironmental signals. This intracellular model was integrated within the previously studied 
tissue model. Analysis and simulations of the consequent multi-scale model show that the 
Dickkopf1 (Dkk1) ligand, secreted by SCs, may serve as a potential modulator of the QS 
mechanism. The model predicts existence of a threshold level of Dkk1, above which proliferating 
SCs switch to differentiation. This dose effect of Dkk1 on SC population was corroborated 
experimentally in breast CSCs. 
The presented models suggest that the experimentally supported QS concept is the key to SC fate 
decision regulation. The generality of the models enables using them both for gaining global 
insights into cancer therapy, and for distinguishing specific possible therapeutic targets, as the 
implementation of the molecular scale processes can be done differently for specific cancer types. 
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1 Introduction

All tissues in the body are derived from stem cells (SCs). SCsare undifferentiated
cells with two essential properties: unlimited replication capacity and the ability to
differentiate into one or more specialized cell types. Embryonic SCs are pluripotent,
meaning that they can give rise to nearly all cell types. Non-embryonic, adult SCs are
found in various tissues and are capable of generating a limited set of tissue-specific
cell types. The first discovered and most extensively studied type of adult SC is the
hematopoietic SC, found in the bone marrow, which can give rise to all lineages of
mature blood cells [12, 84]. Organ-specific SCs have been identified in many other
tissues, including the liver, skin, brain and mammary gland(see [19] for review).

Adult SCs are responsible for tissue maintenance and renewal throughout the life
of an organism. They replenish cell populations after normal cell death and following
more extensive tissue damage caused by disease or injury. This regenerative ability
has made SCs a key focus of scientific research, much of which is aimed at develop-
ing treatment for a broad variety of diseases [86,87]. For many years, hematopoietic
SCs have been successfully used to treat leukemia and other hematological disor-
ders, through bone marrow transplantation [32]. Recently,clinical trials have been
conducted to evaluate SC-based treatment for cardiovascular diseases [20], neuro-
logical diseases [43], spinal cord injuries [93] and diabetes [63]. Researchers have
also attempted to exploit SCs in tissue engineering, aspiring to replace damaged tis-
sues or cells by transplanting SCs that have been induced in vitro to differentiate into
specific phenotypes [37].

SCs do not proliferate or differentiate at a constant rate. Rather, their behavior
is highly complex and closely regulated, attuned to the exact needs of the tissue at
any given time. For example, under normal conditions SCs might produce only a few
differentiated tissue cells (DCs) at a continuous rate, butif a tissue is injured, the SCs
may suddenly be required to produce larger quantities of DCsto repair it. It is crucial
that SC proliferation and differentiation correspond precisely to the requirements
of the tissue. Insufficiently rapid proliferation and differentiation may impair tissue
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function, whereas overproliferation may result in uncontrolled growth and increase
the occurrence of mutations, which might be cancerous [7]. The need to maintain
the delicate balance between proliferation and differentiation implies the existence
of a dynamic regulatory mechanism that, at each point in time, determines thefate
of each SC in the tissue: according to the requirements of thetissue, the SC either
proliferates, differentiates, or is quiescent.

The SC fate decision mechanism is a key component ofhomeostasis, or the main-
tenance of a stable internal environment, which is a fundamental condition for life.
The fate decision mechanism is responsible, for example, for ensuring that the blood
continuously contains enough red blood cells to carry oxygen to remote corners of
the body, while at the same time triggering immune responsesto unexpected, im-
mediate threats. An understanding of SC fate decision can shed light on the very
essence of homeostasis. Correspondingly, if we examine what happens when the fate
decision mechanism malfunctions, we might be able to understand what happens in
diseases in which homeostasis is interrupted – such as cancer.

One approach to investigating the role of SC fate decision incancer relates to the
theory of cancer stem cells. This theory suggests that, likehealthy tissues, cancers are
characterized by a hierarchical structure, in which a smallminority of cancer cells
(called cancer stem cells, or CSCs) have stem cell-like properties [6, 18, 75]. CSCs
can proliferate indefinitely and are responsible for tumor growth, whereas the major-
ity of (differentiated) cancer cells have only a limited ability to proliferate [57]. Even
a few CSCs can regenerate a depleted tumor following treatment, and therefore, ac-
cording to the CSC theory, the only way of effectively curingdisease is to eliminate
the CSC population [39]. Therapeutic approaches that target CSCs may entail sim-
ply killing these cells (elimination therapy) or, alternatively, inhibiting their prolifer-
ation (inhibition therapy), or driving them to differentiation (differentiation therapy),
which eliminates their unlimited replication capacity [78]. The latter therapy involves
interfering with CSC fate decision mechanisms. A deeper understanding of SC and
CSC fate decision could be instrumental in the development of such treatments.

Herein we review a series of mathematical models formulatedby Agur and col-
leagues, aimed at elucidating fate decision mechanisms in SC and CSC populations.
These models are, then, used to gain insight into cancer therapy.

The first SC model by Agur et al. is aimed to decipher homeostasis in devel-
oping systems, using as few assumptions as possible [3]. This model is a cellular
automaton, general enough to represent any normally functioning tissue. The model
assumes that SC fate decision is determined by negative feedback, depending on lo-
cal cell-cell interactions between the SCs. Specifically, Agur and colleagues assume
that cells are able to ”count” the numbers of cells in their area and make decisions
accordingly. This counting ability is known to exist in bacteria and is referred to
as quorum sensing (QS). Analysis of this model [3, 45] shows that QS is sufficient
for maintaining the homeostatic properties of a tissue. Moreover, this is the simplest
model capable of retrieving homeostasis.

This model was followed by an effort to study the derangementof homeostasis,
i.e., to learn what causes a normal, homeostatic tissue to become cancerous. To this
end, Agur et al.’s original model was refined to incorporate aspecific three dimen-
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sional structure of the tissue and varying intensities of intracellular signaling (i.e.,
variation of the distance at which cells can detect the presence of other cells) [5].
Results confirmed that excessive SC proliferation may be triggered by change in the
intensity of intercellular communication.

In a subsequent study, the model was adjusted in order to explore the behavior of
a cancerous tissue containing CSCs [90]. Exploring the system behavior under vari-
ous parameter values enabled the authors to identify general therapeutic approaches
that are likely to be effective in targeting CSC populations.

A separate model aimed to identify the molecular mechanism underlying fate
decision control in a single SC, by incorporating intracellular molecular signaling
pathways that are sensitive to microenvironmental signals[4, 44]. This intracellular
model was integrated within the previously studied tissue model, to create a multi-
scale model, which, if verified experimentally, could also serve as a useful tool for
distinguishing specific possible therapeutic targets for eliminating CSCs [4]. Math-
ematical analysis [44] and simulations [4] of this model show that one of the key
factors for fate decision regulation is the Dickkopf1 (Dkk1) ligand, which is secreted
by SCs into the microenvironment, and may serve as a potential modulator of the
negative feedback (QS) mechanism.

The rest of this chapter is organized as follows. Sections 2 and 3 provide back-
ground about the SC fate decision mechanism and about the theory of CSCs. Section
4 discusses mathematical modeling of SC fate decision. Section 5 discusses the tis-
sue models, and section 6 discusses the molecular mechanismmodel. Section 7 dis-
cusses the results of the analysis of these models, the implications of considering the
concept of feedback regulation through SC-to-SC interactions, and possible future
applications for these models in CSC research.

2 Fate Decision in Stem Cells: Managing the
Replication-Differentiation Balance

Tissues containing SCs are organized as cellular hierarchies, in which SCs make up
a small fraction of the cell population [34]. SCs can divide either symmetrically or
asymmetrically. In symmetric division, two similar SCs areproduced, i.e., the SC
proliferates. Asymmetric division, in contrast, yields one SC and one daughter cell
that is more differentiated, termed a progenitor cell (PC).The PC transiently ampli-
fies, meaning that it replicates for a limited time. The PC produces either additional
PCs that are at an even more advanced stage of differentiation or terminally dif-
ferentiated cells (DCs), which cannot replicate (Figure 1). DCs fulfill the tissue’s
functionality (e.g., blood cells, skin cells).

As noted above, the SC proliferation and differentiation rates must conform to
the tissue’s development and changing needs. The SCs must constantly supply the
required quantities of DCs under various constraints, for example, in growing tissues
or following disease or injury. At the same time, the size of the SC population must
be restricted in order to prevent uncontrolled growth and crowding out of the DC
population, and to decrease the risk of cancerous mutations[7].
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Fig. 1. Schematic description of the cell hierarchy in a tissue.A stem (S) cell can replicate
indefinitely, while producing early progenitor cells (P1), which in turn produce a larger popu-
lation of more differentiated progenitors (P2). The differentiation process is naturally continu-
ous, and can go on through several lineages of PCs, eventually resulting in fully differentiated
(D) cells.

Control over an SC’s fate is exerted through the cell’s microenvironment. The
SC receives signals from its environment and, according to these signals, ”decides”
whether to replicate, differentiate, die (apoptosis) or remain quiescent. The signals
regulating SC decisions might come from any number of sources: they may be de-
termined by biochemical and mechanical characteristics ofthe environment, such
as cytokine concentrations, cell-to-cell signals, extracellular matrix properties, and
possibly somatic properties of the SC itself [65, 70, 89]. Some theories suggest that
an external, physical tissue structure, transmits the various signals that regulate SC
fate [14]. Other theories propose that SCs are capable of sending signals to one an-
other without relying on additional structures. The QS theory, which forms the basis
of the work by Agur et al., stems from the latter approach.

The SC fate decision mechanism controls the cell-production rate, and this con-
trol is key to tissue homeostasis. Derangement of this mechanism might lead to the
development of cancer. The theory of CSCs, elaborated in thefollowing section,
creates an opportunity to further explore this notion.



Modeling Stem Cell Fate Decision 35

3 Cancer Stem Cell Theory

The CSC theory asserts that some elements of the normal cellular hierarchy exist also
in cancer. The theory states that in cancerous tissue, as in normal tissue, a small per-
centage of cells possess the ability of unlimited self-renewal [6,18,75]. These cells,
called CSCs, drive the growth and spread of the disease, whereas their more differ-
entiated progeny are destined to die, as they have limited orno ability to undergo
further mitotic divisions [57]. It was originally postulated that CSCs arose from nor-
mal SCs that escaped the bounds of self-renewal [29,52]. However, it is also possible
that these cells are the result of mutations that caused a progenitor cell to re-acquire
the ability of self-renewal [18].

In the 1990s, studies in patients with chronic myelogenous leukemia (CML) and
acute myelogenous leukemia (AML) provided compelling evidence for the existence
of CSCs [11, 29, 88]. Since then, cells with SC characteristics have been identified
in solid cancer diseases, such as brain cancer and breast cancer. Putative SC popula-
tions have also been observed in cancer types such as colon, pancreas, prostate and
melanoma (see review by Lobo et al. [57]). However, there is still controversy about
the generality of the CSC theory [1,42].

CSCs seem to be relatively resistant to conventional therapy. In severalin vitro
experiments, putative SCs in different cancer types, for example multiple myeloma
and breast cancer, did not respond to conventional chemotherapeutic agents [56,62].
Radioresistance was also shown for ex-vivo Glioma stem cells [9]. This may be
because CSCs have a slow proliferation rate, in comparison to differentiated tran-
siently amplifying tumor cells, while chemotherapy and radiotherapy generally tar-
gets rapidly proliferating cells [92]. Moreover, owing to their limitless replication
capacity, CSCs that have survived treatment are capable of replenishing a depleted
tumor. This may explain the high occurrence of cancer relapse after seemingly suc-
cessful therapy with strong clinical response [66]. According to this hypothesis, ef-
fective tumor eradication must include agents that target CSCs [23]. Recently, out-
comes of clinical trials in both myeloma [40] and breast cancer [21] patients have
supported this theory by showing correlation between CSC quantities and patient
survival after treatment.

Agents that efficaciously attack CSCs and cause their death (elimination therapy)
are scarce, owing to these cells’ resistance to drugs. Alternative therapy modalities
that target CSCs include inhibiting CSC proliferation (inhibition therapy), or driving
them to differentiate into transiently amplifying tumor cells (differentiation therapy),
which leads to their terminal differentiation and eventualdeath, and facilitates their
elimination through conventional therapy [78].

CSC theory suggests that cancerous tissues might have some kind of homeostatic
regulation analogous to that in normal tissues. Thus, an understanding of fate deci-
sion mechanisms can shed light on CSC population sizes and dynamics, just as it
can for SCs in normal tissue. Some of the main signaling pathways that participate
in the regulation of SC fate decision in developmental processes have been found
to be mutated in cancer [57, 83]. Researchers have begun to seek ways of targeting
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CSCs by blocking or modifying these pathways, with the aim ofallowing specific
CSC therapy without affecting normal SCs [77].

4 Mathematical Modeling of Stem Cell Fate Decision

Understanding the mechanisms regulating SC fate decision is fundamental to un-
derstanding homeostasis – a basic condition for life. Specifically, deciphering fate
decision in CSCs may be key to controlling and eliminating tumor growth. Although
more and more biological data have become available regarding multiple factors in
the microenvironment that affect SC fate decision [57], it is still not fully understood
what controls an SC’s decision to replicate or to differentiate into self-amplifying
progenitors.

Over the last few years, mathematical models based on biological data have been
proposed to describe SC fate decision processes at the cellular and intracellular lev-
els. Some models have described the kinetics of molecular dynamical mechanisms,
such as signaling pathways (e.g., [2, 44]). Systems biologyapproaches have been
employed to investigate intracellular signaling pathwaysand transcription factor net-
works that play a role in determining SC fate (for a review see[70]).

In order to understand the dynamics of normal and cancerous tissues, which
might enable researchers to identify drug targets for controlling tumor cell popu-
lations, it is not sufficient to investigate intracellular molecular processes. Rather,
it is necessary to examine the tissue as a whole. Several mathematical models
have been proposed to describe the role of SCs and CSCs in tissue balance. Many
of these models used continuous ordinary differential equations (ODE) systems
to describe the dynamics of different cell sub-populations(e.g., SCs and DCs)
[22–24,30,51,60,61,67,71,73,80,85,96]. Others are discrete cellular automata mod-
els, where the behavior of individual cells is followed [3–5,8,28,59,64,91]. Most of
these studies did not focus on the regulation of fate decision and did not examine the
validity of the methods used to model this decision. SC control was either consid-
ered stochastic, with fixed probabilities of differentiation and replication (e.g., [85])
or described by generic feedback from a homogeneous environment, with no speci-
fied underlying mechanisms [22–24,30,61,67,73,80]. [71],[51] and [96] introduce
regulation by specific environmental signals (e.g., NF-κB, GDF11 or EGFR), but
they did not consider cell-to-cell interactions. Many of the models apply to specific
systems and cannot be generalized [8,59,60,64,91].

In what follows we describe a series of models by Agur and colleagues, which
focus both on tissue-level cell population dynamics and on intracellular molecular
signaling in order to describe SC and CSC behavior. The models rely on a minimum
of assumptions, all of which concern the SC fate decision mechanism. This minimal-
ism enables the models to provide generalizable conclusions and concrete therapeutic
recommendations that are not restricted to specific tissue or disease types.
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5 General Description of Stem Cell Dynamics in Tissue: A
Discrete Model

5.1 A general cellular automaton tissue model

The first model by Agur et al. was a general model describing tissues with hierar-
chical (SC-based) structures [3]. This model formed the basis for all SC models that
followed, and its aim was to describe the simplest possible system capturing the es-
sential properties of developing tissues which is capable of retrieving homeostasis in
living systems.

The model is a simple, discrete dynamical system that can represent any tis-
sue containing SCs. As the replication-differentiation balance in SCs is essential for
maintenance of tissue homeostasis, the model assumes that replication and differen-
tiation decisions are regulated by feedback regarding the condition of the tissue as a
whole. Specifically, an SC’s fate is assumed to be determinedby feedback it receives
from neighboring cell populations (referred to asquorum sensing, QS). The SC
’reads’ and responds to signals from other SCs in its local microenvironment. Thus,
QS is the fate decision mechanism controlling the SC replication-differentiation bal-
ance. The QS mechanism exists among Gram-negative bacteria, e.g.,Vibrio harveyi
andVibrio cholera[10, 54]. In these bacteria, gene expression is regulated through
the monitoring of population density, using diffusible molecules for communication.

To be able to take cell-cell feedback interactions into account, without assuming
spatial homogeneity of the environmental signals, Agur et al. [3] used acellular
automata(CA) model, in which the behavior of each individual cell is tracked. In CA
models, cells are discrete sites on a lattice. Time is also discretized, and at every time
step, the state of each cell is defined by fixed rules. The rulescan be deterministic or
include stochasticity and probability distributions, butthey must be determined by
local conditions at the site of the specific cell.

The basic conceptual model includes the minimum of details necessary to repre-
sent a normally functioning tissue, as can be seen in the scheme in Figure 2. Tissue
cells are represented by three types of automata cells: stem(S), differentiated (D)
and null (N) cells, the latter representing vacant space in the tissue. An SC can either
replicate, generating new SCs, or differentiate and becomea DC. A DC is assumed
to live in the system for a certain maturation time, and then die or migrate from the
tissue, leaving an unoccupied space (N cell). This N cell mayeventually become
occupied by a new SC, created via a proliferation process (i.e., when a neighbor-
ing SC replicates). A DC in the model represents an entire cell line of progenitors
and differentiated cells before they die or migrate from thetissue, generalized in the
model through the DC life span. An SC’s ’decision’ to differentiate or proliferate
depends on the number of SCs and N cells in its neighborhood, respectively. This
dependency represents the effects of a variety of secreted cytokines in the cell’s mi-
croenvironment, enabling the cell to sense which types of cells are in its proximity.

Mathematically, this system is represented by dynamics on aconnected undi-
rected graphG = (V,E), whereV andE are sets of vertices and edges, respectively.
Each vertex is a cell, and the edges connect each vertex with its closest neighbors.
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Fig. 2. Schematic description of the general tissue model.Three cell types – stem (S),
differentiated (D) and null (N) cells – are represented. Thepink areas show QS regulation on
the SC fate decision.

The distance between each two vertices joined by an edge is defined as 1. Each vertex
is equipped with an internal counterτ, measuring the cell’s progress towards repli-
cation or differentiation, if it is an SC, or progress of maturation in the case of DCs.
Note that the connected graph formulation compels no restrictions of the geometrical
structure or dimensionality of the cellular automaton.

The statex of a vertexv at any timet (denotedxt(v)) is a two-component variable,
the first dimension denoting the cell’s ’type’ (either S, D orN), while the second is
a non-negative integer that denotes its internal counter status. Agur et al. assumed
that at each time step, the cell state can be changed due to differentiation (from
S to D), proliferation (from N to S) or cell death (from D to N).These changes
happen according to the following rules, depending on threenon-negative integer
parameters, namelyΦ, Ψ andΘ :

A DC increases its life-time counter at each time step fromτ to τ +1, until when
τ = Φ it dies, and its state becomes(N,0). Φ represents DC maturation time.

An SC increases its internal counter in the same way, untilτ = Ψ , whereΨ
represents the duration of SC differentiation time. Then, if all of the SC’s closest
neighbors are SCs, the cell differentiates (its state becoming (D,0)). However, if an
SC has a non-stem neighbor whenτ = Ψ , it does not differentiate but remains in
the same state. This stipulation corresponds to the QS hypothesis of an SC receiving
negative feedback signals from the other SCs in its microenvironment.
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An N cell does not change its state, unless it has a stem neighbor, which provides
the N cell with the potential to become occupied by the SC’s daughter cell follow-
ing the SC’s replication. If the N cell has a stem neighbor, itincreases its internal
counter over time, untilτ = Θ , whereΘ represents the cell cycle time-period for SC
proliferation. Then is the N cell is replaced with a new SC (i.e., its state becomes
(S,0)).

These rules are described by an iterative operator, which defines what happens
to a single vertex during the transition between timet and timet + 1. This operator
is applied simultaneously at each time step on all vertices in V, to define the state of
the system at any timet. The operator definition is as follows:

xt(v) = (D,τ) −→ xt+1(v) =

{
(N,0) if τ = Φ,
(D,τ +1) otherwise;

(1)

xt(v) = (S,τ) −→ xt+1(v) =





(D,0) if τ = Ψ and eachv’s neighbor
is a stem cell,

(S,τ) if τ = Ψ andv has a non-stem
neighbor

(S,τ +1) otherwise;

(2)

xt(v) = (N,τ) −→ xt+1(v) =





(N,0) if v has no stem neighbor,
(S,0) if v has a stem neighbor

andτ = Θ ,
(N,τ +1) otherwise;

(3)

where a vertex is defined as a neighbor ofv if the distance between the two vertices
in the shortest-path metric induced byG is equal to 1.

5.2 Tissue homeostasis

In order to prove that this simple description of fate-decision regulation is suffi-
cient to reproduce tissue homeostasis, Agur and colleaguesconducted a mathemat-
ical analysis of the model [3, 45]. This resulted in a set of propositions, analytically
proven, that together show that the model retains the basic properties essential for
maintaining tissue homeostasis, reaching stable SC and DC populations. These theo-
rems are non-quantitative and are robust for any potential refinements involving more
elaborate rules. In other words, the model represents a family of cellular automata,
and it can be modified to describe more specifically the cell-population control of
specific cell types in different tissues. For example, imposing limitations on the ki-
netic parametersΦ, Ψ andΘ or imposing a certain geometrical structure will not
affect the system’s homeostatic properties, since the theorems that follow directly
from the basic model assumptions will stay valid.

It was proven that, after some limited initial number of timesteps, the tissue
model sustains a minimal density of SCs at any time point. A constant supply of
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mature cells is also assured, owing to the existence of a lower bound for the rate of
production of DCs. (The proofs are detailed in [3].) The authors also analyzed the
dynamics leading to a state in which the system dies out, i.e., when all vertices are in
the state of N. They proved that the system never dies out, regardless of the initial SC
population size, except under specific extreme conditions.This feature of the model
reflects the tissue’s ability to recover after SC depletion.

As will be shown later, the homeostatic balance reproduced by the model de-
pends primarily on the minimal fraction of SCs in the particular SC’s immediate
neighborhood that leads to initiating its differentiation. For simplicity, in the first,
general model this parameter (referred to as the QS parameter) was set to 1. The
second condition guaranteeing homeostasis is a strictly positive time-delay between
a cell’s ”birth” and its differentiation (Ψ). Since the latter condition exists for all bi-
ological cells, it will not be discussed any further. The other parameters of the model
determine factors such as speed of cell production but do notinfluence the ability of
tissue cell populations to reach homeostasis. This demonstrates the importance of the
negative feedback, depicted in the model by rule 2, in which an SC does not differen-
tiate unless its immediate microenvironment is saturated with SCs. This regulatory
feedback has a crucial role in the homeostatic characteristics described above.

Moreover, further analysis of the model shows that under certain assumptions,
the model guarantees stability in the proportion of SCs in the population [45]. Min-
imalistic and biologically plausible limitations on the cells’ kinetic parameters, and
some constraints on the symmetry of the initial SC subset, enable derivation of an
expression for the fraction of SCs (and of DCs) in the population, averaged over a
period ofΨ +Θ + Φ + 3 time steps. During this time period, which is the minimal
time for an automaton cell to go through all states (proliferation, differentiation and
death), the SC population size fluctuates. However, for a special case of tube-like
tissues, the size of the SC population is bounded from above and from below. When
cylindrical symmetry is imposed on the graph, by constructing it ash+ 1 similar-
sized layers, the numbers of all SCs and DCs at each time step do not differ from the
average value by more thanγ%, where

γ =
400(Ψ +Θ + Φ +3)

h+1
<

1600(Φ +1)

h
(4)

(proof in [45]). Importantly, given such a cylindrical structure, it is possible to cal-
culate how many initial SCs are needed in the system in order to generate a stable
cell population. This is of interest for tissue engineering, where tube-like tissues are
constructed using SCs implemented in an artificial scaffold[81].

What can go wrong in tissue homeostasis? To examine the effect of deranged
intercellular communication in the microenvironment, Agur and colleagues modified
the model slightly [5]. They allowed the QS parameter to be less than unity, now
denoting itKi , representing the intensity of a signal that reaches an SC from another
SC located at a distance ofi on the connected graph. Rule 2 of the CA iterative
operator was generalized, such that an SC differentiates only if the overall signal
intensity it is exposed to (from all SCs in its proximity) is above a certain threshold.
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The model was modified to have a cubic geometrical structure in order to simplify
quantification of this demand (see figure 1 in [5]).

Numerical simulations of this model were performed under various values ofKi

and with∼ 104 possible triplets of values for cell kinetic parametersΦ, Ψ , Θ , and
different randomly chosen initial states. Most of the simulations resulted in one of
two states: (i) system death, i.e., when all SCs differentiate and eventually die, or
(ii) uncontrolled proliferation, i.e., when most of the SCskeep proliferating and do
not differentiate throughout the duration of the simulation. In the latter case, when
the modeled tissue becomes saturated with cells, the systemachieves a quasi-steady-
state, where a small stable fraction of the cell population is DCs, and a much greater
part of the CA is occupied by SCs. Statistical segmentation of all simulation results
showed that the magnitude of intercellular communication,represented by the QS
parameter, dominantly affects the probability of uncontrolled proliferation and the
probability of system death. The conclusion is that tissue homeostatic balance is
highly dependent on signal intensity, which implies that QSis a crucial mechanism
in fate decision.

Analysis and simulations, examining the effect of relations between the kinetic
parameters, show that shortening DC lifespan can increase the proliferation of SCs.
Analysis also shows that proliferation may become unlimited when the initial SC
population is large. A possible implication for SC therapy would be a necessity to
limit the initial number of implanted SCs. Regarding cancer, these results are con-
sistent with the CSC theory rationalization that conventional therapy fails because it
mainly eliminates non-CSC tumor cells (as represented in the simulation of shorten-
ing DC lifespan). Moreover, these results imply that such therapy may intensify CSC
proliferation. Implications of the conceptual QS model fora cancerous tissue will be
discussed in detail in the following subsection.

5.3 Model of cancerous tissue

The existence of the QS mechanism implies that the trigger for cancer may lie in
the SC’s ability to sense its microenvironment. The resultsof the model analysis de-
scribed above suggest that excessive cell proliferation may result from changes in
the kinetic parameters of the SCs changing their inherent ability to receive signals,
or from changes in the microenvironment, affecting the magnitude of the signals
transduced to SCs. Hence, cancer initiation may be stimulated by factors that cause
microenvironmental changes (e.g., inflammation,) rather than by increased mutagen-
esis, as suggested elsewhere [58]. On the other hand, a natural outcome of excessive
proliferation is an increase in the expected number of random mutations, including
irreversible oncogenic mutations. If this explanation forcarcinogenesis is valid, it
means that in the first stage of cancer development, namely, during extensive pro-
liferation of normal SCs, carcinogenesis can be reversed byinducing environmental
changes that modify cell signaling intensity.

This also means that the SCs’ microenvironment is where we should look for
keys to possibly control, prevent or reverse the direction of tumor growth. If we
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adopt the theory that CSCs are largely responsible for tumorgrowth, then control-
ling the dynamics of cancer progression might become possible through imposing
changes in the environment of these SC-like cells. Drugs affecting local signals in
the interactions between CSCs can be used for manipulating their differentiation and
proliferation rates. Yet any attempt to eliminate CSCs musttake into consideration
the feedback of the CSC population on itself. For example, elimination of DCs may
accelerate the CSC replication rate, owing to the negative feedback that CSCs receive
from the population. Hence, cancer therapy based on targeting only DCs (or progen-
itor tumor cells) may be counterproductive, as it may stimulate CSC proliferation.

To analyze the dynamics of cancer cell populations containing CSCs, Vainstein
et al. [90] adapted the SC model by Agur and colleagues, underthe CSC theory
assumption that hierarchical dynamics in cancer resemble those of normal tissues.
Several changes were made in an attempt to increase the model’s realism. In Vain-
stein et al.’s model, a CSC can be in a non-cycling (quiescent) state, or in a cycling
state, in which a proliferation process takes place. Furthermore, whereas the original
model described proliferation as a ’decision’ of an empty space to become occupied
by an SC, in this model proliferation is initiated by the proliferating cell (i.e., the
internal counter for proliferation belongs to the dividingcell and not to the vacant
space). Finally, the model is probabilistic, where QS control is achieved by setting
the probability of differentiation and of entering proliferation cycle as a function of
numbers of stem and vacant neighbor cells, respectively.

The model is implemented in a honeycomb-shaped CA grid, where each au-
tomata cell has six neighbors. The probabilitypd of a non-cycling CSCA to differ-
entiate is:

pd = pmax−
am(pmax− pmin)

am+
(

den(A)
)m (5)

whereden(A) = N1 +
N2

2k
is the density of SCs in the proximity ofA, Ni being the

number of CSCs at a distancei from A, andk is the damping coefficient reflecting a
reduction in signal intensity as the distance from the neighbor grows. 1/a represents
the sensitivity to this microenvironmental signal, andm, pmaxandpmin are parameters
for steepness and maximal and minimal borders of the function, respectively.

The probabilitypc of a non-cycling CSC A to enter the proliferation cell-cycle
is:

pc = 1− (1− p0)
n (6)

wheren is the number of vacant automata cells in the proximity ofA, calculated in the
same way asden(A), andp0 is a parameter representing the proliferation probability
when one neighboring vacant cell is available. When a CSC enters the cell cycle, an
adjacent empty cell is randomly chosen, and after a certain proliferation timeΘ this
site becomes occupied by a new CSC. As in the previous models [3,5], DCs possess
an internal counter as well, to force their death after an estimated lifespanΦ.

The model was simulated under many different combinations of model parame-
ter values, in biologically plausible ranges based on published information (see [90]
for details). These model parameters include parameters determining a CSC’s level
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of sensitivity to microenvironmental signaling (a, k) and other parameters that influ-
ence proliferation and differentiation rates (pmax, p0, Φ), as well as initial size and
distribution of the cell population subsets (i.e., CSCs andDCs) in the CA.

Numerical simulations of the model, under almost all conditions tested, repro-
duced the dynamics of tumor growth in three phases: initial slow growth in the cell
population size, accelerated growth, and decelerated growth until a state of satura-
tion (due to the space limitations of the CA model). This saturation constitutes a
”quasi-steady state” of cell population size with small fluctuations, which demon-
strates the homeostatic tissue balance induced by the QS control mechanism, similar
to the quasi-stability observed in simulations of the previous model [5]. This is also
similar to the QS-controlled SC-DC balance that was observed in the analysis of
the first general model [3] described in subsection 5.1. Multiple simulations of the
CSC model showed that in the quasi-steady state, cell densities and spatial distribu-
tions of the cells were robust to stochastic effects, as wellas to changes in the initial
conditions and CA size.

The model can be used to examine possible methods of controlling tumor pro-
gression, by trying to pinpoint critical parameters that can be targeted in order to
eliminate the CSC population. For this purpose, we can look at the simulation results
(summarized in table 1) to observe what happens to the various cell populations when
each model parameter is manipulated in various ways. Stimulating differentiation by
increasingpmax or decreasinga or k (see eq. 5) reduced the density of non-cycling
CSCs but did not affect cycling-CSC and DC cell populations.Shortening DC lifes-
panΦ, which is expected to indirectly also cause acceleration ofCSC differentia-
tion (see eq. 6), resulted in a decrease in the size of the total tumor cell population;
however, the cycling-CSC density increased. On the other hand, decreasing the pro-
liferation rate (p0) caused a reduction in cycling-CSC density, but the non-cycling
CSC population was not affected. The effect of changing eachof the parameters was
found to be independent of other changes.

These results indicate that there is no single parameter that can be manipulated
in order to decrease densities of all cell types. Rather, only therapy that both inhibits
proliferation and promotes differentiation can be effective. Simulation results of this
combinational therapy showed that it can indeed successfully eradicate tumor cells
of all cell types.

5.4 Model prediction of power law tumor growth rate and supporting
experimental results

Examining the simulated macroscopic dynamics of tumor growth reveals an in-
teresting result regarding tumor growth rate. Model dynamics in the intermediate
stage of accelerated growth support previous results, suggesting power law tumor
growth [26, 31, 36], as opposed to the widely-accepted assumption that the tumor
growth rate is exponential or Gompertzian (e.g., [49]). In the simulation results
for the two-dimensional CA, the total number of cells is wellapproximated by a
parabola, i.e., it is proportional to the square of time [90]. Similar model simulations
of a one-dimensional automaton show that growth of the totalnumber of cells is
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Table 1. Summary of effects of varying model parameters on all population sizes and on
the total tumor size.Up arrow means increasing effect of the parameter on the specified cell
density, down arrow means decreasing effect, and ’−’ means no effect. A change of no single
parameter reduced both cycling and non-cycling CSC densities [90].

Cycling CSCNon-cycling CSCDC densityTotal tumor cell
density density population

Increasing – ↓ – ↓
differentiation rate

Shortening ↑ – ↓ ↓
DC lifespan
Decreasing ↓ – ↓ ↓

proliferation rate

linear [48]. Therefore, the model suggests that a tumor radius should grow linearly
with time. This is corroborated by experimental findings in breast cancer [36] and
malignant glioma [82].

To test this,in vitro experiments [48] have been conducted in a breast cancer
MCF-7 cell line. Small colonies of these cells were seeded ina thin channel or a Petri
dish, and their growth was monitored for several days. One-dimensional growth of
cells in channels showed that the progression rate of the cell-colony front line was
linear (Figure 3). The two-dimensional area growth of cell colonies showed good
fit with the model’s prediction of quadratic growth (Figure 4). Measurements of 3D
tumor growth, done in a mouse xenograft model of human breastcancer cells, also
support this hypothesis of linear growth of tumor radius (data not shown). Analysis
of these results and of the possible implications of power law tumor growth rate on
clinical therapy is to be published in [48].

5.5 Experimental results supporting the quorum sensing concept

In vitro experiments [5] with CSCs or ”stem-like cells” from the breast cancer MCF-
7 cell line were conducted in order to test the theory of the QScontrol mechanism
underlying the model. CSCs, or ”stem-like cells” positive for the CD44 marker, were
isolated from the breast cancer cell line and plated at different proportions with re-
maining cell populations. The proportion of CSCs was evaluated several times, until
the culture was confluent, and cell populations’ proportions reached equilibrium.

The experimental results revealed that, eventually, CSCs reached a constant pro-
portion in the population, regardless of their initial plating density. These results
imply the existence of some additional factor, beyond CSCs’intrinsic replication
rate, that determines the proportion of CSCs in the population. The experimental
setup dictates that this factor could only have come from theCSCs themselves (for
example, through intercellular communication among CSCs), proving the existence
of QS [5].
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Fig. 3. Experiments prospectively confirming model’s predictions in one dimension.One-
dimensional front line progression of five MCF-7 cell colonies (each denoted by a different
color) shows a linear growth pattern. The colony growth in a thin channel was experimentally
measured in 1-hr intervals (dots). Comparing the slopes of the linear fit (lines) of all the dif-
ferent independent replicates shows that the growth rate issimilar in the different replicates.
(In collaboration with Bjoern Boysen, Andreas Lankenau, Claus Duschel, Fraunhofer Institute
for Biomedical Engineering; IBMT)

6 A Molecular Model and its Implementation in the Large-Scale
Tissue Model

6.1 Stem cell intracellular molecular model

The models described in section 5 show that the balance between SCs and DCs in a
tissue (normal or cancerous) is controlled by QS, and specifically by SCs’ sensitivity
to microenvironmental signals. If one wishes to control thebalance of different cell
populations in a tissue, it is necessary to understand the molecular mechanisms that
enable SCs to monitor their environment and, thus, to modulate tissue homeosta-
sis. Understanding this molecular mechanism could enable prediction of the conse-
quences of specific environmental changes, and this knowledge may be used to find
ways to externally influence SC fate.

Several intracellular signaling pathways are known to be important for SC fate
decision. These include the Wnt canonical pathway and the Notch and Shh pathways.
These pathways take part in the fate decision process in embryonic SCs and are also
suspected of being active in CSCs. Mutations in these pathways have been found in
different cancer types [57,83,94].
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Fig. 4. Experiments prospectively confirming model’s predictions in two dimensions.
Two-dimensional growth of an MCF-7 cell colony shows a quadratic growth pattern. The
colony area growth in a Petri dish was experimentally measured in 0.5-h intervals (red dots).
Quadratic fit (solid line) is presented, in comparison to linear fit (dashed-dotted line). Growth
of the cell colony radius (blue dots), calculated from area measurements assuming a cir-
cle structure, demonstrates the linearity of radial growthrate. (In collaboration with Bjoern
Boysen, Andreas Lankenau, Claus Duschel, Fraunhofer Institute for Biomedical Engineering;
IBMT)

Agur et al. [4] and Kirnasovsky et al. [44] formulated a new model, describing
the pathways in a single breast cancer stem cell (BCSC). Theyimplemented this
intracellular network within the tissue model. Since the model’s objective was to
evaluate the fate decision process in BCSCs, the Wnt and Notch pathways were
selected to be modeled in this work, because of their centralrole in the mammary
tissue homeostasis, and in transformation to breast cancer[15,25,35,74].

The Wnt canonical pathway is activated by binding of the Wnt ligands to Friz-
zled/LRP membrane receptors, causing accumulation ofβ -catenin [72,76]. Highβ -
catenin levels in the nucleus induce transcription of target genes, which leads to cell
proliferation [13].β -catenin is also involved in regulation of the adhesion molecule
E-cadherin, which mediates SC contacts with neighboring cells [17]. The bound
E-cadherins affect the efficiency of gene transcription induced byβ -catenin [38].
The Notch pathway also plays an important role in SC self-renewal [35, 95]. The
binding of the membrane-bound Notch receptors to neighbor cell transmembrane
ligands, Delta, Serrate, Lag-2 (DSL), activates transcription of genes such as Hes,
which suppress differentiation. A kinetic model of the intracellular steps of the Wnt
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pathway, down to the level ofβ -catenin regulation, was first introduced by Lee and
Heinrich [53], and further extended and analyzed by others (see review by [46]).
The Notch pathway was also mathematically modeled [2]. However, to our knowl-
edge, [4, 44] is the first model that specifically merges thesepathways together. The
approach used in this model is supported by recent information about crosstalk be-
tween the pathways [83].

The model of a single BCSC [4,44] was built on the basis of the above biological
information. It comprises descriptions of the Wnt, Notch and E-cadherin pathways,
including feedback loops and crosstalk between the pathways. This intracellular net-
work was implemented [4] within a tissue model, where SCs andnon-SCs are inter-
connected through signals in the microenvironment. The CA tissue model is similar
to that described in the previous section (subsection 5.3),except that the SC deci-
sion to differentiate and its decision to enter the proliferation cycle are not simply
a function of numbers of neighbor cells. Rather, these decisions are dictated deter-
ministically by accumulation of proliferation factors (PF) and differentiation factors
(DF) above certain thresholds (CP andCM, respectively). These factors are quanti-
tatively estimated for each SC, taking into account the specific inter-cellular signal
intensities, as illustrated in the scheme shown in Figure 5 [4].

In [4] and [44], the intracellular processes in a BCSC are modeled according to
the following assumptions: activated LEF/TCF transcription factors (denoted in the
equations asL) encourage proliferation by increasing PF levels (denotedasP). The
activation of LEF/TCF is positively controlled by the Wnt signal intensity (denoted
asS) and negatively controlled by the E-cadherins, which are bound to E-cadherins
in neighboring cells. (The levels of total and bound E-cadherins are denoted asE
and Eb, respectively.) E-cadherin synthesis is negatively regulated by Wnt signal
intensity. The Wnt pathway is assumed to be activated by the Wnt ligand (W) in the
close environment of the cell, while Dkk1 proteins (D) form a negative feedback loop
on the pathway, since their secretion is enhanced as a function of the signal intensity,
and they in turn inhibit the Wnt signal [16]. The Notch pathway is activated by Notch
receptors (N) binding to DSL proteins in neighboring cells, which are assumed to be
expressed by every cell in the model at a constant level. An activated Notch receptor
stimulates a sequence of molecular events that increases Hes protein (H) synthesis,
which inhibits cell differentiation by reducingDF (M). The Notch pathway is also
regulated by a positive feedback loop, as LEF/TCF inhibits the degradation of the
Notch receptor [41].

On the basis of these assumptions, a hybrid model was constructed, where cells
in the tissue were represented as automata cells, while the intracellular realm of
each SC in the tissue model was described by an ODE model of theprotein-protein
interactions in the Wnt and Notch signaling pathways. The ODE system is as follows:
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Stem Cell

Stem Cell
P >C

P

Proliferation
M >C

M

Differentiation

Hes (H)

Wnt (W)

Bound

E-Cadherins (E)

DSL (N
l
)

Dkk1 (D)

Notch (N)

LEF/TCF

(L)

DF (M)

PF (P)

Fig. 5. Schematic representation of the mathematical modelof an SC fate decision, reg-
ulated by signals in the cell’s microenvironment.In this model, the SC’s decision to pro-
liferate and to differentiate are caused by the accumulation of proliferation and differentiation
factors (PF and DF), respectively, above certain thresholds (CP andCM , respectively). The
regulation of these factors by Wnt, Notch and E-cadherin signaling pathways is represented,
including feedback loops and crosstalk between the pathways. The role of the proteins Wnt,
Dickkopf1 (Dkk1), LEF/TCF and Hes, and of the cell-surface receptors Notch, Delta, Serrate,
Lag-2 (DSL) and E-cadherin in these pathways is demonstrated, using pointed arrows (→)
to represent activation and blunt arrows (a) to represent inhibition. Neighboring cells (blue
circles) increase the levels of Wnt, E-cadherins and Notch-DSL bindings. A stem neighbor
may also increase Dkk1 levels. The threshold-dependent effects of PF and DF, respectively,
on the SC fate decision are shown in blue (dashed arrows). Notation for the level of every
factor/protein, as used in the equations, is written in parentheses [4].



Modeling Stem Cell Fate Decision 49

S(t) = f ↑F

(
Wt(t)

)
· f ↓S

(
Dt(t)

)
(7)

Ḋ = f ↑D(L)− µD ·D (8)

L̇ = S· f ↓L (Eb)− µL ·L (9)

Ė = f ↓E(S)− µE ·E (10)

Eb,i(t) = max
(

Eb,i(0),max
τ≤t

(kb ·E(t) ·Ei(t))
)

(11)

Ṗ = f ↑P(L)− µP ·P (12)

Ṅ = pN − f ↓N(L) ·N (13)

Ḣ = f ↑H(Nr)− µH ·H (14)

Ṁ = f ↓M(H)− µM ·M, (15)

where the dependence of each protein on another protein is described using a

sigmoid-shaped Hill function of the form:f (x) =
u ·am+v ·xm

am+xm . Different functions

(with different parametersu, v, a, m for each, which determine the exact shape and
limits of the sigmoid)) are denoted by subscripts (fF , fS, etc.). Increasing and de-
creasing functions are denoted byf ↑ and f ↓, respectively.

In eq. 7,Wt is the total expression level of Wnt proteins in the environment of the

considered cell, calculated asWt =
1
2
·
(
W+

Wn

6

)
, whereW is Wnt produced by the

particular cell, andWn is the sum of Wnt produced by all of the cells in the adjacent
environment of that cell (maximum of 6 neighbors, due to the CA grid structure).
Dt , representing the total expression level of Dkk1 in the environment of the cell, is
calculated in a similar way, whileD is the Dkk1 produced by the cell itself.

The parametersµ are the constant degradation rates for each different protein,
respectively denoted by subscript (µD, µL, etc.).

The number of bound E-cadherins in the cell,Eb (eq. 9), is the sum of the number

of E-cadherins bound to any adjacent cell:Eb(t) =
6

∑
i=1

Eb,i(t), whereEb,i(t) is the

number of E-cadherins bound to the neighboring cell in thei-th direction.Eb,i(t)
is dependent (eq. 11) on the level of E-cadherins in the considered cellE, in the
considered neighboring cellEi , and on the E-cadherin binding coefficientkb.

pN (eq. 13) is the Notch receptor synthesis rate.
Nr (eq. 14) is the level of Notch receptor ready to be activated,which is dependent

on the number of Notch receptors in the cell (N) and also on the level of DSL in the

microenvironment, in the following way:Nr = min(N,Nl ), Nl =
1
6
·

6

∑
i=1

Nl ,i , whereNl ,i

is the DSL level of the neighboring cell being ini-th direction from the considered
cell, andNl is the total level of DSL directed to the cell.
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6.2 Hybrid cellular automata (HCA) multi-scale model

The new tissue model [4], formed by implementation of this ODE model into the CA
model described above, is considered a hybrid cellular automata (HCA) model since
it contains both continuous protein activities and discrete cellular developmental and
spatial states. This multi-scale model can be used to study consequences of specific
intracellular changes on the structure of the tissue.

In order to analyze the molecular proliferation-differentiation regulation mech-
anism, the ODE system describing the signaling pathways wasslightly simplified,
and stability analysis was conducted, concluding that the system has a unique equi-
librium point (i.e., stable values for all variables, in particular P andM), which is
locally asymptotically stable [44]. Simulations showed that the system converges to
an equilibrium point under a wide range of biologically relevant values of parameters
and initial conditions.

The authors studied how the steady-state values forP andM, which reflect the
SC’s tendency to proliferate or differentiate, are dependent on the microenviron-
mental conditions [44]. This was performed by examining thesystem’s response to
changes in the various external signals, e.g., Dkk1 level, Wnt level, and the level
of DSL receptors on the neighboring cells. Results of this analysis showed that the
steady-state values forP and M depend on the level of local cell density. Under
high local density, the high E-cadherin signal is dominant and causes differentiation.
Under lower cell density, Wnt and Dkk1 signal intensities are dominant, and SCs
proliferate at a rate that is dependent on the Dkk1 signal intensity. As will be ex-
plained later, the Dkk1 signal reflects the feedback regulation of the SC proportion
in the population. Low cell density is generally characterized by a high prolifera-
tion rate; however, under extremely low cell density, low Notch signal leads to SC
differentiation.

In addition, numerical simulations of the HCA model dynamics have been carried
out. The CA honeycomb grid was initially seeded with randomly placed cells. To
provide a stable model, parameter values for normal SCs werechosen in a range that
promises tissue survival to confluence. These parameters were estimated to fit real
characteristics of mammary SCs, based on relevant literature (for details see [4]).
Then, for every time step, intracellular dynamics for all the cells were simulated
by calculation of per-cell expression levels of all modeledproteins. Accordingly,
cell fate was determined for each of the automata cells. Thisway, the effects of
changes in specific protein concentrations, e.g., Dkk1, on the tissue dynamics, could
be explored.

Simulations were also used to examine possible effects of defects in signaling
pathways on SC proliferation-differentiationbalance. Parameters were changed such
that Notch receptor synthesis, Wnt ligand expression, or E-cadherin concentration
required for LEF/TCF activity inhibition would increase by5− 20%. The model
was re-simulated, and results were compared to the control simulation result with
”normal” parameter values.
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6.3 Dkk1 as a key regulating factor for fate decision regulation

Mathematical analysis of the model [44] showed that Dkk1 is akey, biologically
plausible factor in fate decision regulation. The protein Dkk1 is secreted by SCs
into the microenvironment and hence may serve as a potentialQS modulator, as it
can indicate the number of SCs in the close neighborhood. Themodel predicts that
above a specific level, Dkk1 reduces proliferation, thus increasing differentiation.

The numerical simulation results suggest that the Dkk1 effect is biphasic. Be-
low a critical concentration Dkk1 will not affect, and may even somewhat increase,
the proportion of SCs in the population. Above this threshold, increasing Dkk1 con-
centration leads to a significant decrease in the numbers of both proliferating and
quiescent SCs, as a result of differentiation.

Simulating dose effects of Dkk1 with changed model parameters, representing
increasingly activated pathways due to mutations, did not change the qualitative de-
pendence of SC proportion on Dkk1. However, the critical Dkk1 concentration under
which proliferating SCs switch to differentiation dependson the pathway activity, as
affected by the specific mutation. This implies that application of exogenous Dkk1
can be used to control the number of SCs that transition from proliferation to differ-
entiation, and thus to maintain tissue homeostasis, even insituations of derangement
of the intracellular mechanism controlling SC fate decision.

6.4 Experimental validation in breast cancer stem cells

To test model predictions,in vitro experiments on breast cancer MCF-7 cell line,
and on primary cells from breast cancer patients, were conducted [4]. Agur and col-
leagues treated these cell colonies with graded doses of Dkk1, and measured each
dose’s effect on the proportion of breast cancer cells characterized by the SC phe-
notypeCD44+CD24−/low [6,33] and on mammosphere formation [33]. For both the
cell line and primary breast cancer cells, the results validated the model prediction
that high Dkk1 levels would reduce the number of CSCs. This isdemonstrated in Fig-
ure 6, where mammosphere formation under high Dkk1 levels isshown to decrease
in a dose-dependant manner. At low levels of Dkk1, there was no increase in CSC
numbers or mammosphere formation in primary breast cancer cells, but there was a
significant increase in the number of CSCs observed for MCF-7cells. Overall, the
results were variable and highly dependent on the particular experimental protocol,
i.e., duration of treatment with Dkk1 before and during the mammosphere-forming
assay (see figure 4 in [4]), or before the flow cytometry ofCD44+CD24−/low cells.
The latter result lends support to the prediction that the CSC proliferation rate un-
der low Dkk1 levels may vary in different tissues, dependingon parameters such as
pathway activity levels and DCs’ mortality.

In addition, the effect of Notch pathway activation and inhibition was examined.
For this purpose, Agur and colleagues investigated the response of MCF-7 cells to
a recombinant human Notch-receptor ligand DLL4, and exposure to DAPT, an in-
hibitor that blocks Notch receptor activity, as well as to knocking out Notch4 ex-
pression by siRNA. The experimental results confirm the roleof Notch activation in
increasing proliferation rate in BCSCs, as predicted by themodel.
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Fig. 6. Effect of Dkk1 treatment on mammosphere formation.Dkk1 effect was measured
by MCF-7 cells (dark grey bars) and by primary human invasivebreast cancer cells (bright
grey bars). MCF-7 cells were pre-incubated with graded concentrations of Dkk1 in serum-
free medium for 24 h, and then plated for mammosphere-forming assays for 7 days. Primary
breast cancer cells were plated in the presence of Dkk1 and cultured for 7 days. Data for each
concentration of Dkk1 are expressed as the fold change in mammosphere formation compared
to untreated controls (0 ng/mL). Asterisks mark statistically significant differences [4].

7 Conclusion and Discussion

7.1 Establishment of the quorum sensing theory in healthy stem cells and in
cancer

The series of mathematical models reviewed in this chapter was aimed at reveal-
ing what determines homeostasis in developing tissues. Thefundamental question of
homeostasis of tissue composition can, actually, be narrowed down to the question
of how SC fate is decided, between continued replication andcommitment to mat-
uration. The understanding of this important control function might also illuminate
the possible derangements of SC fate decision in cancer, thus leading to improved
ways of controlling cancer progression.

The first SC model formulated by Agur and colleagues aimed to decipher the
basic regulation of SC fate decision that yields homeostasis in developing tissues.
Using a simple mathematical model, Agur et al. [3] showed that an extrinsic control
– QS, or negative feedback on SC replication – is sufficient for maintaining home-
ostasis in a developing tissue, given the existence of an intrinsic control – a cell-cycle
clock.
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The developed CA model was general, describing only basic universal properties
of SCs. No specific assumptions were made about tissue spatial structure, growth
rate, duration of cell-cycle, or DC population characteristics, such as their lifespan.
This underlines the generality of the model’s conclusion, regarding the significance
of the feedback of cell densities in the SC’s environment on its fate decision. In other
words, the SC’s ability to ’count’ its stem neighbors lies atthe core of homeostasis.
The QS concept in the context of oncogenesis was establishedexperimentally in
BCSCs as described above [5].

A more realistic model [90], implemented as a probabilisticCA, shed new light
on the role of QS-regulated fate decision in CSC-based tumorprogression. Simula-
tions showed that the model yielded a quasi-steady state of the proportion of CSCs
in the tumor cell population, which is comparable to the homeostatic resilient state
of a normal tissue as described by the general model. Examination of how vari-
ous changes in model parameters affect cell population sizeresulted in significant
conclusions: First, accelerated death of DCs weakened the negative feedback that
these cells posed on CSC proliferation, which, rather counter-intuitively, increased
the number of cycling CSCs. This observation is in line with the CSC hypothesis,
that in order to eliminate the tumor, CSCs must be targeted instead or in addition to
the transient amplifying tumor cells [78]. Second, simulation results suggested that
neither inhibition of proliferation alone nor stimulationof differentiation alone were
sufficient to reduce both cycling and non-cycling CSC populations. Moreover, the
model enabled analysis of the tumor growth dynamics, and theresults implied that
the tumor radius grows linearly with time.

Attempting to decipher the mechanism that enables QS, Agur et al. [4] intro-
duced a new hybrid CA model, which described processes at themolecular level in
addition to dynamics at the tissue level. The model includeda detailed description
of the intracellular system of signaling pathways, triggered by microenvironmental
signals received from neighboring cells, that were found tobalance SC replication
and differentiation in developing tissues, and in particular in the mammary tissue and
in breast cancer. Analyzing this model enabled the authors to explore the means by
which tissue balance can be controlled. In the case of cancer, that would mean con-
trolling tumor growth. Analysis of this model [44] pinpointed the Dkk1 protein as a
key factor in breast cancer SC fate decision regulation, as it increases the probability
of SC differentiation, in addition to reducing the probability of its proliferation. Nu-
merical simulations of the model [4], corroborated by experiments, suggested the ex-
istence of a critical Dkk1 concentration, below which SC replication remains largely
unaffected. Above this threshold, SC replication is significantly suppressed.

Overall, these models present a new concept, in which QS is viewed as the ba-
sic regulatory mechanism driving SC and CSC fate decision. This mechanism is the
foundation for the maintenance of healthy tissue homeostasis [3, 45], and its dis-
ruption is at the source of cancer initiation [5]. Deciphering the explicit molecular
mechanism that enables SCs to monitor their environment and, thus, to modulate
tissue homeostasis, could pave the way to controlling fate decision. In the case of
CSCs, this could lead to identifying new therapeutic agentsto be used for control-
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ling tumor progression, as demonstrated by a model of the network of intracellular
signaling pathways controlling fate decision in breast cancer SCs [4,44].

Recently, there is growing interest in the theory of thestem cell niche, suggesting
that SCs reside in a supporting physiological microenvironmentof a defined structure
within the tissue [55]. The existence of such a niche for CSCshas been proposed,
and experimental evidence for this structure has been foundat least in colon can-
cer, where SCs seem to be localized in a narrow ring near the base of the crypts,
and in breast cancer (for reviews see [14, 50, 79]). The normal or cancer SC niche
is usually described as a physiological microenvironment,consisting of specialized
cells that provide the necessary conditions for SCs to remain undifferentiated and
proliferate. These supporting niche-cells are thought to participate in the regulation
of SC fate decision and control their range of function [14].However, the QS model
presented here shows that the creation of an external, well-defined niche structure is
not necessary for controlling the replication-differentiation balance. The niche could
be formed spontaneously, with required conditions for SC proliferation and differen-
tiation being supplied by the SC population itself. This proposition is supported by
mathematical analysis [44] of the model for intra- and intercellular feedback mecha-
nisms.

7.2 Implications of model analysis for cancer therapy

Theoretical analysis and simulations of these mathematical models have already
yielded some conclusions that may help open new directions for cancer therapy.
First, the intensity of SC-to-SC signaling was found to be a critical factor in the
maintenance of tissue balance. Insufficient signal intensity, either due to environ-
mental factors, or due to insufficient signal receipt, as a result of mutations inherent
in the SCs themselves, was shown to lead to excessive SC proliferation until they
completely deplete the DC population from the tissue [5]. This implies that cancer
initiation may be stimulated by changes in the microenvironment, affecting the mag-
nitude of the signals transduced to SCs, and that this process can be reversible under
environmental changes that modify the signal intensity. Ifcancer initiation is caused
by increased mutagenesis [58], no epigenetic process can prevent it.

Exploring the system behavior under various possible manipulations, changing
factors that influence proliferation and differentiation rates, suggested that only com-
binational therapy that targets both CSC proliferation anddifferentiation can be ef-
fective [90]. This is in line with clinical experience, since drugs targeting CSCs were
found to be clinically more effective when combined with each other, or with con-
ventional therapy that mainly targets DCs [27,68].

The implementation of a molecular model of processes on the intracellular scale
pointed to Dkk1 as a key factor in SC fate decision regulation[4]. Dkk1 can be used
for differentiation therapy, and is expected to be more effective than other agents
stimulating SC differentiation, since it also reduces proliferation. According to the
model, Dkk1 therapy challenges the QS-regulated fate decision, which is a general
cellular homeostasis mechanism; hence, it should be more robust than other methods.
However, the generality of the model does not allow parameter estimation that would
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be accurate enough to estimate the optimal Dkk1 dosage. Optimizing the dosage of
Dkk1 administration is crucial to effectiveness of therapy, since both simulations and
experimental results showed that too low administration ofDkk1 may stimulate CSC
proliferation. This may not only be ineffective in eliminating the tumor, but lead to
the opposite result.

The simulation results also provide new insights into the tumor growth rate. Sim-
ulation results imply that tumor radius grows linearly withtime, i.e., the growth of
tumor volume is cubic in time [90]. This finding is corroborated by experimental
results [48]. Yet only a few previous studies have related tothe possibility of a
power-law tumor growth rate [26, 31, 36], whereas it is widely accepted to model
tumor growth as exponential or Gompertzian (e.g., [49]). This could have therapeu-
tic implications, for example with regard to the design of schedules for radiotherapy,
which are usually optimized assuming exponential tumor growth during the intervals
between irradiation [69].

7.3 A robust tool for exploring and manipulating stem cells behavior

The generality of the basic CA model makes it relevant for theresearch of adult
SCs of any kind. Refinement of the basic model by implementation of various ex-
plicit limitations, describing specific tissue-dependentcharacteristics, could enable
researchers to model SC behavior in any tissue of interest, including solid and non-
solid tumors. The model can be adjusted to describe, for example, the bone marrow
with the migration of mature cells to the peripheral blood, or colon cancer with the
specific spatial structure of the crypt.

The CA form of the model allows for consideration of the influence of neigh-
boring cells on fate decision in the dynamical process of tumor growth. This is not
possible in continuous CSC dynamical models, which describe the macroscopic be-
havior of CSCs, and which rely on assumptions about tumor growth rate or spatial
homogeneity of environmental signals (cf. [23, 30]). Agur et al. [3] were the first to
use a CA formulation to create a general model of SC behavior;other CA models,
in contrast, were built to model SC spatial behavior in the specific tissue structure
of the colon [59, 64, 91] or breast [8]. Enderling et al. [28] also used a CA model to
describe tumor growth dynamics, but they did not try to simulate homeostatic prop-
erties in the tissue and had no constraints on the tissue’s resilience, considering no
feedback of the SC population on SC differentiation.

The multi-scale model [4], which includes modeling of intracellular-level dy-
namics in conjunction with the dynamics on the tissue level,is used for distinguish-
ing possible therapeutic targets for eliminating CSCs. Notwithstanding, the model
still captures the principal mechanism of SC fate decision regulation, i.e., the QS
mechanism. Analysis of the model could point out the most effective therapeutic
agents, those that attack the main control of CSCs’ self-maintenance. The intracellu-
lar part was modeled in view of the biological data for BCSCs;however, a different
approach could be adopted in order to gain insights for otherspecific cancer types
and therapies.
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Currently, the intracellular SC model is being expanded to combine more of
the main relevant signaling pathways, including detailed molecular models for these
pathways. For example, a detailed model of the Wnt pathway has been built, and its
parameters were fitted and validated using experimental data [47]. Implementation
of this detailed molecular model in the multi-scale tissue model will have the ad-
vantage of parameter availability. Thus, the resultant multi-scale model will be able
to make quantitative predictions of the effects of different therapeutic agents. Such
a model could be useful for the research of all cancer types, unlike the multi-scale
model of van Leeuwen et al. [91], which is specific for colorectal cancer SCs.

Beyond the interest for cancer, manipulating SC fate decision can help in con-
trolling in vitro developed tissues, engineered for the purpose of transplantation or
designed for experimental research. A model describing theregulation of fate deci-
sion in a tissuein vitro could contribute to optimization of tissue engineering. For
example, analysis of the basic tissue model presented here [45] suggested the possi-
bility of evaluating the minimal number of SCs necessary forreplenishing an empty
scaffold. Furthermore, the ability to control SC proliferation and differentiationin
vitro might help to increase the availability of adult SCs for transplantations. In addi-
tion, the model can be used for exploring other diseases caused by SC malfunctions.

In conclusion, the presented mathematical models suggest that QS is the key to
SC fate decision regulation, and they also begin to decipherthe molecular mecha-
nisms underlying it. These efforts bring us closer to the goal of controlling fate deci-
sion in real tumors, using mathematical models as tools for quantitative predictions
of the efficacy of concrete therapeutic agents for specific cancer types.
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