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1. Introduction

ABSTRACT

The cancer stem cell (CSC) hypothesis states that only a small fraction of a malignant cell population is
responsible for tumor growth and relapse. Understanding the relationships between CSC dynamics and
cancer progression may contribute to improvements in cancer treatment. Analysis of a simple discrete
mathematical model has suggested that homeostasis in developing tissues is governed by a “quorum
sensing” control mechanism, in which stem cells differentiate or proliferate according to feedback they
receive from neighboring cell populations. Further analysis of the same model has indicated that
excessive stem cell proliferation leading to malignant transformation mainly results from altered
sensitivity to such micro-environmental signals. Our aim in this work is to expand the analysis to the
dynamics of established populations of cancer cells and to examine possible therapeutic avenues for
eliminating CSCs. The proposed model considers two populations of cells: CSCs, which can divide
indefinitely, and differentiated cancer cells, which do not divide and have a limited lifespan. We assume
that total cell density has negative feedback on CSC proliferation and that high CSC density activates
CSC differentiation. We show that neither stimulation of CSC differentiation nor inhibition of CSC
proliferation alone is sufficient for complete CSC elimination and cancer cure, since each of these two
therapies affects a different subpopulation of CSCs. However, a combination of these two strategies can
substantially reduce the population sizes and densities of all types of cancer cells. Therefore, we
propose that in clinical trials, CSC differentiation therapy should only be examined in combination with
chemotherapy. Our conclusions are corroborated by clinical experience with differentiating agents in
acute promyelocytic leukemia and neuroblastoma.

© 2011 Elsevier Ltd. All rights reserved.

the development and progression of leukemias and different solid
tumors (le Viseur et al., 2008; Kavalerchik et al., 2008; Boman and

The theory of cancer stem cells (CSCs) has drawn substantial
attention from the scientific community in recent years (Sell,
2004; Zhou et al., 2009). According to this theory, cancer progres-
sion is governed by CSCs, a subset of stem cell-like tumor cells
that have the potential for unlimited replication and tumor
initiation. The majority of tumor cells, in contrast, can undergo
only a limited number of divisions and therefore cannot repopu-
late a depleted tumor. Research findings are as yet inconclusive
with regard to the universal applicability of the CSC theory
(Quintana et al., 2008, for example, found evidence of a relatively
large tumorigenic population among human melanoma cells,
potentially challenging the CSC hypothesis for this type of cancer;
see also Tomasson, 2009; Adams and Strasser, 2008; Kelly et al.,
2007). Nonetheless, CSCs have been found to play crucial roles in
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Huang, 2008; Pohl et al., 2008; Kakarala and Wicha, 2008).

The CSC paradigm holds meaningful ramifications for cancer
therapy. As even a few CSCs might be sufficient to generate a
tumor, one can intuitively conclude that an effective treatment
must target the CSC population, ensuring that it dies out or
at least does not manage to expand. Studies suggest that
CSCs are relatively resistant to standard cytotoxic therapies
(Cortes-Dericks et al., 2010). Therefore, there have been attempts
to develop compounds that induce differentiation of CSCs in order
to eliminate their ability to proliferate indefinitely, effectively
exterminating cancer (Sanchez-Garcia et al, 2007; Spira and
Carducci, 2003). Yet thus far, despite considerable research efforts
and promising results in in vitro studies (see Spira and Carducci,
2003; Sell, 2004 for review), differentiation therapy has shown
consistent clinical effectiveness for only one cancer indication:
acute promyelocytic leukemia. Notably, in all clinical trials in
which differentiating agents were administered as monotherapy,
treatment either was of no efficacy at all (Trump et al., 1997;
Culine et al., 1999; Adamson et al., 2007; lida et al., 1999) or
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produced only a delay in relapses (Studer et al., 1995). However,
the combination of differentiation therapy with chemotherapeu-
tic agents was efficacious both in acute promyelocytic leukemia
(Rowe and Tallman, 2009), for which it has become a standard of
care, and more recently in neuroblastoma (Matthay et al., 2009).

There are different potential factors underlying the low effi-
cacy observed in clinical trials of cytotoxic therapy and of
differentiation therapy targeting CSC populations. Regular cyto-
toxic therapies generally affect rapidly proliferating cells, whereas
evidence suggests that only a small fraction of CSCs actively
proliferate, indicating an inherent resistance of the CSC popula-
tion to this type of therapy (Cortes-Dericks et al., 2010). Another
factor could be toxicity, which poses restraints on dosage and
thus might limit treatment scope and effect. A third reason might
stem from the intricate dynamics governing cancer cell popula-
tions, particularly populations characterized by a hierarchical
structure. The typical response of a single cell to treatment cannot
be easily generalized in order to predict the response of an entire
cell population. Rather, the macroscopic behavior of cancerous
tissue emerges from the combination of individual cell-cell
interactions, driven by global and local feedback. The death or
differentiation of one cell as a result of therapy may trigger or
inhibit a nearby cell’s transition between a quiescent state and a
proliferative state, or from a stem state to a differentiated state,
thereby influencing its susceptibility to treatment. Thus, for
example, mass induction of cell death or CSC differentiation
might set off complex processes that prevent the CSC population
from being eliminated, or even stimulate its growth.

In light of the above, it is necessary to gain a deeper under-
standing of how a cancer cell population is affected by different
types of CSC-based therapy, both alone and in combination with
other types of interventions. As noted by Flake (2004), systems
biology tools may be very useful in the analysis of the complex
dynamics of CSCs. Such tools can help researchers to investigate
different properties of CSC dynamics reflected in cancer progres-
sion, and to learn how to influence these properties in order to
control or eradicate tumors.

As early as Tomlinson and Bodmer (1995) modeled cancer in the
context of stem cell hierarchy; they considered a normal stem cell-
driven cell population and investigated possible factors contributing
to malignant transformation. When the CSC hypothesis began to
take root, modeling efforts extended in several directions. Some
researchers pursued generic questions about how hierarchical
population structure affects tumor transformation and progression,
including questions regarding the regulation of CSC division and
differentiation (e.g., Ganguly and Puri, 2006; Bankhead et al., 2007;
Boman et al., 2007; Sottoriva et al., 2010; Zhu et al., 2011). Others
examined the effects of tumorigenic mutations in different compart-
ments of hierarchical populations (e.g., Michor et al., 2003; Dingli
et al, 2007; Ashkenazi et al, 2007), and some modeled CSC
migration and investigated its effects on tumor invasiveness and
heterogeneity (e.g., Enderling et al., 2009a, 2009b, 2010; Sottoriva
et al., 2010). Additional studies focused on specific cancer types,
including hematopoietic cancer (Dingli and Michor, 2006; Abbott
and Michor, 2006) and colorectal cancer (Johnston et al., 2007;
van Leeuwen et al., 2007; d’Onofrio and Tomlinson, 2007).

Some of these mathematical models have also been used to
investigate questions of therapy under the CSC hypothesis. Such
studies have consistently shown that treatment should specifi-
cally target the CSC subpopulation. In particular, they suggest that
therapies that affect cells indiscriminately in order to reduce CSC
load may be detrimental (Boman et al., 2007; Dingli and Michor,
2006; Enderling et al., 2009a, 2009b; Zhu et al., 2011; Sottoriva
et al., 2010).

Herein we propose a mathematical model to investigate how
tumor progression is affected by differentiation therapy and by

standard (cytotoxic or antiproliferative) therapy, both alone and
in combination. To our knowledge, this question has not been
directly examined thus far with the aid of mathematical models.
To increase the generality of our conclusions, we rely on a
minimum of assumptions, i.e., our model is not dependent on
specific tissue characteristics or drug mechanisms of action. To
accurately capture the emergent tissue dynamics, we use a
cellular automata (CA) model that is driven by local cell-cell
interactions, yet ultimately provides an indication of tissue
response at a population level (see, e.g., Moreira and Deutsch,
2002 for a review of CA application to tumor modeling).

In previous studies, we formulated CA models, based on
minimal assumptions, that captured stem cell dynamics in a
tissue. These models incorporated local control of stem cell fate
(Agur et al.,, 2002, 2010; Kirnasovsky et al., 2008a). We used this
modeling approach to demonstrate that “quorum sensing” of
stem cells - i.e., direct stimulation of differentiation of a stem cell
by its neighboring stem cells - is sufficient for maintaining tissue
homeostasis (Agur et al., 2010). Moreover, the range of a cell’s
quorum sensing capacity, i.e., the distance at which the cell is able
to receive feedback from its neighbors, was found to be the most
influential parameter governing the transition from tissue home-
ostasis to uncontrolled malignant growth. Indeed, local control by
interaction with the microenvironment is being established as a
major mechanism of normal stem cell regulation and a probable
point of derangement in CSCs (Kirouac et al., 2009).

Continuing our previous work (Agur et al, 2002, 2010;
Kirnasovsky et al., 2008a), here we use a CA model based on
biologically plausible assumptions regarding solid tumors char-
acterized by a hierarchical structure (e.g., breast and colon).
Simulation results show that anti-proliferation therapy and treat-
ment promoting differentiation are each ineffective when admi-
nistered alone. Rather, we find that only treatment that
simultaneously prevents CSC proliferation and promotes differ-
entiation can effectively eliminate CSCs and lead to tumor
eradication. We propose, therefore, that future research should
focus on therapy that targets CSC proliferation and differentiation
simultaneously, rather than on either of these options alone.

2. Methods
2.1. Model assumptions

The model describes two subpopulations of cancer cells in a
growing tumor: CSCs and differentiated cancer cells (DCs). Our
approach is based on principles similar to those we used in
previous studies (Agur et al., 2002; Kirnasovsky et al., 2008a;
Agur et al., 2010), namely, the assumption of local control of cell
fate (quorum sensing). In contrast to previous models, however,
this model describes cell behavior in stochastic terms. We assume
that each CSC is either “non-cycling” (quiescent, a state that can
be maintained for any period of time) or “cycling”, i.e., the cell
progresses through the cell cycle and after a fixed time period
divides into two CSCs. Non-cycling CSCs can enter the cell cycle at
any time. The “decision” of a non-cycling CSC to enter the cell
cycle is controlled by the total cell density in the CSC’s vicinity:
the more vacant (i.e., unoccupied by other cells) space available,
the greater the probability that the CSC will enter the cell cycle. In
addition, non-cycling CSCs can undergo differentiation and
become DCs. The decision of a non-cycling CSC to differentiate
is controlled by the local density of CSCs: the probability that a
CSC will differentiate increases with the number of its CSC
neighbors. This type of dependence reflects our major assump-
tion, that local cell-cell feedback regulates proliferation and
differentiation decisions. This assumption, operationalized as
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Fig. 1. An illustration of the CA structure, definition of neighborhood and CSC regulation. (A) The cells of the CA are circles tightly positioned on the plane. The six cells
adjacent to a central (black) cell are first-degree neighbors (marked in light grey). The 12 second-degree neighbors are marked in a darker grey. (B) Illustrative examples of
CSC decisions. A CSC marked as ST has only one stem neighbor (marked as S); therefore it is not likely to differentiate and has a relatively high probability to enter the cell
cycle. The CSC marked as S2 is mostly surrounded by DCs (marked as D); therefore it also has low probability to differentiate, but also low probability to enter the cycle
(having only one vacant adjacent site). The CSC marked as S3 is mostly surrounded by CSCs (marked by S) and thus has higher probability differentiate, but cannot enter

cell cycle, until the adjacent DC dies.

the quorum sensing mechanism, is consistent with biological
observations that cell differentiation is driven by feedback from
the microenvironment (e.g., Clarke et al., 2003). This feedback
might come from direct contact between CSCs, or it may result
from other factors in the microenvironment that regulate CSC
expansion according to local cell density (such as paracrine
signaling, niche availability, etc.). Furthermore, we assume that
DCs do not proliferate and have a constant lifespan, at the end of
which they die and disappear.

2.2. Formal description of the model

The model is implemented by generalized probabilistic CA. The
base set of the CA is the set

G={{XY) € Zyoo x Z190|x=y(mod 2)}.

In order to prevent confusion we will hereafter refer to the virtual
cells of the automata as “automata cells”, as opposed to “cells”,
which refers to the living cells being modeled. Each automata
cell <x,y> has exactly six neighbors: <(x-2,y>, <(x-1,y-1),
x=1,y+1>, <x+1,y—-1), <(x+1,y+1)> and <{x+2,y>, where
addition and subtraction are in the quotient ring Zig. The
structure of the neighborhood is isomorphic to that of equal
spheres that are tightly disposed on the plane,! and it constitutes
a close approximation of tightly distributed cells (see Fig. 1A).
Closing of each of two directions by means of the notion of a
quotient ring corresponds to the closing of a plane rectangle onto
a torus surface.

The model proceeds by discrete time steps. At a given time
step, each automata cell contains either a single cell or a vacant
space. The state of each automata cell at each time step consists of
the following variables, as applicable:

(a) the type of automata cell (a non-cycling CSC, a cycling CSC,
a DC, or an empty space);
(b) the age (for a DC);

1 The most famous example of this structure in nature is the honeycomb. An
isomorphism can be realized by the mapping <x,y)> — (XRv/3,yR>, where R is the
radius of the equal spheres.

(c) the stage of progression through the cell cycle (for a
cycling CSC).

The initial state of the model comprises the states of all automata
cells at time zero. To simulate the model, a random ordering on
the set G is chosen. At each discrete time step, the automata cells
undergo several sequential stages of processing according to the
following rules. At each stage, all automata cells are processed
one after the other, according to the predetermined order. In the
first stage, each cell is processed for the decision of DC death;
each DC that dies is replaced with an empty space. Next, each cell
is processed for the decision of CSC differentiation; each CSC that
differentiates is replaced with a DC. Then, each cell is processed
for the decision of non-cycling CSCs to enter the cell cycle. The
ability of a CSC to enter the cell cycle is contingent on the
availability of a neighboring empty space into which the CSC will
later be able to divide. Then, every cycling cell that has reached
the final step of the division stage of the cell cycle turns into two
non-cycling CSCs. When a CSC divides, one of the two daughter
cells remains in the site of the original CSC, and the other moves
into a neighboring empty site. In order to prevent the same site
from being occupied by two newborn cells, when a CSC enters the
cell cycle, one of its empty neighboring automata cells is ran-
domly chosen to be reserved for one of the daughter cells. All
other CSCs subsequently consider the reserved automata cell to
be non-empty, and thus they are unable to divide into it. In the
final stage of processing, the counters for the ages of DCs and for
the cell cycle progression of cycling CSCs are increased by one.

The CSC differentiation and proliferation decision processes
are formally implemented in the model as follows.

CSC differentiation decision: If A is a non-cycling CSC in our
model, we calculate the weighted number (“density”) of CSCs in
its neighborhood:

N,
den(A)=Ni+ == 2k’
where N; is the number of first-degree CSC neighbors of A, i.e.,
neighboring automata cells occupied by CSCs; N5 is the number of
second-degree CSC neighbors, i.e., the automata cells that are
neighbors of A’s neighbors (but are not A’s first-degree neighbors)
and are occupied by CSCs; k is the damping coefficient that
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reduces the effect of the second-degree neighbors. Then, the
probability p, of the cell A to differentiate at the current time
step is determined by a sigmoid-like function:

am(pmax _pmin)

Pd =DPmax— a'"+(den(A))’" :

Here p.,, is the minimal probability of differentiation (reached
when the number of neighboring CSCs is zero), pn.x is the
maximal probability of differentiation (reached when the number
of neighboring CSCs is infinite), hereafter termed ‘“maximal
differentiation rate”, a is the CSC density in the neighborhood
that gives the probability 0.5 (Pyin+Pmax)» and m is function
steepness. In this work, p.,;, was set to zero and m to 5.

CSC decision to enter the cell cycle: The probability of a non-
cycling CSC to enter the cell cycle at a given time step is
calculated as follows:

pe =1-(1-pg)" =npy+0(py),

where n is the number of vacant automata cells in the neighbor-
hood of a given cell, calculated similar to den(A), and pg is a
parameter, representing the basic probability to enter the cell
cycle (i.e., the probability to enter the cycle when only one empty
neighboring automata cell is available), hereafter referred to as
the “proliferation rate”. As noted above, upon the decision of a
cell to enter the cell cycle, one of its adjacent empty automata
cells is chosen randomly to be reserved for one of its future

DC decision
scheme:

non-cycling CSC
decision scheme:

cycling CSC
decision scheme:

Increase cell
cycle counter

Increase age
counter

Compute local
density

life span limit end of cycle Yes Should differentiate?
reached reached (with probability p)
Become
aDC No

Should proliferate?
(with probability p,)

Yes
Vacant neighbor?
Yes

Become
a cycling
CSC

Fig. 2. A flowchart of cell decisions in the model. We summarize the decision
taken by each type of cells (DC, cycling CSC, non-cycling CSC) during the automata
run. The scheme is repeated at each time step for each cell.

Table 1

daughter cells. If there are no empty non-reserved automata cells
in the neighborhood, the cell remains a non-cycling CSC. The
structure of the neighborhood in our model and illustrative
examples of CSC decision rules are shown in Fig. 1. A flowchart
summarizing the decision process for cells of different types is
shown in Fig. 2.

2.3. Computer simulations

All the algorithms were implemented in C++. We started all
simulations from a given number of cells, a given percent of
which were DCs whose ages were chosen randomly with uniform
distribution on an interval of possible ages, while the other cells
were non-cycling CSCs. At time zero all cells were randomly
positioned in a subsquare of a given size of the base square Z1go x
Z100- We set the discrete time step in the simulations to 30 min.
Every simulation was run for 20,000 steps; thus, the corresponding
time of the development of each cell colony was equal to 10,000 h.
This amount of time was observed to be long enough for the model
to reach a quasi-steady state (a state with an approximately
constant number of cells of each type over time in the whole CA)
for all initial conditions and parameter values studied (Table 1).

2.4. Parameter values

Direct in vivo measurements of kinetic parameters of CSC
proliferation and differentiation are currently unavailable. Therefore,
we used published indirect estimates where available (Table 1). The
reported proportions of apoptotic tumor cells in different human
solid tumors are 0.5—10%, as measured by the TUNEL technique,
which stains cells in the last phase of apoptosis (i.e., DNA fragmen-
tation), lasting up to a few hours (Lipponen, 1999; Sinicrope et al.,
1999). Taking the representative value of 1% and assuming the
duration of the apoptosis phase measured by TUNEL was 2 h, we
roughly estimated the average lifespan of DCs to be 50 h, with a
range of 30-180 h. In most human solid tumors, the mitotic index
varies in the range of 1—-20%, with a mitosis duration of 1-2 h
(Lipponen, 1999; Sinicrope et al., 1999). Consequently, the propor-
tion of cells entering the cell cycle can be estimated in the range
0.005-0.2 per hour. To effectively sample the biologically plausible
range, we assumed minimal value of the basic probability to enter
the cell cycle to be 0.0015 and each subsequent value twice the
previous, up to 0.048 (recall that the actual probability equals
the basic probability times the number of vacant automata cells in
the neighborhood). The values for the differentiation rate of CSCs are
especially difficult to estimate from the literature. For the maximum
differentiation rate, p;,qy, We used a wide range, 0.025—0.8 per hour.

Model parameters and initial conditions. Values of the parameters and initial conditions are specified. The parameter estimation is detailed in Section 2.4. For analysis of
model sensitivity to stochastic effects and initial conditions, the values from the third column were used. For the analysis of the model dynamics under different parameter
values, the parameters and initial conditions values from the fourth column were used.

List of parameters and initial conditions Baseline values

Values for analysis of model sensitivity

Values for analysis of parameter variation

Lifespan of DC (hours) 90 30, 60, 90, 120, 150, 180 30, 60, 90, 120, 150, 180

Damping coefficient for the second degree neighbors, k 2 2 1.25, 1.5, 1.75, 2, 2.25,2.5

Basic probability of entering cell cycle, po 0.006 0.006 0.0015, 0.003, 0.006, 0.012, 0.024, 0.048
Maximal differentiation rate, pyax 0.1 0.1 0.025, 0.05, 0.1,0.2, 0.4, 0.8

Number of CSC neighbors giving the half-maximal 3 2,25,3,35,4,45 2,25,33.5, 4,45

differentiated rate, a

Initial cell number 100 10, 100, 1000, 3000 100

Initial percentage of DC 30 0, 10, 20, 30, 40, 50 30

Size of subsquare of initial cell distribution 20 x 20 6 x 6, 20 x 20, 60 x 60, 100 x 100 20 x 20

Minimal and maximal age of initial DC subpopulation (0;1) (0;0.1), (0;0.5), (0.9;1), (0;1) (0;1)

(as a fraction of DC lifespan)




36 V. Vainstein et al. / Journal of Theoretical Biology 298 (2012) 32-41

These values correspond, respectively, to 2.5—80% of CSCs under-
going differentiation within 1 h if fully surrounded by other CSCs. For
the value of local CSC density needed to reach the half-maximal rate
of differentiation, a, we used the range 2-4.5, given that in the model
each cell can have up to six immediate neighbors. The duration of the
cell cycle (defined here as the time between the restriction point in
G1 until the end of M-phase) was set at 12 h. We assumed that the
cell cycle duration for CSCs was 12 h (Salmon and Sartorelli, 2001).

We defined a set of “baseline” kinetic parameter values as the
values in the middle of the estimated ranges, as well as a set of
baseline initial conditions. Initial conditions included the initial
number of cells, the initial percentage of DCs, the initial size of the
subsquare, and the minimum and maximum ages of the initial DC
subpopulation.

3. Results

We first attempted to characterize the model’s general behavior
under different conditions. To this end we carried out 100 simula-
tions for each of 13,824 combinations of different initial conditions
and parameter values (see the third column of Table 1). We
established that the simulated tissue exhibits characteristic
dynamics of a cell colony in a monolayer: onset of rapid growth,
followed by deceleration until saturation (an approximately con-
stant number of cells over time). Furthermore, we confirmed that
this overall pattern is robust to stochastic effects and to initial
conditions. These results are presented in detail in Sections 3.1 and
3.2. Next, to explore potential therapeutic approaches that target
CSCs, we used our model to investigate how changing parameter
values (to represent different modes of therapy) would affect tumor
progression. Specifically, we focused on manipulation of prolifera-
tion rates and differentiation rates. The results of these simulations
are presented in Section 3.3.

A

3.1. General macroscopic behavior of the model

The typical model simulation reflects population dynamics
characteristic of a cell colony in a monolayer (Fig. 3). Over time,
the cell population (and each subpopulation, i.e., DCs, proliferat-
ing CSCs and non-proliferating CSCs) follows a pattern consisting
of three phases. In the initial phase, the population growth is
characterized by relatively large fluctuations over time, as
expected owing to the small initial number of cells and the
probabilistic nature of the model. The intermediate phase of the
population growth is well approximated by a parabola (Fig. 4B).
We refer to the first (quadratic) coefficient of this parabola as the
“macroscopic growth rate” of the cell population. In the final
phase, due to the space limitation of the CA model, population
growth decelerates up to a state of saturation (referred to as a
“quasi-steady-state”), at which the number of cells remains more
or less constant with small fluctuations (Fig. 4A). This quasi-
steady state was consistently observed in almost all model
simulations. The only exceptions occurred sporadically at
extreme values of parameters (e.g., an unrealistically high differ-
entiation rate, combined with a very low proliferation rate); in
these cases the cell population died out during the early steps of
the simulation. We use macroscopic growth rate and the sizes of
the different cell populations at saturation to compare the
population dynamics resulting from different combinations of
parameter values.

3.2. Robustness of macroscopic characteristics of the model to
stochastic effects, initial conditions and CA size

We checked whether the sizes of the observed cell populations
and the spatial distributions of the cells in quasi-steady state
varied in repeated simulations with identical initial conditions,

Fig. 3. Examples of model state during the simulation. We show four representative examples of the CA state during the simulation run. Vacant automata cells are marked
in yellow, DCs are marked in grey, non-cycling CSCs are represented by black circles, while cycling CSCs are shown as grey circles with a black rim. (A) Initial composition
of the model: several cells are present, among them cycling and non-cycling CSCs. (B) Early stages of growth: the colony is small and expands outwards. (C) During later
phases, the colony grows more slowly, but still has room to expand. (D) At the final stage, the whole CA is filled and the expansion stops.
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Fig. 4. A representative example of simulation results, showing cell population growth under regular conditions. Initially, 100 cells were seeded in a 20 x 20 subsquare of
the automata. The initial conditions and parameters were set at baseline values (see Table 1). (A) The top curve shows the total number of cells. The intermediate curve
shows the total number of CSCs. The bottom curve shows the number of cycling CSCs. The number of cells increases progressively up to a quasi-steady state, where small
fluctuations around the threshold are observed. Three phases can be distinguished: initial variable growth, parabolic growth, and decelerated growth up to saturation.
(B) The intermediate phase of the cell population growth is well approximated by a parabola (shown by the thin line). The leading coefficient of this parabola is referred to
as the “macroscopic growth rate” and is considered as a macroscopic characteristic of the population growth.

Table 2

Model sensitivity to stochastic effects and initial conditions. Relative standard
deviation of average values of different stability indices were calculated during the
last 1000 time steps of simulations. Panel A: for each one of 13,824 different
combinations of initial conditions and parameter values (see Table 1 for specific
values) we run 100 simulations for 20,000 time steps; maximal deviations of
average values of different cell types are shown. Panel B: for the same simulations
as in Panel A, we calculated maximal deviation of the number of neighbors of
different cell types of a given cell (i.e., non-cycling CSC neighbors of a DC, DC
neighbors of a cycling CSC, etc.). Panel C, sensitivity to initial conditions: for each
one of 36 sets of parameter values we run simulations with 240 different initial
conditions; maximal deviation of average numbers for different cell types
are shown.

Panel A. Model sensitivity to stochastic effects: cell numbers

All cells Non-cycling CSCs Cycling CSCs DCs

<0.52% <0.71% <0.56% <0.58%

Panel B. Model sensitivity to stochastic effects: mean number of neighbors
Non-cycling stem Cycling stem Differentiated

neighbors neighbors neighbors
A non-cycling CSC <2.29% <4.08% <1.12%
A cycling CSC <3.5% <10.69% <1.41%
A DC <1.15% < 2.46% <1.34%
Panel C. Model sensitivity to initial conditions: cell numbers
All cells Non-cycling CSCs Cycling CSCs DCs
<0.5% <0.72% < 0.56% <0.55%

as well as with different initial conditions and parameter values.
As noted above, we performed 100 simulations for each of 13,824
combinations of different initial conditions and parameter values
(see the third column of Table 1). The model’s quasi-steady state
characteristics, namely, mean numbers of cells of each type and
mean numbers of neighbors of each type for a given cell,
computed over the last 1000 steps of simulation, were insensitive
to the initial conditions and to stochastic effects of the simulation
(Table 2). We also compared the quasi-steady-state densities of
different cell types for different sizes of CA, under the baseline
values of the parameters and the baseline initial conditions. We
simulated CA of size Z;,, x Z,, for each integer value n € {20; 125}.
The relative cell densities for different cell types and the average
ratio between cell number and total number of sites, computed
over the last 1000 steps of the simulation, did not depend on the

size of the CA (data not shown). The corresponding absolute
numbers of cells were proportional to n? (i.e., to the number of
automata cells).

These results show that the main macroscopic characteristics
of the model, such as average densities of cells of different types
at quasi-steady state, are insensitive to the initial conditions and
to the stochasticity of the model. They depend on the model
parameters only, and are scalable to the automata size.

3.3. Controlling tumor progression through different modes of
therapy

In order to examine possible ways to control tumor progression
by targeting well-defined subpopulations of cancer cells, we inves-
tigated relationships between the model parameter values and the
growth dynamics of the entire population of cells, represented by
the quasi-steady state densities of all cells; of all CSCs and of cycling
CSCs; and by the macroscopic growth rate. For each model para-
meter we sampled six different values within the parameter range,
while initial conditions were kept constant (fourth column in
Table 1). Initially, we simulated the model varying one of the five
parameters, and fixing the other four parameters at the baseline
values we defined (second column in Table 1). The results, shown in
Figs. 5 and 6, indicate that total cell density and macroscopic
growth rate can both be reduced by decreasing the DC lifespan
(Figs. 5A and 6A), by decreasing the basic probability of entering the
cell cycle (i.e., proliferation rate, Figs. 5B and 6B), or by increasing
the probability of differentiation (Figs. 5C,D and 6C,D). However,
varying each of these parameters had a different effect on the
composition of the cell population. While decreasing the prolifera-
tion rate resulted in lower densities of DCs and cycling CSCs
(Fig. 5B), decreasing DC lifespan resulted in low DC density but
higher cycling CSC density (Fig. 5A). Increasing the maximal
differentiation rate or differentiation sensitivity to cell density did
not affect densities of DCs and cycling CSCs at all. Rather, each
manipulation decreased non-cycling CSC density (Fig. 5C,D). It is
important to stress that in all cases, manipulation of a single
parameter (while maintaining all other parameters at their “base-
line” values) was insufficient to decrease densities of all cell types.

Next, we performed simulations with all possible combina-
tions of the parameter values we sampled (fourth column in
Table 1). We found that the effects of each parameter were
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essentially independent of the other parameters. This means, for
example, that regardless of the values of the other parameters,
reducing the CSC proliferation rate always resulted in smaller
populations of cycling CSC and DCs and in a lower macroscopic
growth rate, but it did not affect the size of the non-cycling CSC
population. Similar independence was observed for the effects of
the other three parameters. The observed effects of the various
parameters are summarized in Table 3.

Fig. 7 illustrates the independence of the effects of the various
parameters, and the possible implications of this independence for
cancer therapy. Fig. 7A shows that decreasing the proliferation rate
results in a substantial decrease of the number of cycling CSCs,
while this cell population is almost unaffected by changes to the
maximal differentiation rate. Conversely, Fig. 7B shows that the
size of the non-cycling CSC population is strongly dependent on
the maximal differentiation rate but not on the proliferation rate.
Taken together, these results indicate that in order to effectively
reduce the size of the entire CSC population and to approach cancer
eradication, it is insufficient to target proliferation or differentia-
tion alone. Rather, it is necessary to simultaneously promote
differentiation and inhibit proliferation (Fig. 7C,D).

4. Discussion

The CSC hypothesis (Sell, 2004) suggests that an efficient antic-
ancer treatment should eliminate as many CSCs as possible (both

cycling and non-cycling), while “non-stem” (i.e., differentiated)
tumor cells will eventually die out even without intervention. To
examine potential approaches towards achieving CSC eradication,
we developed a mathematical model of tumor progression, imple-
mented as a probabilistic CA. The model emphasizes the distinction
between CSCs and DCs and assumes that CSC fate is governed by
quorum sensing, i.e., the ability of a stem cell to “decide” whether
to differentiate, on the basis of the number of stem cells in its
neighborhood. Our model is simple, relying on only two assump-
tions concerning local cell behavior: (i) higher total cell density in
the microenvironment inhibits cell proliferation, and (ii) higher CSC
density in the microenvironment promotes differentiation. In other
words, the primary mechanism driving CSC dynamics is QS. A QS
mechanism is known to exist in bacteria (Tu et al., 2010), and the
existence of QS in CSCs has been both theoretically and experimen-
tally supported (Kirnasovsky et al., 2008b; Agur et al., 2010).

We examined how different forms of therapy, implemented by
varying the values of model parameters, affect tumor growth rate
and cell population sizes. Three biologically important observa-
tions emerged. First, accelerated death of DCs (represented in the
model by decreased lifespan) decreased the number of DCs, but
increased the number of cycling CSCs (see Fig. 5A). This increase
occurred because the accelerated removal of DCs from the
population weakened the negative feedback that these cells posed
on CSC proliferation. The effect is consistent with the results of
Agur et al. (2010), who assumed the existence of a similar local
feedback mechanism, and with those of Enderling et al. (2009a)
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Table 3
Summary of the effect of varying model parameters on the macroscopic growth
rate and all population sizes. Up arrow means increasing effect of the parameter,
down arrow means decreasing effect, “NE” stands for “No Effect”. It can be seen
that no single parameter change can reduce both cycling and non-cycling CSC
density.

Type of Cycling CSC  Non-cycling CSC DC Macroscopic
intervention density density density growth rate
Reducing DC 1 NE ! !

lifetime

Reducing ! NE l 1
proliferation rate

Increasing NE l NE l

differentiation

and of Dingli and Michor (2006), who relied on different assump-
tions. Second, decreasing the proliferation rate of CSCs led to a
lower number of cycling CSCs, but the number of non-cycling
CSCs remained unchanged (see Fig. 5B). This result is not self-
evident, since non-cycling CSCs are produced by proliferation, and
inhibition of the latter process might be expected to reduce their
number. Third, promoting differentiation (either by increasing the
maximal differentiation rate or by increasing the sensitivity of the
CSCs to their density) decreased the number of non-cycling CSCs
but did not affect the numbers of cycling CSCs and DCs (Fig. 5C,
D). Taken together, these results suggest that for a wide range of
model parameters, neither inhibition of proliferation alone nor

induction of differentiation alone suffices to reduce the number of
both cycling and non-cycling CSCs. However, the combination of
these two strategies can effectively minimize both populations of
CSCs and the total number of cancer cells (Fig. 7).

Our model’s assumptions differ from those of other models of
CSC dynamics, which either do not consider differentiation as a
process triggered by environmental feedback (e.g., Enderling
et al.,, 2009a), or do not take into account the influence of
neighboring cells on the differentiation decision (e.g., Bankhead
et al,, 2007). Still, our observation that effective therapy must
specifically target CSCs (i.e., by altering proliferation and differ-
entiation processes) and that killing non-CSCs is ineffective and
even detrimental is consistent with the main conclusions of
numerous other CSC modeling endeavors that relied on different
approaches and assumptions (Dingli and Michor, 2006; Boman
et al., 2007; Enderling et al., 2009a; Sottoriva et al., 2010; Zhu
et al., 2011). For example, Dingli and Michor (2006) found that the
only effective strategies are complete cessation of CSC reproduc-
tion or targeted CSC elimination. Boman et al. (2007) suggested
that treatment should reduce symmetric division of CSCs, a
process equivalent to promoting differentiation. Our analysis
suggests that, in view of the fact that in the clinic it is nearly
impossible to achieve absolute efficacy with either approach,
combining anti-proliferation and differentiation therapy is neces-
sary for effective targeting of CSCs. The simplicity of our model
contributes to the generality of our results; they are not restricted
by the types of specific assumptions that characterize other
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models of CSC dynamics (e.g., assumptions regarding general
tumor growth dynamics, population composition, or spatial
structure).

Our results provide new insight into some of the disappointing
outcomes of clinical trials targeting CSCs. Owing to the low
efficacy of cytotoxic therapy on this cell population, research
efforts have been invested in the development of differentiation
therapy. Yet clinical trials with differentiating agents as mono-
therapy have failed so far to show clinical benefit despite
promising results in vitro. We demonstrate that under a wide
range of biologically plausible conditions, differentiation therapy
is expected to be ineffective when used alone to eradicate a CSC
population, and is only effective in combination with antiproli-
ferative agents. Although it may seem unsurprising that the two
treatment approaches are synergistic in eradication of CSCs, our
results are notable in showing that combination therapy is a
necessary condition for successful cancer treatment.

This finding has profound implications regarding clinical trials
of differentiation agents. Thus far, the majority of such trials have
been performed without addition of chemotherapy. Moreover, in
the case of neuroblastoma, it was even concluded that there
would be no utility in continuing to invest in retinoic acid (a
differentiating agent) as a potential drug for treatment of the
disease, on the basis of two trials that did not incorporate
chemotherapy (Adamson et al., 2007). A separate trial, in contrast,

later showed a clear benefit when retinoic acid was added to the
chemotherapy regimen (Matthay et al., 2009). These observations
are further corroborated by clinical experience with acute pro-
myelocytic leukemia, in which administration of a differentiation
agent (all-trans retinoic acid) together with antiproliferative
agents such as daunorubicin was shown to be efficacious (Rowe
and Tallman, 2009). In addition, arsenic trioxide is efficient as a
monotherapy in this patient population, possibly due to its dual
effect on leukemic cells (both differentiation induction and
proliferation inhibition) (Mathews et al., 2006).

In addition, our findings lend perspective to a well-known
phenomenon in cancer treatment, in which drugs that seem
effective in early studies in terms of “tumor response” later fail
due to rapid relapses. We observed that a decrease in macroscopic
tumor growth does not necessarily correlate with a decrease in
CSC number: for example, a shorter DC lifespan decelerates tumor
growth but concomitantly increases CSC densities. This CSC-
enrichment effect can explain why tumor regrowth after reduc-
tion by chemotherapy can be faster than initial “natural” tumor
progression.

Our study provides a compelling theoretical basis for clinical
observations of inefficacy of differentiation therapy as a single
anticancer treatment. We propose that the effect of differentiating
agents should only be assessed in combination with antiproliferative
drugs. Otherwise the benefit of these agents can easily be missed.
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