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Online Abstract:

Stem cells (SCs) control tissue development and maintain tissue homeostasis. The SC fate decision
— continued replication or commitment to maturation — is decided in a dynamical mechanism
according to the changing requirements of the tissue. According to cancer stem cell (CSC) theory,
derangements of SC fate decision allow CSCs to stimulate and control tumor progression.

This chapter reviews a series of mathematical models aimed at elucidating fate decision
mechanisms in SC and CSC populations. The first, general tissue model was designed to decipher
the basic regulation of SC fate decision. The model assumes negative feedback through SC-to-SC
interactions, referred to as quorum sensing (QS). Analysis shows that QS is the simplest fate
decision model sufficient for maintaining tissue homeostatic properties. Further refinement and
analysis of the model confirm that excessive SC proliferation, which can cause a homeostatic tissue
to become cancerous, may be triggered by a change in the intensity of intercellular communication.
Subsequently, a model describing the behavior of a cancerous tissue was developed. Its simulations
suggest the necessity of combinational therapy, targeting both proliferation and differentiation, in
order to effectively eliminate CSC population. In vitro experiments with CSCs from breast cancer
cell-line supported the concept of QS, and also confirmed model prediction that tumor radius grows
linearly with time, implying power law tumor growth rate.

A separate model is aimed to identify the molecular mechanism underlying fate decision control in
a single SC, by incorporating intracellular signaling pathways that are sensitive to
microenvironmental signals. This intracellular model was integrated within the previously studied
tissue model. Analysis and simulations of the consequent multi-scale model show that the
Dickkopfl (Dkk1) ligand, secreted by SCs, may serve as a potential modulator of the QS
mechanism. The model predicts existence of a threshold level of Dkk1, above which proliferating
SCs switch to differentiation. This dose effect of Dkkl on SC population was corroborated
experimentally in breast CSCs.

The presented models suggest that the experimentally supported QS concept is the key to SC fate
decision regulation. The generality of the models enables using them both for gaining global
insights into cancer therapy, and for distinguishing specific possible therapeutic targets, as the
implementation of the molecular scale processes can be done differently for specific cancer types.
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Deciphering Fate Decision in Normal and Cancer
Stem Cells — Mathematical Models and Their
Experimental Verification

Gili Hochman and Zvia Agur

Institute for Medical BioMathematics, 10 Hate’ena St., Beétaroth, Israel
office@imbm.org

1 Introduction

All tissues in the body are derived from stem cells (SCs). &@sundifferentiated

cells with two essential properties: unlimited replicatimapacity and the ability to
differentiate into one or more specialized cell types. Brohic SCs are pluripotent,
meaning that they can give rise to nearly all cell types. arbryonic, adult SCs are
found in various tissues and are capable of generating telinsiet of tissue-specific
cell types. The first discovered and most extensively stutyipe of adult SC is the
hematopoietic SC, found in the bone marrow, which can gse td all lineages of
mature blood cells [12, 84]. Organ-specific SCs have beamtifaed in many other

tissues, including the liver, skin, brain and mammary glégsee [19] for review).

Adult SCs are responsible for tissue maintenance and rétiemwaghout the life
of an organism. They replenish cell populations after néoelhdeath and following
more extensive tissue damage caused by disease or injusyregenerative ability
has made SCs a key focus of scientific research, much of whaimied at develop-
ing treatment for a broad variety of diseases [86, 87]. Famnya&ars, hematopoietic
SCs have been successfully used to treat leukemia and atheatblogical disor-
ders, through bone marrow transplantation [32]. Recealiyical trials have been
conducted to evaluate SC-based treatment for cardiowarsdiseases [20], neuro-
logical diseases [43], spinal cord injuries [93] and dialsd63]. Researchers have
also attempted to exploit SCs in tissue engineering, agpid replace damaged tis-
sues or cells by transplanting SCs that have been inducetldrte differentiate into
specific phenotypes [37].

SCs do not proliferate or differentiate at a constant ratth&, their behavior
is highly complex and closely regulated, attuned to the eraeds of the tissue at
any given time. For example, under normal conditions SCéhigpduce only a few
differentiated tissue cells (DCs) at a continuous rateiffautissue is injured, the SCs
may suddenly be required to produce larger quantities ofio@spair it. It is crucial
that SC proliferation and differentiation correspond gely to the requirements
of the tissue. Insufficiently rapid proliferation and diéatiation may impair tissue
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function, whereas overproliferation may result in uncoldd growth and increase
the occurrence of mutations, which might be cancerous [[i¢ feed to maintain
the delicate balance between proliferation and diffeegiatn implies the existence
of a dynamic regulatory mechanism that, at each point in,tialeéermines théate
of each SC in the tissue: according to the requirements ofisgkee, the SC either
proliferates, differentiates, or is quiescent.

The SC fate decision mechanism is a key componembofeostasjor the main-
tenance of a stable internal environment, which is a funaaaheondition for life.
The fate decision mechanism is responsible, for examplerfsuring that the blood
continuously contains enough red blood cells to carry orytlgeremote corners of
the body, while at the same time triggering immune respotsesexpected, im-
mediate threats. An understanding of SC fate decision cad bbht on the very
essence of homeostasis. Correspondingly, if we examinehappens when the fate
decision mechanism malfunctions, we might be able to utaledsvhat happens in
diseases in which homeostasis is interrupted — such asrcance

One approach to investigating the role of SC fate decisi@aircer relates to the
theory of cancer stem cells. This theory suggests thathiadthy tissues, cancers are
characterized by a hierarchical structure, in which a smétlority of cancer cells
(called cancer stem cells, or CSCs) have stem cell-like gnt@s [6, 18, 75]. CSCs
can proliferate indefinitely and are responsible for tuntomgh, whereas the major-
ity of (differentiated) cancer cells have only a limitedlapito proliferate [57]. Even
a few CSCs can regenerate a depleted tumor following tredtraed therefore, ac-
cording to the CSC theory, the only way of effectively curitigease is to eliminate
the CSC population [39]. Therapeutic approaches thatt&§€s may entail sim-
ply killing these cells (elimination therapy) or, alterivaty, inhibiting their prolifer-
ation (inhibition therapy), or driving them to differentiian (differentiation therapy),
which eliminates their unlimited replication capacity [7Bhe latter therapy involves
interfering with CSC fate decision mechanisms. A deepeewstdnding of SC and
CSC fate decision could be instrumental in the developmiesuch treatments.

Herein we review a series of mathematical models formulbyedgur and col-
leagues, aimed at elucidating fate decision mechanisms iarfdl CSC populations.
These models are, then, used to gain insight into canceapfer

The first SC model by Agur et al. is aimed to decipher homestasdevel-
oping systems, using as few assumptions as possible [3.mbdel is a cellular
automaton, general enough to represent any normally fumotj tissue. The model
assumes that SC fate decision is determined by negativbdekddepending on lo-
cal cell-cell interactions between the SCs. SpecificaliyiPand colleagues assume
that cells are able to "count” the numbers of cells in the@aaand make decisions
accordingly. This counting ability is known to exist in baga and is referred to
as quorum sensing (QS). Analysis of this model [3, 45] shdwas ®S is sufficient
for maintaining the homeostatic properties of a tissue.édwer, this is the simplest
model capable of retrieving homeostasis.

This model was followed by an effort to study the deranger&hbmeostasis,
i.e., to learn what causes a normal, homeostatic tissuectante cancerous. To this
end, Agur et al.’s original model was refined to incorporaspacific three dimen-
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sional structure of the tissue and varying intensities tfirellular signaling (i.e.,
variation of the distance at which cells can detect the presef other cells) [5].
Results confirmed that excessive SC proliferation may géred by change in the
intensity of intercellular communication.

In a subsequent study, the model was adjusted in order tomxie behavior of
a cancerous tissue containing CSCs [90]. Exploring theesy$tehavior under vari-
ous parameter values enabled the authors to identify geherapeutic approaches
that are likely to be effective in targeting CSC populations

A separate model aimed to identify the molecular mechanisderying fate
decision control in a single SC, by incorporating intragkalf molecular signaling
pathways that are sensitive to microenvironmental sigida4]. This intracellular
model was integrated within the previously studied tisswaleh, to create a multi-
scale model, which, if verified experimentally, could alsove as a useful tool for
distinguishing specific possible therapeutic targets lionirating CSCs [4]. Math-
ematical analysis [44] and simulations [4] of this modelwhbat one of the key
factors for fate decision regulation is the Dickkopfl (Dkkfjand, which is secreted
by SCs into the microenvironment, and may serve as a potentidulator of the
negative feedback (QS) mechanism.

The rest of this chapter is organized as follows. Sectionsd?3aprovide back-
ground about the SC fate decision mechanism and about thie/tbECSCs. Section
4 discusses mathematical modeling of SC fate decisionid®egtdiscusses the tis-
sue models, and section 6 discusses the molecular mecharudel. Section 7 dis-
cusses the results of the analysis of these models, theciatiplns of considering the
concept of feedback regulation through SC-to-SC intevastiand possible future
applications for these models in CSC research.

2 Fate Decision in Stem Cells: Managing the
Replication-Differentiation Balance

Tissues containing SCs are organized as cellular hieescim which SCs make up
a small fraction of the cell population [34]. SCs can dividther symmetrically or
asymmetrically. In symmetric division, two similar SCs gm®duced, i.e., the SC
proliferates. Asymmetric division, in contrast, yieldseoBC and one daughter cell
that is more differentiated, termed a progenitor cell (Pi@e PC transiently ampli-
fies, meaning that it replicates for a limited time. The PCdoices either additional
PCs that are at an even more advanced stage of differentiatiterminally dif-
ferentiated cells (DCs), which cannot replicate (FigureOgs fulfill the tissue’s
functionality (e.g., blood cells, skin cells).

As noted above, the SC proliferation and differentiatiol@samust conform to
the tissue’s development and changing needs. The SCs muthadly supply the
required quantities of DCs under various constraints, Xangple, in growing tissues
or following disease or injury. At the same time, the sizehaf C population must
be restricted in order to prevent uncontrolled growth armvding out of the DC
population, and to decrease the risk of cancerous mutdfidns
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Self-renewal capacity

Differentiation level

Fig. 1. Schematic description of the cell hierarchy in a tisse. A stem @) cell can replicate
indefinitely, while producing early progenitor celB;}, which in turn produce a larger popu-
lation of more differentiated progenitorB,. The differentiation process is naturally continu-
ous, and can go on through several lineages of PCs, eventeasiliting in fully differentiated
(D) cells.

Control over an SC's fate is exerted through the cell's neoreronment. The
SC receives signals from its environment and, accordinbded signals, "decides”
whether to replicate, differentiate, die (apoptosis) onaa quiescent. The signals
regulating SC decisions might come from any number of sautbey may be de-
termined by biochemical and mechanical characteristigh®fenvironment, such
as cytokine concentrations, cell-to-cell signals, exdliatar matrix properties, and
possibly somatic properties of the SC itself [65, 70, 89m8dheories suggest that
an external, physical tissue structure, transmits theouarsignals that regulate SC
fate [14]. Other theories propose that SCs are capable dfrggsignals to one an-
other without relying on additional structures. The QS tigewhich forms the basis
of the work by Agur et al., stems from the latter approach.

The SC fate decision mechanism controls the cell-prodoctte, and this con-
trol is key to tissue homeostasis. Derangement of this mesimamight lead to the
development of cancer. The theory of CSCs, elaborated irfalfmving section,
creates an opportunity to further explore this notion.
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3 Cancer Stem Cell Theory

The CSC theory asserts that some elements of the normdbedilararchy exist also
in cancer. The theory states that in cancerous tissue, asnmahtissue, a small per-
centage of cells possess the ability of unlimited self-waid6, 18, 75]. These cells,
called CSCs, drive the growth and spread of the disease gabd¢neir more differ-
entiated progeny are destined to die, as they have limitatbability to undergo
further mitotic divisions [57]. It was originally postukad that CSCs arose from nor-
mal SCs that escaped the bounds of self-renewal [29,52]eMexyit is also possible
that these cells are the result of mutations that causedgepitor cell to re-acquire
the ability of self-renewal [18].

In the 1990s, studies in patients with chronic myelogeneukdmia (CML) and
acute myelogenous leukemia (AML) provided compelling evice for the existence
of CSCs [11, 29, 88]. Since then, cells with SC charactesdtiave been identified
in solid cancer diseases, such as brain cancer and breast.daatative SC popula-
tions have also been observed in cancer types such as calatrgas, prostate and
melanoma (see review by Lobo et al. [57]). However, therélisentroversy about
the generality of the CSC theory [1,42].

CSCs seem to be relatively resistant to conventional tiyetafseveraln vitro
experiments, putative SCs in different cancer types, fang{e multiple myeloma
and breast cancer, did not respond to conventional chemagtéetic agents [56, 62].
Radioresistance was also shown for ex-vivo Glioma stens 8]l This may be
because CSCs have a slow proliferation rate, in comparsaifferentiated tran-
siently amplifying tumor cells, while chemotherapy andiotiderapy generally tar-
gets rapidly proliferating cells [92]. Moreover, owing toeir limitless replication
capacity, CSCs that have survived treatment are capabkpténishing a depleted
tumor. This may explain the high occurrence of cancer relafter seemingly suc-
cessful therapy with strong clinical response [66]. Ac@ogdo this hypothesis, ef-
fective tumor eradication must include agents that targd€€[23]. Recently, out-
comes of clinical trials in both myeloma [40] and breast @rj21] patients have
supported this theory by showing correlation between CSéntities and patient
survival after treatment.

Agents that efficaciously attack CSCs and cause their dekthiiation therapy)
are scarce, owing to these cells’ resistance to drugs.dtee therapy modalities
that target CSCs include inhibiting CSC proliferation {lition therapy), or driving
them to differentiate into transiently amplifying tumotlsddifferentiation therapy),
which leads to their terminal differentiation and eventeth, and facilitates their
elimination through conventional therapy [78].

CSC theory suggests that cancerous tissues might have s komeostatic
regulation analogous to that in normal tissues. Thus, aenstahding of fate deci-
sion mechanisms can shed light on CSC population sizes amahdygs, just as it
can for SCs in normal tissue. Some of the main signaling paykwthat participate
in the regulation of SC fate decision in developmental psees have been found
to be mutated in cancer [57, 83]. Researchers have beguekonsgys of targeting
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CSCs by blocking or modifying these pathways, with the ainalidwing specific
CSC therapy without affecting normal SCs [77].

4 Mathematical Modeling of Stem Cell Fate Decision

Understanding the mechanisms regulating SC fate decisidundamental to un-
derstanding homeostasis — a basic condition for life. Sigatly, deciphering fate
decision in CSCs may be key to controlling and eliminatingou growth. Although
more and more biological data have become available reggrdultiple factors in
the microenvironment that affect SC fate decision [57 &till not fully understood
what controls an SC's decision to replicate or to differatatiinto self-amplifying
progenitors.

Over the last few years, mathematical models based on liallcdpta have been
proposed to describe SC fate decision processes at théacelhd intracellular lev-
els. Some models have described the kinetics of moleculzardical mechanisms,
such as signaling pathways (e.g., [2, 44]). Systems bioaygyroaches have been
employed to investigate intracellular signaling pathwaiyd transcription factor net-
works that play a role in determining SC fate (for a review [S€3).

In order to understand the dynamics of normal and canceissises, which
might enable researchers to identify drug targets for odlitg tumor cell popu-
lations, it is not sufficient to investigate intracellulaolacular processes. Rather,
it is necessary to examine the tissue as a whole. Severalematital models
have been proposed to describe the role of SCs and CSCsue bsgance. Many
of these models used continuous ordinary differential 8qna (ODE) systems
to describe the dynamics of different cell sub-populati¢ag., SCs and DCs)
[22—-24,30,51,60,61,67,71,73,80,85,96]. Others areatiscellular automata mod-
els, where the behavior of individual cells is followed [38528,59, 64, 91]. Most of
these studies did not focus on the regulation of fate dateml did not examine the
validity of the methods used to model this decision. SC adntias either consid-
ered stochastic, with fixed probabilities of differentiatiand replication (e.g., [85])
or described by generic feedback from a homogeneous eméot) with no speci-
fied underlying mechanisms [22—-24, 30,61, 67, 73, 80]. [B1]} and [96] introduce
regulation by specific environmental signals (e.g., A&-GDF11 or EGFR), but
they did not consider cell-to-cell interactions. Many of ttnodels apply to specific
systems and cannot be generalized [8, 59, 60, 64, 91].

In what follows we describe a series of models by Agur andeegiles, which
focus both on tissue-level cell population dynamics andrtracellular molecular
signaling in order to describe SC and CSC behavior. The msadbl on a minimum
of assumptions, all of which concern the SC fate decisiorfraeism. This minimal-
ism enables the models to provide generalizable conclasiod concrete therapeutic
recommendations that are not restricted to specific tissdesease types.



Modeling Stem Cell Fate Decision 37

5 General Description of Stem Cell Dynamics in Tissue: A
Discrete Model

5.1 A general cellular automaton tissue model

The first model by Agur et al. was a general model describisgugs with hierar-
chical (SC-based) structures [3]. This model formed théstfas all SC models that
followed, and its aim was to describe the simplest possimesn capturing the es-
sential properties of developing tissues which is capatietdeving homeostasis in
living systems.

The model is a simple, discrete dynamical system that caresept any tis-
sue containing SCs. As the replication-differentiatiotabae in SCs is essential for
maintenance of tissue homeostasis, the model assumespifiaation and differen-
tiation decisions are regulated by feedback regardingdhnéition of the tissue as a
whole. Specifically, an SC'’s fate is assumed to be deternbgédedback it receives
from neighboring cell populations (referred to @sorum sensingQS). The SC
‘reads’ and responds to signals from other SCs in its locat@einvironment. Thus,
QS is the fate decision mechanism controlling the SC reftinadifferentiation bal-
ance. The QS mechanism exists among Gram-negative baeterid/ibrio harveyi
andVibrio cholera[10, 54]. In these bacteria, gene expression is regulated dn
the monitoring of population density, using diffusible malles for communication.

To be able to take cell-cell feedback interactions into aotowithout assuming
spatial homogeneity of the environmental signals, Agurlef3 used acellular
automataCA) model, in which the behavior of each individual cellriadked. In CA
models, cells are discrete sites on a lattice. Time is alsoréliized, and at every time
step, the state of each cell is defined by fixed rules. The oaede deterministic or
include stochasticity and probability distributions, by must be determined by
local conditions at the site of the specific cell.

The basic conceptual model includes the minimum of deta®ssary to repre-
sent a normally functioning tissue, as can be seen in thensele Figure 2. Tissue
cells are represented by three types of automata cells: (@gndifferentiated (D)
and null (N) cells, the latter representing vacant spackdrissue. An SC can either
replicate, generating new SCs, or differentiate and be@mBD€. A DC is assumed
to live in the system for a certain maturation time, and thienod migrate from the
tissue, leaving an unoccupied space (N cell). This N cell magntually become
occupied by a new SC, created via a proliferation process (ithen a neighbor-
ing SC replicates). A DC in the model represents an entirdinel of progenitors
and differentiated cells before they die or migrate fromttbgue, generalized in the
model through the DC life span. An SC’s 'decision’ to diffetiate or proliferate
depends on the number of SCs and N cells in its neighborhesgectively. This
dependency represents the effects of a variety of secrgtekiiiges in the cell's mi-
croenvironment, enabling the cell to sense which typesitf aee in its proximity.

Mathematically, this system is represented by dynamics oormected undi-
rected grapl& = (V,E), whereV andE are sets of vertices and edges, respectively.
Each vertex is a cell, and the edges connect each vertextwithoisest neighbors.
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Fig. 2. Schematic description of the general tissue modeThree cell types — stem (S),
differentiated (D) and null (N) cells — are represented. pimk areas show QS regulation on
the SC fate decision.

The distance between each two vertices joined by an edgénedas 1. Each vertex
is equipped with an internal counter measuring the cell’'s progress towards repli-
cation or differentiation, if itis an SC, or progress of nration in the case of DCs.
Note that the connected graph formulation compels no o#istnis of the geometrical
structure or dimensionality of the cellular automaton.

The statex of a vertexv at any time (denoted (v)) is a two-component variable,
the first dimension denoting the cell’'s 'type’ (either S, DNy, while the second is
a non-negative integer that denotes its internal count¢ust Agur et al. assumed
that at each time step, the cell state can be changed duefe¢oedifation (from
S to D), proliferation (from N to S) or cell death (from D to NJhese changes
happen according to the following rules, depending on tm@®negative integer
parameters, namelp, ¥ ando:

A DC increases its life-time counter at each time step fraimt + 1, until when
T = @ itdies, and its state becom@¥,0). @ represents DC maturation time.

An SC increases its internal counter in the same way, antl ¥, whereW
represents the duration of SC differentiation time. Thémlliof the SC’s closest
neighbors are SCs, the cell differentiates (its state bawp(,0)). However, if an
SC has a non-stem neighbor whes= ¥, it does not differentiate but remains in
the same state. This stipulation corresponds to the QS hgpistof an SC receiving
negative feedback signals from the other SCs in its microenment.
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An N cell does not change its state, unless it has a stem n@ighibich provides
the N cell with the potential to become occupied by the SCisgtiéer cell follow-
ing the SC's replication. If the N cell has a stem neighboinéreases its internal
counter over time, untit = @, where® represents the cell cycle time-period for SC
proliferation. Then is the N cell is replaced with a new S@.(iits state becomes
(S0)).

These rules are described by an iterative operator, whithetewhat happens
to a single vertex during the transition between tinaad timet + 1. This operator
is applied simultaneously at each time step on all vertio&s to define the state of
the system at any time The operator definition is as follows:

(N,0) if T=0,

X(v) = (0,1) —x"Hv) = { (D,T+ 1) otherwise; (1)
(D,0) if 1= and eachv's neighbor
is a stem cell
X(v)=(S1) —xX(v)={ (S1) if =W andvhasanon-stem (2)
neighbor

(S,7+1) otherwise;

(N,0) if v has no stem neighbor
(V) = (N, ) — ¥ 1(v) = (S,0) if v has a stem neighbor

andt = 0, (3)
(N, 7+ 1) otherwise;

where a vertex is defined as a neighbov dfthe distance between the two vertices
in the shortest-path metric induced Byis equal to 1.

5.2 Tissue homeostasis

In order to prove that this simple description of fate-diecisregulation is suffi-
cient to reproduce tissue homeostasis, Agur and colleagpretucted a mathemat-
ical analysis of the model [3, 45]. This resulted in a set a@jpmsitions, analytically
proven, that together show that the model retains the basjwepties essential for
maintaining tissue homeostasis, reaching stable SC andpdations. These theo-
rems are non-quantitative and are robust for any potesefimements involving more
elaborate rules. In other words, the model represents dyfarincellular automata,
and it can be modified to describe more specifically the ogfiypation control of
specific cell types in different tissues. For example, inipgpdimitations on the ki-
netic parameter®, ¥ and® or imposing a certain geometrical structure will not
affect the system’s homeostatic properties, since ther¢ime® that follow directly
from the basic model assumptions will stay valid.

It was proven that, after some limited initial number of tisteps, the tissue
model sustains a minimal density of SCs at any time point. Astant supply of
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mature cells is also assured, owing to the existence of arlbaend for the rate of
production of DCs. (The proofs are detailed in [3].) The aushalso analyzed the
dynamics leading to a state in which the system dies outyiteen all vertices are in
the state of N. They proved that the system never dies owrdégss of the initial SC
population size, except under specific extreme conditibhss. feature of the model
reflects the tissue’s ability to recover after SC depletion.

As will be shown later, the homeostatic balance reprodugethé model de-
pends primarily on the minimal fraction of SCs in the parieuSC’s immediate
neighborhood that leads to initiating its differentiati¢for simplicity, in the first,
general model this parameter (referred to as the QS pargmes set to 1. The
second condition guaranteeing homeostasis is a strictlifipotime-delay between
a cell's "birth” and its differentiationy’). Since the latter condition exists for all bi-
ological cells, it will not be discussed any further. Themtharameters of the model
determine factors such as speed of cell production but dmfioénce the ability of
tissue cell populations to reach homeostasis. This dematasthe importance of the
negative feedback, depicted in the model by rule 2, in whitB@ does not differen-
tiate unless its immediate microenvironment is saturatigd 8Cs. This regulatory
feedback has a crucial role in the homeostatic charadterdéscribed above.

Moreover, further analysis of the model shows that undelaseassumptions,
the model guarantees stability in the proportion of SCs éngbpulation [45]. Min-
imalistic and biologically plausible limitations on thellsékinetic parameters, and
some constraints on the symmetry of the initial SC subsethlenderivation of an
expression for the fraction of SCs (and of DCs) in the popatataveraged over a
period of ¥ + © + @ + 3 time steps. During this time period, which is the minimal
time for an automaton cell to go through all states (prcdifiem, differentiation and
death), the SC population size fluctuates. However, for aiagpease of tube-like
tissues, the size of the SC population is bounded from abodéram below. When
cylindrical symmetry is imposed on the graph, by constngctt ash+ 1 similar-
sized layers, the numbers of all SCs and DCs at each time steptdliffer from the
average value by more thafo, where

,_A00W+O+®+3) 1600®+1)

h+1 h @

(proof in [45]). Importantly, given such a cylindrical stture, it is possible to cal-
culate how many initial SCs are needed in the system in oolgeherate a stable
cell population. This is of interest for tissue engineerimbere tube-like tissues are
constructed using SCs implemented in an artificial scafi@id.

What can go wrong in tissue homeostasis? To examine thet effeteranged
intercellular communication in the microenvironment, Agad colleagues modified
the model slightly [5]. They allowed the QS parameter to t&s lhan unity, now
denoting itK;, representing the intensity of a signal that reaches an @@ &nother
SC located at a distance ofon the connected graph. Rule 2 of the CA iterative
operator was generalized, such that an SC differentiatsifotihe overall signal
intensity it is exposed to (from all SCs in its proximity) is@ve a certain threshold.



Modeling Stem Cell Fate Decision 41

The model was modified to have a cubic geometrical structuprder to simplify
quantification of this demand (see figure 1 in [5]).

Numerical simulations of this model were performed undeious values oK;
and with~ 10* possible triplets of values for cell kinetic parametérs¥, O, and
different randomly chosen initial states. Most of the siati@ns resulted in one of
two states: (i) system death, i.e., when all SCs differémt@and eventually die, or
(i) uncontrolled proliferation, i.e., when most of the Skiep proliferating and do
not differentiate throughout the duration of the simulatitn the latter case, when
the modeled tissue becomes saturated with cells, the systeigeves a quasi-steady-
state, where a small stable fraction of the cell populaddCs, and a much greater
part of the CA is occupied by SCs. Statistical segmentatfail gimulation results
showed that the magnitude of intercellular communicatiepresented by the QS
parameter, dominantly affects the probability of uncolbproliferation and the
probability of system death. The conclusion is that tissaméostatic balance is
highly dependent on signal intensity, which implies thati®8& crucial mechanism
in fate decision.

Analysis and simulations, examining the effect of relasitmetween the kinetic
parameters, show that shortening DC lifespan can incréasgroliferation of SCs.
Analysis also shows that proliferation may become unlichivhen the initial SC
population is large. A possible implication for SC therapguld be a necessity to
limit the initial number of implanted SCs. Regarding cantieese results are con-
sistent with the CSC theory rationalization that convemidherapy fails because it
mainly eliminates non-CSC tumor cells (as representeddarsitimulation of shorten-
ing DC lifespan). Moreover, these results imply that suanapy may intensify CSC
proliferation. Implications of the conceptual QS modeldarancerous tissue will be
discussed in detail in the following subsection.

5.3 Model of cancerous tissue

The existence of the QS mechanism implies that the triggecdacer may lie in
the SC'’s ability to sense its microenvironment. The resaflthe model analysis de-
scribed above suggest that excessive cell proliferation masult from changes in
the kinetic parameters of the SCs changing their inherdfityato receive signals,
or from changes in the microenvironment, affecting the nitage of the signals
transduced to SCs. Hence, cancer initiation may be stiedilay factors that cause
microenvironmental changes (e.g., inflammation,) rathan by increased mutagen-
esis, as suggested elsewhere [58]. On the other hand, ahattcome of excessive
proliferation is an increase in the expected number of remdwtations, including
irreversible oncogenic mutations. If this explanation ¢arcinogenesis is valid, it
means that in the first stage of cancer development, namalinglextensive pro-
liferation of normal SCs, carcinogenesis can be reversadducing environmental
changes that modify cell signaling intensity.

This also means that the SCs’ microenvironment is where weldHook for
keys to possibly control, prevent or reverse the directibtumor growth. If we
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adopt the theory that CSCs are largely responsible for tugrmwth, then control-
ling the dynamics of cancer progression might become plesibough imposing
changes in the environment of these SC-like cells. Drugectffg local signals in
the interactions between CSCs can be used for manipuldigdifferentiation and
proliferation rates. Yet any attempt to eliminate CSCs ntals¢ into consideration
the feedback of the CSC population on itself. For exampimisation of DCs may
accelerate the CSC replication rate, owing to the negatmétfack that CSCs receive
from the population. Hence, cancer therapy based on taggetily DCs (or progen-
itor tumor cells) may be counterproductive, as it may stateilCSC proliferation.

To analyze the dynamics of cancer cell populations comgi@iSCs, Vainstein
et al. [90] adapted the SC model by Agur and colleagues, utigeCSC theory
assumption that hierarchical dynamics in cancer reserhiolgetof normal tissues.
Several changes were made in an attempt to increase the'snaddism. In Vain-
stein et al.'s model, a CSC can be in a non-cycling (quie$ctate, or in a cycling
state, in which a proliferation process takes place. Furtbee, whereas the original
model described proliferation as a 'decision’ of an empigcgpto become occupied
by an SC, in this model proliferation is initiated by the pfierating cell (i.e., the
internal counter for proliferation belongs to the dividiogll and not to the vacant
space). Finally, the model is probabilistic, where QS aung achieved by setting
the probability of differentiation and of entering proli&ion cycle as a function of
numbers of stem and vacant neighbor cells, respectively.

The model is implemented in a honeycomb-shaped CA grid, evkach au-
tomata cell has six neighbors. The probabiliyof a non-cycling CSQ\ to differ-
entiate is: "
a™(Pmax— Pmin) 5)

pd = pmax— -,/ \m
am+ (der(A))
whereden(A) = N; + % is the density of SCs in the proximity &, N; being the
number of CSCs at a distanc&om A, andk is the damping coefficient reflecting a
reduction in signal intensity as the distance from the niedglyrows. Ja represents
the sensitivity to this microenvironmental signal, andmaxandpmin are parameters
for steepness and maximal and minimal borders of the fumctéspectively.

The probabilityp. of a non-cycling CSC A to enter the proliferation cell-cycle
is:

pc=1-(1-po" (6)

wherenis the number of vacant automata cells in the proximitfafalculated in the
same way adern(A), andpp is a parameter representing the proliferation probability
when one neighboring vacant cell is available. When a CSérgtte cell cycle, an
adjacent empty cell is randomly chosen, and after a certaiifgration time® this
site becomes occupied by a new CSC. As in the previous magiél PCs possess
an internal counter as well, to force their death after aimesed lifespand.

The model was simulated under many different combinatiédmsaziel parame-
ter values, in biologically plausible ranges based on ghielil information (see [90]
for details). These model parameters include parametéesndiming a CSC's level
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of sensitivity to microenvironmental signaling, k) and other parameters that influ-
ence proliferation and differentiation ratgsbx pPo, @), as well as initial size and
distribution of the cell population subsets (i.e., CSCs Bfs) in the CA.

Numerical simulations of the model, under almost all cdondi tested, repro-
duced the dynamics of tumor growth in three phases: inikial growth in the cell
population size, accelerated growth, and deceleratedtiyromtil a state of satura-
tion (due to the space limitations of the CA model). This sation constitutes a
"quasi-steady state” of cell population size with small fliations, which demon-
strates the homeostatic tissue balance induced by the Q®boechanism, similar
to the quasi-stability observed in simulations of the pvegimodel [5]. This is also
similar to the QS-controlled SC-DC balance that was obskmvehe analysis of
the first general model [3] described in subsection 5.1. idlgltsimulations of the
CSC model showed that in the quasi-steady state, cell desaitd spatial distribu-
tions of the cells were robust to stochastic effects, as agetb changes in the initial
conditions and CA size.

The model can be used to examine possible methods of cangr&limor pro-
gression, by trying to pinpoint critical parameters that & targeted in order to
eliminate the CSC population. For this purpose, we can lotikeasimulation results
(summarized in table 1) to observe what happens to the \&ellpopulations when
each model parameter is manipulated in various ways. Stitingl differentiation by
increasingpmax Or decreasing or k (see eq. 5) reduced the density of non-cycling
CSCs but did not affect cycling-CSC and DC cell populati@tsortening DC lifes-
pan @, which is expected to indirectly also cause acceleratioB®€ differentia-
tion (see eq. 6), resulted in a decrease in the size of thiettmtar cell population;
however, the cycling-CSC density increased. On the othed hdecreasing the pro-
liferation rate fp) caused a reduction in cycling-CSC density, but the norioyc
CSC population was not affected. The effect of changing eétie parameters was
found to be independent of other changes.

These results indicate that there is no single parametecémbe manipulated
in order to decrease densities of all cell types. Rathey, thi@rapy that both inhibits
proliferation and promotes differentiation can be effextiSimulation results of this
combinational therapy showed that it can indeed succégdtddicate tumor cells
of all cell types.

5.4 Model prediction of power law tumor growth rate and suppating
experimental results

Examining the simulated macroscopic dynamics of tumor ¢gnoreveals an in-
teresting result regarding tumor growth rate. Model dyrenimn the intermediate
stage of accelerated growth support previous results,estigg power law tumor
growth [26, 31, 36], as opposed to the widely-accepted agsamthat the tumor
growth rate is exponential or Gompertzian (e.g., [49]). e simulation results
for the two-dimensional CA, the total number of cells is waiproximated by a
parabola, i.e., itis proportional to the square of time [Siinilar model simulations
of a one-dimensional automaton show that growth of the tot@hber of cells is



44 GiliHochman and Zvia Agur

Table 1. Summary of effects of varying model parameters on &population sizes and on
the total tumor size. Up arrow means increasing effect of the parameter on thefigukecell
density, down arrow means decreasing effect, aridrieans no effect. A change of no single
parameter reduced both cycling and non-cycling CSC desdi#@0].

Cycling CSCNon-cycling CSCDC densityTotal tumor cel
density density population

Increasing - 1 - 1
differentiation rate

Shortening T - l i}

DC lifespan

Decreasing l - l i}
proliferation rate

linear [48]. Therefore, the model suggests that a tumowugasihould grow linearly
with time. This is corroborated by experimental findings redst cancer [36] and
malignant glioma [82].

To test this,in vitro experiments [48] have been conducted in a breast cancer
MCEF-7 cell line. Small colonies of these cells were seedexdtinin channel or a Petri
dish, and their growth was monitored for several days. Greedsional growth of
cells in channels showed that the progression rate of theakny front line was
linear (Figure 3). The two-dimensional area growth of celooies showed good
fit with the model’s prediction of quadratic growth (Figurg ¥easurements of 3D
tumor growth, done in a mouse xenograft model of human bzaster cells, also
support this hypothesis of linear growth of tumor radiugddsot shown). Analysis
of these results and of the possible implications of powsrtlanor growth rate on
clinical therapy is to be published in [48].

5.5 Experimental results supporting the quorum sensing cotept

In vitro experiments [5] with CSCs or "stem-like cells” from the bseeancer MCF-
7 cell line were conducted in order to test the theory of thec@®rol mechanism
underlying the model. CSCs, or "stem-like cells” positioe the CD44 marker, were
isolated from the breast cancer cell line and plated at miffeproportions with re-
maining cell populations. The proportion of CSCs was eveldigeveral times, until
the culture was confluent, and cell populations’ propogimrached equilibrium.

The experimental results revealed that, eventually, C8&stred a constant pro-
portion in the population, regardless of their initial jriat density. These results
imply the existence of some additional factor, beyond C3@sinsic replication
rate, that determines the proportion of CSCs in the pomrafThe experimental
setup dictates that this factor could only have come fron38€s themselves (for
example, through intercellular communication among CS@)Vving the existence
of QS [5].
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Fig. 3. Experiments prospectively confirming model’s preditions in one dimensionOne-
dimensional front line progression of five MCF-7 cell colemi(each denoted by a different
color) shows a linear growth pattern. The colony growth ihia thannel was experimentally
measured in 1-hr intervals (dots). Comparing the slopebefitear fit (lines) of all the dif-
ferent independent replicates shows that the growth ragimisar in the different replicates.
(In collaboration with Bjoern Boysen, Andreas LankenawauSIDuschel, Fraunhofer Institute
for Biomedical Engineering; IBMT)

6 A Molecular Model and its Implementation in the Large-Scak
Tissue Model

6.1 Stem cell intracellular molecular model

The models described in section 5 show that the balance bat®%€s and DCs in a
tissue (normal or cancerous) is controlled by QS, and spattifiby SCs’ sensitivity
to microenvironmental signals. If one wishes to controlltaéance of different cell
populations in a tissue, it is necessary to understand thecmar mechanisms that
enable SCs to monitor their environment and, thus, to meeldissue homeosta-
sis. Understanding this molecular mechanism could enaklgigtion of the conse-
quences of specific environmental changes, and this kngelethy be used to find
ways to externally influence SC fate.

Several intracellular signaling pathways are known to bgartant for SC fate
decision. These include the Wnt canonical pathway and thelNamnd Shh pathways.
These pathways take part in the fate decision process inyemicrSCs and are also
suspected of being active in CSCs. Mutations in these pathtvave been found in
different cancer types [57, 83, 94].
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Fig. 4. Experiments prospectively confirming model's preditions in two dimensions.
Two-dimensional growth of an MCF-7 cell colony shows a ga#idrgrowth pattern. The
colony area growth in a Petri dish was experimentally messir 0.5-h intervals (red dots).
Quadratic fit (solid line) is presented, in comparison tedinfit (dashed-dotted line). Growth
of the cell colony radius (blue dots), calculated from aresagurements assuming a cir-
cle structure, demonstrates the linearity of radial grovetie. (In collaboration with Bjoern
Boysen, Andreas Lankenau, Claus Duschel, Fraunhofetutesfor Biomedical Engineering;
IBMT)

Agur et al. [4] and Kirnasovsky et al. [44] formulated a newdab describing
the pathways in a single breast cancer stem cell (BCSC). Trhplemented this
intracellular network within the tissue model. Since thedeits objective was to
evaluate the fate decision process in BCSCs, the Wnt andhNmthways were
selected to be modeled in this work, because of their cerdfalin the mammary
tissue homeostasis, and in transformation to breast cftieg25, 35, 74].

The Wnt canonical pathway is activated by binding of the Vigarids to Friz-
zled/LRP membrane receptors, causing accumulati@iadtenin [72, 76]. HiglB-
catenin levels in the nucleus induce transcription of teggees, which leads to cell
proliferation [13].3-catenin is also involved in regulation of the adhesion roole
E-cadherin, which mediates SC contacts with neighborifig ¢&7]. The bound
E-cadherins affect the efficiency of gene transcriptiorucetl by3-catenin [38].
The Notch pathway also plays an important role in SC seléwne [35, 95]. The
binding of the membrane-bound Notch receptors to neighbtrtansmembrane
ligands, Delta, Serrate, Lag-2 (DSL), activates transioripof genes such as Hes,
which suppress differentiation. A kinetic model of the attellular steps of the Wnt
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pathway, down to the level @@-catenin regulation, was first introduced by Lee and
Heinrich [53], and further extended and analyzed by othseg feview by [46]).
The Notch pathway was also mathematically modeled [2]. Heweo our knowl-
edge, [4,44] is the first model that specifically merges tipegbways together. The
approach used in this model is supported by recent infoonatbout crosstalk be-
tween the pathways [83].

The model of a single BCSC [4,44] was built on the basis of iava biological
information. It comprises descriptions of the Wnt, Notcll &rcadherin pathways,
including feedback loops and crosstalk between the patbwvildys intracellular net-
work was implemented [4] within a tissue model, where SCsramdSCs are inter-
connected through signals in the microenvironment. Thei€e model is similar
to that described in the previous section (subsection BX)ept that the SC deci-
sion to differentiate and its decision to enter the prodifem cycle are not simply
a function of numbers of neighbor cells. Rather, these @e@sare dictated deter-
ministically by accumulation of proliferation factors (P&nd differentiation factors
(DF) above certain threshold€ andCy, respectively). These factors are quanti-
tatively estimated for each SC, taking into account the i§ipenter-cellular signal
intensities, as illustrated in the scheme shown in Figueg 5 [

In [4] and [44], the intracellular processes in a BCSC are @ediaccording to
the following assumptions: activated LEF/TCF transcadptfactors (denoted in the
equations a&) encourage proliferation by increasing PF levels (denat#®). The
activation of LEF/TCF is positively controlled by the Wngeal intensity (denoted
as9) and negatively controlled by the E-cadherins, which anenolcto E-cadherins
in neighboring cells. (The levels of total and bound E-caifiseare denoted a&
and By, respectively.) E-cadherin synthesis is negatively regd by Wnt signal
intensity. The Wnt pathway is assumed to be activated by theliand V) in the
close environment of the cell, while Dkk1 proteif¥) form a negative feedback loop
on the pathway, since their secretion is enhanced as adwmtihe signal intensity,
and they in turn inhibit the Wnt signal [16]. The Notch patipisactivated by Notch
receptorsi) binding to DSL proteins in neighboring cells, which aretassd to be
expressed by every cell in the model at a constant level. Avaded Notch receptor
stimulates a sequence of molecular events that increaseprdiein H) synthesis,
which inhibits cell differentiation by reducinF (M). The Notch pathway is also
regulated by a positive feedback loop, as LEF/TCF inhilhitssdegradation of the
Notch receptor [41].

On the basis of these assumptions, a hybrid model was cotetiiwhere cells
in the tissue were represented as automata cells, whilentrecellular realm of
each SC in the tissue model was described by an ODE model pftiein-protein
interactions in the Wnt and Notch signaling pathways. Th&Qstem is as follows:
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Fig. 5. Schematic representation of the mathematical modedf an SC fate decision, reg-
ulated by signals in the cell’s microenvironment.In this model, the SC’s decision to pro-
liferate and to differentiate are caused by the accumudatfqroliferation and differentiation
factors (PF and DF), respectively, above certain thresh@d andCy, respectively). The
regulation of these factors by Wnt, Notch and E-cadherinaigg pathways is represented,
including feedback loops and crosstalk between the pathwlye role of the proteins Wnt,
Dickkopfl (Dkk1), LEF/TCF and Hes, and of the cell-surfaeeaptors Notch, Delta, Serrate,
Lag-2 (DSL) and E-cadherin in these pathways is demonsiratging pointed arrows—¢)

to represent activation and blunt arrow$ o represent inhibition. Neighboring cells (blue
circles) increase the levels of Wnt, E-cadherins and N@&t&h- bindings. A stem neighbor
may also increase DKkl levels. The threshold-dependeettsfbf PF and DF, respectively,
on the SC fate decision are shown in blue (dashed arrowsatidotfor the level of every
factor/protein, as used in the equations, is written in piaeses [4].
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St) = i (W) - (Do) 7)

D = f{(L)— pp-D (8)
L=Sf/(Ep)—p-L 9)

E = (S — e E (10)

En (t) = max( s, (0), max(ky - E(1) - Ei(1))) (11)
P=fl(L)—pp-P (12)

N = pn— f(L)-N (13)

H = £} (Ne) — o - H (14)

M = i (H) — - M, (15)
where the dependence of each protein on another proteinsisrided using a
sigmoid-shaped Hill function of the fornf:(x) = lﬂ# Different functions

(with different parameters, v, a, mfor each, which determine the exact shape and
limits of the sigmoid)) are denoted by subscripfs,(fs, etc.). Increasing and de-
creasing functions are denoted byand f!, respectively.

In eq. 7,W is the total expression level of Wnt proteins in the enviremtrof the

considered cell, calculated ¥%$ = 1 . (W+ %) , whereW is Wnt produced by the

particular cell, and\;, is the sum of Wnt produced by all of the cells in the adjacent
environment of that cell (maximum of 6 neighbors, due to tiedzid structure).
Dy, representing the total expression level of Dkk1 in the mmment of the cell, is
calculated in a similar way, whilB is the Dkk1 produced by the cell itself.

The parameterg are the constant degradation rates for each differentiprote
respectively denoted by subscripiy L, etc.).

The number of bound E-cadherinsin the cEU,(eq. 9), is the sum of the number

of E-cadherins bound to any adjacent c&it) ZEb' , WhereEy(t) is the

number of E-cadherins bound to the neighboring cell initkie direction.Ey(t)
is dependent (eq. 11) on the level of E-cadherins in the densd cellg, in the
considered neighboring cdfl, and on the E-cadherin binding coefficidgt

pn (eqg. 13) is the Notch receptor synthesis rate.

Nr (eq. 14) is the level of Notch receptor ready to be activatduich is dependent
on the number of Notch receptors in the cél) @nd also on the Ievel of DSL in the

. . . . 1
microenvironment, in the following wayN; = min(N,N;), N ZIN| i, whereN, ;

is the DSL level of the neighboring cell beingiitth direction from the considered
cell, andN, is the total level of DSL directed to the cell.
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6.2 Hybrid cellular automata (HCA) multi-scale model

The new tissue model [4], formed by implementation of thisExDodel into the CA
model described above, is considered a hybrid cellulamaata (HCA) model since
it contains both continuous protein activities and disecatllular developmental and
spatial states. This multi-scale model can be used to stodgerjuences of specific
intracellular changes on the structure of the tissue.

In order to analyze the molecular proliferation-diffeliatibn regulation mech-
anism, the ODE system describing the signaling pathwayssligistly simplified,
and stability analysis was conducted, concluding that yiséesn has a unique equi-
librium point (i.e., stable values for all variables, in feular P and M), which is
locally asymptotically stable [44]. Simulations showedittthe system converges to
an equilibrium point under a wide range of biologically ralet values of parameters
and initial conditions.

The authors studied how the steady-state value®fandM, which reflect the
SC's tendency to proliferate or differentiate, are depeha® the microenviron-
mental conditions [44]. This was performed by examiningdhstem’s response to
changes in the various external signals, e.g., Dkk1 leveit \&el, and the level
of DSL receptors on the neighboring cells. Results of thalysis showed that the
steady-state values fé* andM depend on the level of local cell density. Under
high local density, the high E-cadherin signal is dominamt eauses differentiation.
Under lower cell density, Wnt and Dkk1 signal intensitiee dominant, and SCs
proliferate at a rate that is dependent on the Dkk1 signahsity. As will be ex-
plained later, the Dkk1 signal reflects the feedback reguraif the SC proportion
in the population. Low cell density is generally charaaed by a high prolifera-
tion rate; however, under extremely low cell density, lowtdtosignal leads to SC
differentiation.

In addition, numerical simulations of the HCA model dynastiave been carried
out. The CA honeycomb grid was initially seeded with randppihced cells. To
provide a stable model, parameter values for normal SCsetergen in a range that
promises tissue survival to confluence. These parameteesestimated to fit real
characteristics of mammary SCs, based on relevant literdfar details see [4]).
Then, for every time step, intracellular dynamics for ak tbells were simulated
by calculation of per-cell expression levels of all modepedteins. Accordingly,
cell fate was determined for each of the automata cells. Waig the effects of
changes in specific protein concentrations, e.g., Dkk1hernissue dynamics, could
be explored.

Simulations were also used to examine possible effects fefctiein signaling
pathways on SC proliferation-differentiation balanceapzeters were changed such
that Notch receptor synthesis, Wnt ligand expression, cadherin concentration
required for LEF/TCF activity inhibition would increase By 20%. The model
was re-simulated, and results were compared to the contnola&ion result with
"normal” parameter values.
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6.3 Dkk1 as a key regulating factor for fate decision regulabn

Mathematical analysis of the model [44] showed that Dkk1 kew biologically
plausible factor in fate decision regulation. The proteikkD is secreted by SCs
into the microenvironment and hence may serve as a poté&d#ahodulator, as it
can indicate the number of SCs in the close neighborhoodniddel predicts that
above a specific level, Dkk1 reduces proliferation, thusdasing differentiation.

The numerical simulation results suggest that the Dkklceffebiphasic. Be-
low a critical concentration Dkk1 will not affect, and mayeevsomewhat increase,
the proportion of SCs in the population. Above this threghwicreasing Dkk1 con-
centration leads to a significant decrease in the numberstbf froliferating and
quiescent SCs, as a result of differentiation.

Simulating dose effects of Dkk1 with changed model pararsetepresenting
increasingly activated pathways due to mutations, did hahge the qualitative de-
pendence of SC proportion on Dkk1. However, the critical D&kncentration under
which proliferating SCs switch to differentiation depemasthe pathway activity, as
affected by the specific mutation. This implies that appitcaof exogenous Dkk1
can be used to control the number of SCs that transition fnafif@ration to differ-
entiation, and thus to maintain tissue homeostasis, evatuiations of derangement
of the intracellular mechanism controlling SC fate decisio

6.4 Experimental validation in breast cancer stem cells

To test model predictionsn vitro experiments on breast cancer MCF-7 cell line,
and on primary cells from breast cancer patients, were adedy4]. Agur and col-
leagues treated these cell colonies with graded doses of ,iid measured each
dose’s effect on the proportion of breast cancer cells dtanaed by the SC phe-
notypeCD44+tCD24 /'°% [6,33] and on mammosphere formation [33]. For both the
cell line and primary breast cancer cells, the results a#did the model prediction
that high Dkk1 levels would reduce the number of CSCs. Thdgmonstrated in Fig-
ure 6, where mammaosphere formation under high Dkk1 levedbasvn to decrease
in a dose-dependant manner. At low levels of Dkk1, there veamerease in CSC
numbers or mammosphere formation in primary breast camdlst but there was a
significant increase in the number of CSCs observed for MCEHE. Overall, the
results were variable and highly dependent on the partiexperimental protocol,
i.e., duration of treatment with Dkk1 before and during thenmmosphere-forming
assay (see figure 4 in [4]), or before the flow cytometrC8¥4TCD24 /1% cells.
The latter result lends support to the prediction that th€ @®liferation rate un-
der low DKk1 levels may vary in different tissues, dependingparameters such as
pathway activity levels and DCs’ mortality.

In addition, the effect of Notch pathway activation and bition was examined.
For this purpose, Agur and colleagues investigated theoresspof MCF-7 cells to
a recombinant human Notch-receptor ligand DLL4, and exygoguDAPT, an in-
hibitor that blocks Notch receptor activity, as well as takking out Notch4 ex-
pression by siRNA. The experimental results confirm the obMotch activation in
increasing proliferation rate in BCSCs, as predicted byntioeel.
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Fig. 6. Effect of Dkk1 treatment on mammosphere formation.Dkk1 effect was measured
by MCF-7 cells (dark grey bars) and by primary human invasirseast cancer cells (bright
grey bars). MCF-7 cells were pre-incubated with graded eptrations of DKkl in serum-
free medium for 24 h, and then plated for mammosphere-fagrassays for 7 days. Primary
breast cancer cells were plated in the presence of Dkk1 dhded for 7 days. Data for each
concentration of Dkk1 are expressed as the fold change inmuesphere formation compared
to untreated controls (0 ng/mL). Asterisks mark stati#ijcsignificant differences [4].

7 Conclusion and Discussion

7.1 Establishment of the quorum sensing theory in healthy sim cells and in
cancer

The series of mathematical models reviewed in this chapter aimed at reveal-
ing what determines homeostasis in developing tissuesfurttamental question of
homeostasis of tissue composition can, actually, be nadaown to the question
of how SC fate is decided, between continued replicationcamdmitment to mat-
uration. The understanding of this important control fimtimight also illuminate
the possible derangements of SC fate decision in cancey |¢lading to improved
ways of controlling cancer progression.

The first SC model formulated by Agur and colleagues aimedempther the
basic regulation of SC fate decision that yields homeastasdeveloping tissues.
Using a simple mathematical model, Agur et al. [3] showed éimeextrinsic control
— @S, or negative feedback on SC replication — is sufficientrfaintaining home-
ostasis in a developing tissue, given the existence of ansnt control — a cell-cycle
clock.
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The developed CA model was general, describing only baswetsal properties
of SCs. No specific assumptions were made about tissue Isgatiature, growth
rate, duration of cell-cycle, or DC population charact@&@ss such as their lifespan.
This underlines the generality of the model’s conclusiegarding the significance
of the feedback of cell densities in the SC’s environment®fate decision. In other
words, the SC's ability to 'count’ its stem neighbors liegtet core of homeostasis.
The QS concept in the context of oncogenesis was estableskgetimentally in
BCSCs as described above [5].

A more realistic model [90], implemented as a probabili€t, shed new light
on the role of QS-regulated fate decision in CSC-based tyragression. Simula-
tions showed that the model yielded a quasi-steady stateegfroportion of CSCs
in the tumor cell population, which is comparable to the hostatic resilient state
of a normal tissue as described by the general model. Exaiminaf how vari-
ous changes in model parameters affect cell populationregdted in significant
conclusions: First, accelerated death of DCs weakeneddfative feedback that
these cells posed on CSC proliferation, which, rather caintuitively, increased
the number of cycling CSCs. This observation is in line wite €CSC hypothesis,
that in order to eliminate the tumor, CSCs must be target&t@ad or in addition to
the transient amplifying tumor cells [78]. Second, simiglatresults suggested that
neither inhibition of proliferation alone nor stimulatiof differentiation alone were
sufficient to reduce both cycling and non-cycling CSC potoies. Moreover, the
model enabled analysis of the tumor growth dynamics, anddbelts implied that
the tumor radius grows linearly with time.

Attempting to decipher the mechanism that enables QS, Agat. ¢4] intro-
duced a new hybrid CA model, which described processes andhecular level in
addition to dynamics at the tissue level. The model incluaekbtailed description
of the intracellular system of signaling pathways, triggeby microenvironmental
signals received from neighboring cells, that were fountatance SC replication
and differentiation in developing tissues, and in partcin the mammary tissue and
in breast cancer. Analyzing this model enabled the autlwoegplore the means by
which tissue balance can be controlled. In the case of categmwould mean con-
trolling tumor growth. Analysis of this model [44] pinpoed the Dkk1 protein as a
key factor in breast cancer SC fate decision regulatiort,insneases the probability
of SC differentiation, in addition to reducing the probéiibf its proliferation. Nu-
merical simulations of the model [4], corroborated by expents, suggested the ex-
istence of a critical Dkk1 concentration, below which SCliegtion remains largely
unaffected. Above this threshold, SC replication is sigatfitly suppressed.

Overall, these models present a new concept, in which Qged as the ba-
sic regulatory mechanism driving SC and CSC fate decisibis Mmechanism is the
foundation for the maintenance of healthy tissue homeissfas45], and its dis-
ruption is at the source of cancer initiation [5]. Deciphgrthe explicit molecular
mechanism that enables SCs to monitor their environmenttand, to modulate
tissue homeostasis, could pave the way to controlling fatastbn. In the case of
CSCs, this could lead to identifying new therapeutic agemtse used for control-
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ling tumor progression, as demonstrated by a model of thearktof intracellular
signaling pathways controlling fate decision in breasicearsCs [4, 44].

Recently, there is growing interest in the theory ofstem cell nichesuggesting
that SCs reside in a supporting physiological microenvitent of a defined structure
within the tissue [55]. The existence of such a niche for CB&sbeen proposed,
and experimental evidence for this structure has been fatitebst in colon can-
cer, where SCs seem to be localized in a narrow ring near the dfathe crypts,
and in breast cancer (for reviews see [14, 50, 79]). The nloomeancer SC niche
is usually described as a physiological microenvironmerrsisting of specialized
cells that provide the necessary conditions for SCs to nemadifferentiated and
proliferate. These supporting niche-cells are thoughtaigipate in the regulation
of SC fate decision and control their range of function [Hdwever, the QS model
presented here shows that the creation of an external deéited niche structure is
not necessary for controlling the replication-differatibn balance. The niche could
be formed spontaneously, with required conditions for S@liferation and differen-
tiation being supplied by the SC population itself. Thisgwsition is supported by
mathematical analysis [44] of the model for intra- and ioédlular feedback mecha-
nisms.

7.2 Implications of model analysis for cancer therapy

Theoretical analysis and simulations of these mathematicalels have already
yielded some conclusions that may help open new directiongdncer therapy.
First, the intensity of SC-to-SC signaling was found to beritical factor in the
maintenance of tissue balance. Insufficient signal intgnsither due to environ-
mental factors, or due to insufficient signal receipt, assaltef mutations inherent
in the SCs themselves, was shown to lead to excessive SGepatibn until they
completely deplete the DC population from the tissue [S]isTimplies that cancer
initiation may be stimulated by changes in the microenvinent, affecting the mag-
nitude of the signals transduced to SCs, and that this psazesbe reversible under
environmental changes that modify the signal intensitgaticer initiation is caused
by increased mutagenesis [58], no epigenetic process esergrit.

Exploring the system behavior under various possible mdaijpns, changing
factors that influence proliferation and differentiatiatas, suggested that only com-
binational therapy that targets both CSC proliferation différentiation can be ef-
fective [90]. This is in line with clinical experience, smdrugs targeting CSCs were
found to be clinically more effective when combined with leather, or with con-
ventional therapy that mainly targets DCs [27, 68].

The implementation of a molecular model of processes omtinadellular scale
pointed to Dkk1 as a key factor in SC fate decision reguldd¢rDkk1 can be used
for differentiation therapy, and is expected to be moreatiffe than other agents
stimulating SC differentiation, since it also reduces ifechtion. According to the
model, Dkk1 therapy challenges the QS-regulated fate idecighich is a general
cellular homeostasis mechanism; hence, it should be mbstthan other methods.
However, the generality of the model does not allow parangstmation that would
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be accurate enough to estimate the optimal Dkk1 dosagem@ptg the dosage of
Dkk1 administration is crucial to effectiveness of theraigce both simulations and
experimental results showed that too low administratioDki1 may stimulate CSC
proliferation. This may not only be ineffective in elimiivag the tumor, but lead to
the opposite result.

The simulation results also provide new insights into tedugrowth rate. Sim-
ulation results imply that tumor radius grows linearly witime, i.e., the growth of
tumor volume is cubic in time [90]. This finding is corrobadtby experimental
results [48]. Yet only a few previous studies have relatedht possibility of a
power-law tumor growth rate [26, 31, 36], whereas it is wjdatcepted to model
tumor growth as exponential or Gompertzian (e.g., [49])sTould have therapeu-
tic implications, for example with regard to the design diestules for radiotherapy,
which are usually optimized assuming exponential tumowgnaluring the intervals
between irradiation [69].

7.3 A robust tool for exploring and manipulating stem cells kehavior

The generality of the basic CA model makes it relevant forrésearch of adult
SCs of any kind. Refinement of the basic model by implemeoriadf various ex-
plicit limitations, describing specific tissue-dependemaracteristics, could enable
researchers to model SC behavior in any tissue of interedtiding solid and non-
solid tumors. The model can be adjusted to describe, for plarhe bone marrow
with the migration of mature cells to the peripheral blood¢olon cancer with the
specific spatial structure of the crypt.

The CA form of the model allows for consideration of the inflae of neigh-
boring cells on fate decision in the dynamical process ofaugrowth. This is not
possible in continuous CSC dynamical models, which desdhib macroscopic be-
havior of CSCs, and which rely on assumptions about tumortroate or spatial
homogeneity of environmental signals (cf. [23, 30]). Aguak [3] were the first to
use a CA formulation to create a general model of SC behawtber CA models,
in contrast, were built to model SC spatial behavior in thecHfir tissue structure
of the colon [59, 64, 91] or breast [8]. Enderling et al. [2Bjcaused a CA model to
describe tumor growth dynamics, but they did not try to seteihomeostatic prop-
erties in the tissue and had no constraints on the tissuslgeree, considering no
feedback of the SC population on SC differentiation.

The multi-scale model [4], which includes modeling of imedular-level dy-
namics in conjunction with the dynamics on the tissue lagalsed for distinguish-
ing possible therapeutic targets for eliminating CSCs.witbstanding, the model
still captures the principal mechanism of SC fate decisiggutation, i.e., the QS
mechanism. Analysis of the model could point out the mostatiffe therapeutic
agents, those that attack the main control of CSCs’ selfitaaance. The intracellu-
lar part was modeled in view of the biological data for BCSkxsyever, a different
approach could be adopted in order to gain insights for agpecific cancer types
and therapies.
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Currently, the intracellular SC model is being expandeddmlgine more of
the main relevant signaling pathways, including detailedarular models for these
pathways. For example, a detailed model of the Wnt pathwaykan built, and its
parameters were fitted and validated using experimental[d&{. Implementation
of this detailed molecular model in the multi-scale tissuedel will have the ad-
vantage of parameter availability. Thus, the resultantirsehle model will be able
to make quantitative predictions of the effects of différdrerapeutic agents. Such
a model could be useful for the research of all cancer typai&eaithe multi-scale
model of van Leeuwen et al. [91], which is specific for colaadcancer SCs.

Beyond the interest for cancer, manipulating SC fate deisan help in con-
trolling in vitro developed tissues, engineered for the purpose of trartafitamor
designed for experimental research. A model describingegelation of fate deci-
sion in a tissuen vitro could contribute to optimization of tissue engineeringt Fo
example, analysis of the basic tissue model presented #&fsuggested the possi-
bility of evaluating the minimal number of SCs necessaryémlenishing an empty
scaffold. Furthermore, the ability to control SC proliféoa and differentiatiorin
vitro might help to increase the availability of adult SCs for slantations. In addi-
tion, the model can be used for exploring other disease®ddnsSC malfunctions.

In conclusion, the presented mathematical models sudgg@sQS is the key to
SC fate decision regulation, and they also begin to decififeemolecular mecha-
nisms underlying it. These efforts bring us closer to thd gbeontrolling fate deci-
sion in real tumors, using mathematical models as toolsdantjtative predictions
of the efficacy of concrete therapeutic agents for specificeatypes.
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