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Abstract Inflammation underlies many diseases and is an

undesired effect of several therapy modalities. Biomathe-

matical modeling can help unravel the complex inflam-

matory processes and the mechanisms triggering their

emergence. We developed a model for induction of

C-reactive protein (CRP), a clinically reliable marker of

inflammation, by interleukin (IL)-11, an approved cytokine

for treatment of chemotherapy-induced thrombocytopenia.

Due to paucity of information on the mechanisms under-

lying inflammation-induced CRP dynamics, our model was

developed by systematically evaluating several models for

their ability to retrieve variable CRP profiles observed in

IL-11-treated breast cancer patients. The preliminary semi-

mechanistic models were designed by non-linear mixed-

effects modeling, and were evaluated by various perfor-

mance criteria, which test goodness-of-fit, parsimony and

uniqueness. The best-performing model, a robust popula-

tion model with minimal inter-individual variability,

uncovers new aspects of inflammation dynamics. It shows

that CRP clearance is a nonlinear self-controlled process,

indicating an adaptive anti-inflammatory reaction in

humans. The model also reveals a dual IL-11 effect on

CRP elevation, whereby the drug has not only a potent

immediate influence on CRP incline, but also a long-term

influence inducing elevated CRP levels for several months.

Consistent with this, model simulations suggest that peri-

odic IL-11 therapy may result in prolonged low-grade

(chronic) inflammation post treatment. Future application

of the model can therefore help design improved IL-11

regimens with minimized long-term CRP toxicity. Our

study illuminates the dynamics of inflammation and its

control, and provides a prototype for progressive modeling

of complex biological processes in the medical realm and

beyond.

Keywords CRP � Non-linear mixed-effects model �
Acute inflammation � Chronic inflammation � Akaike

information criterion � Model parsimony

Introduction

Inflammation is a hallmark of several pathologies, among

which are infectious diseases, autoimmune disorders, ath-

erosclerosis and cancer [1–3]. Inflammation is also a side

effect of several drugs, particularly immune-based thera-

peutics and agents targeting the immune system [4–6].

Inflammatory processes are extremely intricate, being reg-

ulated through multiple molecular and cellular pathways in a

dynamic nonlinear network of feedback loops [7]. Due to this

complexity, inflammation is difficult to disentangle by tra-

ditional experimental approaches. Mathematical models are

invaluable in the study of such systems, as they allow better

mechanistic understanding and precise quantitative predic-

tion of the involved dynamics [8]. Models put forward over

the years have described acute and chronic inflammation in

different settings (e.g. [7, 9–13]). Still, mathematical sys-

tems for inflammation with translational relevance for clin-

ical practice are scarce [7].

A particular case in which inflammation presents in the

clinic is that of interleukin (IL)-11 therapy. This pleiotropic

immunomodulatory cytokine has a central role in stimulating
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megakaryocytopoiesis and effectively raising platelet levels,

and is the only thrombopoiesis-inducing factor approved by

the Food and Drug Administration (FDA) for chemotherapy-

induced thrombocytopenia in solid cancers [14–16]. How-

ever, IL-11 holds a multifaceted side effect profile (including

fluid retention-associated toxicities) [17–19], preventing the

drug from being integrated into standard of care [20]. One

critical adverse event of IL-11 treatment, documented in

various trials in which the drug has been tested, is the rise in the

acute-phase factor C-reactive protein (CRP) [17, 21, 22], a

sensitive indicator of immediate and general inflammatory

processes [23, 24]. CRP is a product of hepatocytes that is

routinely measured in the serum of patients [23, 24], and

thought to have important prognostic value for developing

several pathologies, i.e. diabetes [25], cardiovascular diseases

[26–28], and cancer [29–36]. Despite the clinical significance

of CRP as one of the reliable detectors of inflammation, the

mechanisms underlying its induction under stimuli and return

to baseline are still obscure.

In this study, we modelled the effect of IL-11 on inflam-

mation, as reflected in the levels of CRP (to be denoted CRP-

inflammation). Due to paucity of mechanistic knowledge

about CRP-inflammation dynamics and their regulation, we

tackled this problem by a new top-down biomathematical

approach we term ‘‘multiple modeling’’. This methodology

develops and exhaustively analyzes many plausible semi-

mechanistic models for a physiological or pathophysiologi-

cal process and relating pharmacokinetic (PK)/pharmaco-

dynamic (PD) effects, surfacing a model which best accounts

for the biological phenomenon. The produced IL-11 CRP-

inflammation model, fit to retrieve CRP profiles observed in

IL-11-treated breast cancer patients, suggests that (1) CRP

clearance is a self-controlled process, and (2) IL-11 has not

only an immediate influence on CRP incline, but also a

prominent long-term ‘‘memory’’ effect, reflected by elevated

CRP levels that are sustained for several months. Model

simulations show that a multi-cycle regimen of IL-11 ther-

apy can further enhance this chronic low grade inflammation

to potentially hazardous levels. These findings emphasize

the importance of comprehensively analyzing inflammatory

processes, and suggest that treatment regimens minimizing

inflammation should be better planned, perhaps on a mod-

eling basis.

Methods

Clinical data

Datasets for evaluating the parameters of the model were

derived from published clinical studies on IL-11. Data for

evaluating PK parameters of IL-11 administration were

obtained from a study in 12 healthy male volunteers,

measuring drug concentrations in blood following single

subcutaneous (s.c.) delivery [37]. For evaluating PD

parameters of CRP inflammation induced by IL-11, data

were derived from a study in 12 breast cancer patients

receiving daily s.c. injections of IL-11 for a period of

2 weeks prior to receiving chemotherapy [17]. The latter

data consisted of averaged CRP dynamics measured indi-

vidually in four dosage groups (10, 25, 50, and 75 lg/kg).

Modeling approach and model selection strategy

A multiple-modeling approach was employed, due to lack of

biological information about the mechanism and its influ-

ence by IL-11. Several different semi-mechanistic models

were designed, evaluated and compared for their ability to

retrieve the IL-11-affected CRP dynamics in the clinical

dataset from breast cancer patients. The different inflam-

mation models were implemented on a non-linear mixed-

effect modeling (NLMEM) platform, Monolix (Lixoft).

Preliminary models and their parameterizations are elabo-

rated below.

In all CRP-inflammation models, the PK of IL-11 was

configured as a 2-compartment ODE system (as pre-

designed and selected from an array of possible formula-

tions; see Supplementary Material section A for the full PK

modeling process). This PK model was implemented here

under the assumption that there are no significant differences

in IL-11 PK between individuals with different gender or

disease state, as none have been reported hitherto.

To identify the best CRP-inflammation model, the different

preliminary models were compared in a methodical manner.

This was done primarily using negative log-likelihood (nLL)

values of the models, indicative of the goodness-of-fit to data,

and by the Akaike information criterion (AIC) values of the

models, indicating the trade-off between the fitness and par-

simony. AIC is employed for models in which parameters are

smoothly transformed from multivariate normal distribution

[38–40]. Low nLL and AIC models were thus considered

superior. Differences in AIC between two compared models

were assumed to be significant if the p values of the AIC

(estimated assuming normal AIC distribution with standard

errors) were\0.025. Other criteria exercised for selection of

the superior models were low relative standard errors (RSE) of

parameter estimates and low condition numbers (CN), indic-

ative of model uniqueness and minimal over-fitting (see

‘‘Parameter estimation’’ section).

Parameter estimation

Procedure

In each preliminary model, parameters were evaluated

through the stochastic approximation expectation
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maximization (SAEM) algorithm combined with the

Monte-Carlo Markov Chain (MCMC) procedure [41–46].

Inter-individual variability (IIV) assumptions for parame-

ters differed between model variants. In the case of an IIV

assumption, those parameters were assumed log-normally

distributed, and for each such parameter x, an additional

parameter xx described the standard deviation of the ran-

dom effect. Since the data for modeling reflected average

values of CRP in four dosage groups, with 3 patients in

each group [17], all IIV parameters were corrected

accordingly: As inferred from the elementary probability

theory, the average of K equally-distributed independent

normal random variables is itself a random variable, with

the same average and a standard deviation equal to

xK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

K

i¼1

x2
x

K

v

u

u

t ð1Þ

Thus, for K patients in the averaged groups, the IIV of

averaged data is K-times less than that of non-averaged

data. The resulting IIV and residual error parameters for

the group of averaged subjects were transformed in the

reverse direction according to Eq. (1), in order to obtain the

respective parameters relevant to the original (non-aver-

aged) population.

RSE of parameter estimates were routinely scrutinized for

evaluating uniqueness of solutions of the parameter evalu-

ation process, CN values were examined for degree of cor-

relation of the estimated parameters and for minimizing

redundancy and over-fitting of parameters [47, 48]. In some

model variants, certain parameters were separately esti-

mated (as they were difficult to identify via the above pro-

cedure); estimation steps for these parameters are listed in

Supplementary Material section B.

Parameter correlation and parsimony

To minimize the correlations between parameters in a

given model, parameters were redefined as follows: when

observing high CN values (reflecting two correlated

parameters, X and Y), Y was substituted by Z�X; In several

cases this led estimates of parameters X and Z to be less

correlated than the estimates of X and Y. Similarly, if X

and Y were negatively correlated, Y was defined as X/Z. In

each case, these transformations were evaluated empiri-

cally and re-applied in the model. To enhance parsimony of

a given model, two parameters X and Y were set as X = Y.

Error model

All evaluated models assumed a constant error model for

the residual error, to (1) precisely estimate the reported

high CRP values during treatment, which could signifi-

cantly influence the patient’s toxicity profile, and (2) pre-

vent overestimation of fluctuations in baseline CRP level

likely unrelated to IL-11 treatment [49]. The constant

random error model was assumed near 1/H3 mg/dl for the

averaged population.

IL-11-induced CRP-inflammation model

Model formulation

We first focused on describing regulation of CRP levels,

assuming that they are directly proportional to the state of

inflammation [23, 30]. We further assumed that under

stimulation (i.e. induced by a drug), the normally low CRP

levels can rise by 10–1000-fold [30]. With a short half-life

for this protein [23, 30], this allows for the quasi-steady-

state assumption that normal CRP synthesis and clearance

processes are much faster than inflammation dynamics.

Under this assumption, CRP clearance may be constant, or

alternatively up-regulated by a positive feedback mecha-

nism, e.g. self-induced toward clearance.

Although the process of cancer progression itself may

induce alterations in CRP dynamics (i.e. raise CRP base-

line, etc. [30]), we made the assumption that the latter

effect is negligible in our system, considering that it occurs

on a significantly slower time frame (months-years) as

compared to IL-11-inflicted CRP changes. Hence, IL-11 is

the only source for CRP stimulation in our model. The PD

effect of IL-11 is reflected in the clinical CRP profiles

throughout and post therapy [17], and can be described by

the following features: (i) IL-11 induces an immediate rise

in CRP [17, 21] in a linear dose-dependent manner; (ii)

CRP levels begin to decline during the IL-11 treatment

period, already from day 5 [17], implying self-induced

clearance of CRP, occurring on a slower time scale and

resulting in a delay, such as might be seen with down-

stream gene effects; (iii) CRP levels post IL-11 treatment

(days 19–26) do not drop back to the normal baseline, but

rather remain at a slightly higher residual level [17], sug-

gestive of a possible long-term ‘‘memory’’ effect. This

effect appears to be a direct result of IL-11 stimulation,

given that the post-treatment residual CRP levels were

higher with larger IL-11 doses. The actual time of CRP

return to baseline is unclear (not reported in [17], likely due

to the limited time frame of the clinical study).

Theoretically, these assumptions can be encompassed in

several alternative models. In order to check their plausi-

bility, a number of model types describing the effect of IL-

11 on CRP were examined. In the simplest case, where

CRP clearance is assumed constant (type A model), the

following 2-compartment system of equations is given:
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dM

dt
¼ p0 � I � d �M

dC

dt
¼ p1 � Ic1 þ p2 �Mc2 � k � C � C0ð Þ;

ð2Þ

with the initial conditions C(0) = C0 and M(0) = 0.

Here, M is an intermediate memory variable, which is

formed at rate p0, directly depending on IL-11 concentra-

tion, I, and is eliminated at rate d. C denotes plasma CRP

level, on which serum IL-11 levels (I) induce a direct effect

at rate p1, or a memory effect with coefficient p2; the neg-

ative feedback process, in the third term of the equation for

CRP, exponentially restores CRP levels back to the normal

baseline level (C0), with coefficient k. To allow for direct or

memory effects of IL-11 to be either linear or nonlinear,

they are described by a power dependency, via coefficients

c1 and c2 respectively. A linear effect is given by c = 1, a

self-induced effect by c[ 1, and a saturated effect by c\ 1.

The IL-11 concentrations in plasma are derived from a pre-

selected PK model for the drug, constructed separately (see

Supplementary Material section A).

In a more complex model (type B model), CRP clear-

ance is regulated by positive linear feedback. This gives the

following redefinition of the system:

dM

dt
¼ p0 � I � d �M

dC

dt
¼ p1 � Ic1 þ p2 �Mc2 � R � C � C0ð Þ

dR

dt
¼ a1 � C � C0ð Þ � a2 � R� R0ð Þ;

ð3Þ

with the initial conditions C(0) = C0, M(0) = 0 and

R(0) = 0.

The rate at which CRP returns back to its basic level is a

variable, R, which is itself positively (linearly) regulated by

the CRP concentration. Parameter R0 is the natural rate of

CRP clearance; parameter a1 is the rate of the induction of

CRP self-induced clearance process, and a2 describes the

relaxation rate of this process.

Alternatively, the positive feedback regulation on CRP

clearance may be described as non-linear, yielding a type C

model. In this model type, variable R rises in a saturated

manner, as is given by:

dR

dt
¼ a1 �

C � C0

hþ C � C0

� a2 � R� R0ð Þ; ð4Þ

with the initial condition R(0) = 0.

Parameter h denotes the deviation of CRP from its basic

level, which corresponds to the half of maximal increase

rate of R. To avoid parameter correlations (as described in

‘‘Methods’’ section), h was redefined as

h ¼ h1 � a1; ð5Þ

where h1 and a1 are estimated.

In all three model types, the equation for M, the inter-

mediate memory variable, is the same (as specified in

Eq. 2). Since M is a hypothetical variable that cannot be

measured, parameter p0 is redundant and cannot be esti-

mated at present. Thus, for simplicity, we may redefine

M so that it is normalized:

M ¼ M

p0

This gives a simplified system without parameter p0:

dM

dt
¼ I2 � d �M

dC

dt
¼ p1 � Ic1

2 þ p2 �M
c2 � R � C � C0ð Þ;

ð6Þ

where

p2 ¼ p2 � pc
0:

Since M is a hidden variable, p0 is set at the value of 1

for all cases, with no loss of generality.

For each of these three CRP model types, several model

variants were simulated, where the variants differed in

(i) IIV assumptions on system parameters (h, a1, a2, k) or

IL-11-effects parameters (p1, p2, d, c1, c2); (ii) absence or

presence of the IL-11 memory effect (i.e. setting p2 at zero

or at a positive value); (iii) linearity, self-induction, or

saturation of the IL-11 effects (controlled by values of c1

and c2); (iv) parsimony-motivated assumptions, i.e. setting

c1 = c2, a1 = a2, etc. (as defined in ‘‘Methods’’ section).

The performance of all these models was evaluated by the

same criteria (nLL, AIC, RSE and CN). Table 1 displays

the collection of models analyzed and their characteristics

(see also full description in the Supplementary Material,

section C, Table S4). The comparison between the many

models, as described in the next section, allowed us to

pinpoint the best-performing inflammation model, thus

suggesting new mechanistic insights into the processes of

systemic CRP regulation and on the influence of IL-11 on

CRP-inflammation.

Model selection

CRP clearance by self-induction

Comparison of the three preliminary model types A, B

and C showed that an assumption of self-induced posi-

tive feedback within CRP clearance improved the mod-

el’s fit to data: AIC values in type B models (models

7–8; Table 1) and type C models (models 9–35; S4)

applying the assumption of self-induced clearance were

collectively lower than type A models (models 1–6; S4)

which assumed constant clearance (Fig. 1a). Overall CN

scores were also lower in type B and C models (Fig. 1a).

This positive feedback for CRP clearance is likely
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non-linear (saturated), as type C models were superior to

type B models (that assumed linear self-clearance): Type

C models compared to their B model equivalents (i.e.

models with similar IIV assumptions and parameter

parsimony, etc.) showed lower AIC and CN values

(Fig. 1b). This finding implies that following a surge in

CRP, it is cleared in a dynamic non-linear manner

involving self-induction of natural elimination

mechanisms.

Parsimony in model parameters

Parsimonious parameterization within the type C model

group (see ‘‘Methods’’ section) improved the performance

Table 1 Analysis of preliminary IL-11-induced CRP-inflammation models

M Type IIV parameters Parameter parsimony assumption nLL AIC CN

1 A – c2 = c1 125.58 139.58 490

2 A – c2 = c1 125.77 141.77 470

3 A – c2 = c1 = 1 126.80 138.8 660

4 A – c2 = c1 = 1 127.48 141.48 1000

5 A C0 c2 = c1 124.56 140.56 530

6 A – c2 = c1 125.62 139.62 NaN

7 B – c2 = c1 = 1, a1 = a2 87.44 101.44 350

8 B – c2 = c1, a1 = a2 94.21 110.21 1400

9 C – c2 = c1, a1 = a2 78.81 100.81 1500

10 C – c2 = c1, a1 = a2 78.90 100.90 NaN

11 C C0 c2 = c1, a1 = a2 79.13 103.13 860

12 C c1,c2, a1, a2, k, h1, p1, p2 c2 = c1, a1 = a2 87.23 129.23 1200

13 C c1 c2 = c1, a1 = a2 79.04 103.04 NaN

14 C – c2 = c1, a1 = a2 82.09 102.09 260

15 C – c2 = c1 = 1, a1 = a2 82.46 100.46 36

16 C – 1 = c2 = c1, a1 = a2. 81.97 99.97 130

17 C – c2 = c1, a1 = a2 79.86 99.86 NaN

18 C – c2 = c1 = 1, a1 = a2 81.76 99.76 120

19 C – c2 = c1, a1 = a2 79.87 101.87 940

20 C – c2 = c1, a1 = a2 79.98 99.98 730

21 C – c2 = c1, a1 = a2 83.83 99.83 52

22a C C0 a1 = a2 103.50 121.5 300

23a C C0 c1 = 1, a1 = a2 103.42 119.42 33

24a C – a1 = a2 102.98 118.98 NaN

25 C C0 c2 = c1 = 1, a1 = a2 83.69 101.69 55

26 C – c2 = c1 = 1, a1 = a2 83.03 99.03 NaN

27 C – c2 = c1 = 1, a1 = a2 83.12 99.12 23

28 C – c2 = c1 = 1, a1 = a2 83.20 99.2 23

29 C – c2 = c1 = 1, a1 = a2 83.36 99.36 23

30 C – c2 = c1 = 1, a1 = a2 83.55 99.55 25

31 C – c2 = c1 = 1, a1 = a2 83.15 99.15 23

32 C – c2 = c1 = 1, a1 = a2 85.16 101.16 27

33 C – c2 = c1, a1 = a2 82.33 100.33 160

34 C a1,k, h1,p1,p2 c2 = c1 = 1, a1 = a2 84.73 110.73 20

35 C p2 c2 = c1 = 1, a1 = a2 83.98 101.98 19

Summary of the assumptions underlying 35 preliminary models for CRP-inflammation and their evaluation for retrieving CRP profiles in breast

cancer patients; see further explanation in ‘‘Methods’’; full Table appears in section C of Supplementary Material (Table S4)

M preliminary model, IIV inter-individual variability; CN condition number, nLL negative log-likelihood, AIC Akaike information criterion, NaN

unidentified
a Models that assume one PD effect by setting p2 = 0 (i.e. models accounting for solely the direct IL-11 effect, without the long-term memory

effect)
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substantially for certain models. For example, setting the

induction and relaxation rates of the self-induced CRP

clearance process at the same value, i.e. a1 = a2, made CN

values identifiable (model 14 vs. model 10; Fig. 1c). This

suggests that CRP regulation is induced and relaxed at the

same potency. Similarly, setting the same power for both

the direct and long-term IL-11 effects (i.e. c1 = c2) slightly

improved the model’s AIC (model 17 vs. model 10;

Fig. 1c), albeit its CN was still unidentifiable. Applying

both parsimony assumptions (c1 = c2 and a1 = a2) toge-

ther gave the best result, as observed in model 33 (with a

lower AIC and an identifiable CN; Fig. 1c). In view of this,

we conclude that both direct and long-term IL-11 influ-

ences on CRP elevation are of comparable potency.

Linearity in memory effects of IL-11

For elucidating the nature of the direct and long-term

memory effects of IL-11, we examined models differing in

values for the power parameters of these processes

(c1 = c2). Introducing linearity to at least one of these

coefficients in models assuming a1 = a2 decreased the AIC

and CN, as shown in models 15 and 16 (c1 = 1 or c2 = 1)

versus model 14 (Fig. 2a). Interestingly, setting both

effects as linear (c1 = c2 = 1) further improved the model,

as seen in model 27. A similar observation was noted for

models assuming a1 unequal to a2: model 18 had an

identifiable CN as compared to model 17 (Fig. 2a). This

confirmed that IL-11 affects the CRP rise in a linear

manner.

Long-term IL-11-induced CRP (memory effect)

We next examined the significance of including the long-

range memory effect of IL-11 on CRP elevation in the

model. Models consisting of only the direct IL-11 effect

(i.e. models 23–24 in which parameter p2 = 0) had poorer

performance scores, as shown by higher AIC and nLL

values than those of parallel models with both effects

(positive p2; models 14 and 27; Fig. 2b). This confirmed

that the memory effect causing prolonged inflammation is

Fig. 1 Performance scores for preliminary models with different

assumptions about IL-11-induced CRP-inflammation. a Final scores

of model evaluation criteria (AIC and CN values) for the collection of

analyzed models belonging to three IL-11-induced inflammation

model types A–C (differing in the CRP clearance being constant, self-

induced linear, or self-induced saturated, respectively); b AIC and CN

values for models with comparable parsimony assumptions, but

belonging to different model types A–C; c AIC and CN values for

type C models with different parsimony assumptions. All values are a

result of fitting the model to CRP profiles of IL-11-treated breast

cancer patients (derived from a clinical study; [17]). Columns marked

with N indicate unidentified CN values
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an essential aspect of the influence of IL-11 on CRP

regulation.

To study the duration of the long-term effect of IL-11

more carefully, in selected models we modified the deg-

radation rate of the memory effect (parameter d). In line

with the biologically relevant range of d (i.e.

0.002–0.1 day-1; see Supplementary Material section B),

variants of the best type C model (with parsimony and

linear IL-11 effects as above) with different d values in this

range were evaluated. Models with d B 0.02 were most

acceptable, as evident by their low AICs and CNs, whereas

models with higher d values led to poor performance cri-

teria (Fig. 2c). We concluded that the IL-11-induced

memory effect on CRP carries on for at least 1 month

following dosing.

Inter-individual variability

We also tested whether assumptions of IIV would improve

model performance. Compared to the best-fit model

hitherto (model 27), model 34 that sets IIV for parameters

a1, k, h1, p1, and p2 was scored with a worse AIC (Fig. 2d),

although the CN of this variant was slightly lower. Even

assuming one parameter with IIV (i.e. model 35) still

resulted in a higher AIC than model 27, and was rejected

(Fig. 2d). This indicates that IIV is an insignificant factor

in the IL-11/CRP system, where all model parameters can

essentially be population-based and do not need to be

individualized.

The selected model

The above comparative analysis suggests that IL-11-

induced CRP-inflammation has the following properties:

(1) CRP clearance is a saturated, self-controlled process;

(2) the impact of IL-11 on CRP dynamics consists of a

short-term direct effect, but also a long-term effect lasting

for at least 1 month post therapy; (3) both IL-11-induced

effects on CRP can be described by a linear relation; and

(4) in IL-11-mediated CRP-inflammation, variability

Fig. 2 Performance score for type C models varying in assumptions

about IL-11-induced inflammation. Final model evaluation criteria

(AIC and CN values) for (a) type C models differing in linearity/non-

linearity of direct and/or long-term IL-11 effects; b type C models

differing in inclusion of the long-term IL-11 effect; c type C models

differing in the value for parameter d, the decay rate of the long-term

IL-11 effect; d type C models differing in number of parameters with

IIV assumptions. All values are a result of fitting the model to CRP

profiles of IL-11-treated breast cancer patients (derived from a

clinical study varying in; [17]). Columns marked with N indicate

unidentified CN values
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between patients is not an essential factor. These properties

are described by model 27, which is the best performing

model (schemed in Fig. 3). The fit of model 27 to the CRP

profiles under each of the four tested IL-11 doses is shown

in Fig. 4a. The fit was unbiased and the linear regression

curves approached the identity line (Fig. 4b). Models 28

and 31 (distinguished from variant 27 only in the duration

of the long-term effect of IL-11) reached comparable per-

formance (see above), and were therefore also acceptable.

Parameter values and standard errors for these models

appear in Table 2. Of note, the calculated residual constant

error for these models was 1.62 mg/dl, a value that is in

line with the CRP detection error in the clinic.

Model simulation

Since the selected IL-11 inflammation model points to a

potentially long-lived CRP incline, we used the model to

examine this process. Particularly, we tested the effect of

several consecutive cycles of IL-11 therapy on CRP levels.

To examine this, the selected model 27, and the compa-

rable models, 28 and 31, were simulated under five 28-days

treatment cycles, where daily IL-11 injections (50 or

100 ug/kg) for 2 weeks were followed by a 2-week resting

period in each cycle. Simulations were carried out in a

deterministic setting, i.e. simulating an average subject

using the evaluated population parameters (median values).

All three models produced similar dynamics (Fig. 5): High

CRP concentrations, predicted during the first cycle, were

followed by lower peaks in the subsequent four cycles,

likely due to the positive self-induced CRP clearance

process. In parallel, a gradual increase in the residual CRP

level was noted, and this baseline differed between the

models (in line with their diverse values for parameter d).

Our model therefore predicts that multi-cycle IL-11 ther-

apy would likely not infer a stronger CRP peak than seen

after one cycle, yet may contribute to a continuous chronic

state of inflammation.

Discussion

The clinical importance of CRP as a valid risk factor for

several diseases has been well established [25–36]. Minor

perturbations in this tightly regulated factor are a potential

signal of underlying inflammatory processes [23, 24].

Indeed, even low-grade inflammation (defined by CRP

levels below 10 mg/L) is thought to be detrimental,

increasing the likelihood of disease. For example, CRP is

positively related to the development of breast cancer,

especially in the early stage [50], and breast cancer patients

displaying CRP [ 3 mg/L at diagnosis have a 1.7-fold

increased risk of death as compared to patients with CRP

levels \ 1 mg/L at diagnosis [30]. Similarly, clinical

practice recommendations for CRP testing in cardiovas-

cular risk assessment regard a uniform CRP level of

[3 mg/L as a high risk [28]. Given that CRP-inflammation

is induced by several biological mediators, i.e. proinflam-

matory cytokines (IL-11, but also IL-1, IL-6, and IL-17),

hormones, and other external stimuli [24], analyzing the

contribution of only one externally applied factor, IL-11, to

CRP profiles is required for disentangling the intrinsically

complex inflammation dynamics. In this context, our

present model of IL-11-induced changes in CRP levels in

cancer patients can be viewed as a first step in achieving

this goal.

The work sheds light on the mechanism of action of IL-

11 on CRP-inflammation. An IL-6 family cytokine, IL-11

likely possesses both anti-inflammatory and pro-inflam-

matory properties; it down-regulates macrophages and T

cells at the site of inflammation, can skew immunity from a

Th1 to Th2 phenotype, and regulates inflammatory pro-

cesses in autoimmune disorders, inflammatory bowel dis-

ease, and psoriasis [51–56]. At the same time, IL-11 plays a

role in antigen sensitization and Th2-inflammation [51],

and is over-expressed in tuberculosis, arthritis, and cancer,

potentially contributing to an inflammatory state in these

disorders [51, 57, 58]. Our model deciphers the pro-

inflammatory action mechanism of IL-11, by distinguish-

ing between two pro-inflammatory effects that linearly

change CRP levels, and occur on different time scales: one

is a direct effect acting to rapidly and strongly elevate CRP,

Fig. 3 The selected PK/PD model for IL-11-induced CRP-inflam-

mation. The model (variant 27) is a 5-compartment system,

comprised of 2-compartments for IL-11 PK (describing drug levels

at the injection site, Iadm, and plasma concentration of the drug, I),

and 3 additional compartments for IL-11 PD effects on CRP (C)—the

marker for inflammation. The self-regulation of CRP is controlled by

component R, and the long term effect of IL-11 on CRP is mediated

through a memory factor, M. PK transfer processes are marked by

thin arrows; PD effects are marked by thick arrows (solid lined-

stimulating effects; broken lines—inhibiting effects)
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the other is a slower long-lasting effect responsible for low-

grade elevation of CRP. The latter effect was imperative

within the IL-11 mechanism, and was found to persist for at

least a month, possibly more. Indeed, such continuous

inflammation is a feasible outcome of any immune-mod-

ulating treatment (e.g. cytokine-based drugs, immunother-

apies). For example, similar extended responses of delayed

hypersensitivity are also detected several weeks post

treatment with a different cytokine, IL-2 [59]. This mech-

anism of action, identified here for IL-11, may be valid for

other immune modulating cytokines

The long term inflammation effect of IL-11, although

not inflicting acute damage, is arguably most significant

in a full-course regimen of the drug: Model simulations of

multi-cycle therapy predict that while the CRP maximal

peak is not further elevated under continued IL-11

scheduling, the CRP minima is expected to gradually

increase between the cycles, reaching a detrimental level

(above 3 mg/dl; Fig. 5). This low remains at a residual

level slightly higher than baseline for at least 1 month,

implying that chronic inflammation can result from the

application of this cytokine. This result should be scruti-

nized experimentally and clinically over an extended

period. If validated, it may bear clinical implications for

therapy by this or other cytokine which have similar

‘‘memory’’ effects.

Fig. 4 Data fitting of the

selected model to clinical CRP

profiles. a Retrieval of observed

inflammation (CRP) dynamics

(mg/dl) by model 27. CRP was

measured routinely following

daily subcutaneous

administration of IL-11 (10, 25,

50 and 75 lg/kg) for 2 weeks,

as described in [17]. b Linear

regression curve (blue line) and

R2 value of the fit is shown

(Color figure online)
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The model also provides interesting insights concerning

CRP systemic behavior. A few models for studying CRP

profiles have been presented hitherto. An early model used

time-integrated CRP data to examine the use of this marker

as a potential predictor for progression in rheumatoid

arthritis [60, 61]. In another study, an elaborate biochem-

ical model for the immune complement system showed that

antibacterial responses are highly dependent on CRP

activity [62]. Short-term oscillatory CRP dynamics in

chemotherapy- or immunotherapy-treated melanoma

patients were recently modeled as a means to better plan

oncotherapy [23]. Here, we also modelled short-term CRP

behavior in cancer patients, albeit under stimulation by IL-

11. In absence of longitudinal CRP profiles in untreated

cancer patients (over months-years), at present, no mod-

eling effort can address the question of how cancer pro-

gression alters baseline systemic CRP dynamics. The

present model itself illuminates a previously undescribed

Table 2 Parameters of the best

performing models

a—residual constant error for

averaged subjects

SE standard error, RSE relative

standard error

a1—residual constant error

recalculated for individual

subjects (see ‘‘Methods’’

section)
a Half time of the positive

feedback
b Half time of M elimination

Parameter, units Model 27 Model 28 Model 31

Value SE (RSE) Value SE (RSE) Value SE (RSE)

c1 1 – 1 – 1 –

c2 1 – 1 – 1 –

a1, days-2 0.0671 0.02 (29) 0.0697 0.021 (30) 0.0669 0.02 (30)

a2, days-1

ln(2)/a2, daya 10.33 – 9.94 – 10.36 –

R0 0.482 0.13 (26) 0.473 0.12 (26) 0.476 0.12 (26)

h1 76.5 67 (88) 76.6 65 (84) 81.3 69 (85)

p1 3.04 0.3 (10) 3.05 0.3 (10) 3.04 0.3 (10)

p2 3.18 0.81 (25) 3.62 0.93 (26) 2.82 0.71 (25)

d 0.01 – 0.02 – 0.002 –

ln(2)/db 69.31 – 34.66 – 346.6 –

C0, mg/dl 0.594 – 0.594 – 0.594 –

a, mg/dl 0.935 0.14 (14) 0.933 0.14 (14) 0.934 0.14 (14)

a1, mg/dl 1.62 0.24 (14) 1.62 0.24 (14) 1.62 0.24 (14)

Fig. 5 Simulation of CRP

dynamics under multi-cycle IL-

11 treatment. Predictions of the

CRP profile by model 27 and

two equally-acceptable variants

(28 and 31) under a regimen of

5 consecutive 28-days treatment

cycles, where each cycle

consists of a 2-week daily

dosing of IL-11, 50 lg/kg (a) or

100 lg/kg (b), followed by a

2-week resting period
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process of self-induced clearance: We found that this

clearance occurs in a nonlinear fashion, and is induced and

reduced at the same rate. It is plausible that this self-reg-

ulation characterizes the inflammation process itself and

not only its marker, CRP. This implies that humans can

adapt their ability to resist inflammation to the intensity of

the inflammatory process.

The unique modeling approach in the present work

integrates mechanism-based biomathematical modelling of

the bio-pharmaceutical process with statistical-oriented

NLMEM evaluation of model parameters [8]. This allows

to reach a sufficiently complex model for describing the

system at hand, while at the same time accounting for

individual data and random effects [63]. In contrast to

statistical data-dependent models, in mechanistic modeling

the data do not stand alone, but rather are intertwined with

the biological understanding of cytokine-induced effects

and feedback processes. This is especially important in

cases where clinical measurements are imprecise, and in

which long-range and feedback effects are difficult to

assess by simple observation, as in the present IL-11 case.

The inherent ability of mechanistic models to better

extrapolate behavior for a wide range of treatment regi-

mens beyond a given schedule is an additional advantage,

particularly for rationing improved IL-11 treatment [8].

An important feature of our methodology is multiple-

modeling, i.e. exhaustive, systematic, and objective ana-

lysis of several preliminary models in a ‘‘top-down’’ pro-

cess. The designed models are semi-mechanistic, flexible

and realistic structures that rely on a small number of

assumptions about the underlying biological process. The

collection of 35 models allowed us to examine diverse

plausible assumptions and levels of complexity [8]. This

differs from traditional hypothesis-driven biomathematical

modeling, where usually preconceptions about the mech-

anism of action determine a single constructed model in a

‘‘bottom-up’’ process. Indeed, multi-model testing increa-

ses the probability of obtaining a good model [8]. A

comparable multi-modeling method was applied in the past

for modeling hematopoiesis and successfully retrieved

population data under different chemotherapies, albeit with

only 5 models undergoing assessment [64–67].

Moreover, our current study reports the systematic meth-

odology, including model-building and qualification steps,

criteria used for model selection, nature of the structural, IIV

and error models, method of estimation and software, etc.,

details which are lacking, or are not reported, in most studies

[68]. AIC was the primary model selection criterion, as it

pinpoints the model that (a) retrieves the observed effect

without being overly complex, and (b) which has the best

chances of reproducing new independent data derived under

similar conditions [39, 40]. Parsimony assumptions and lin-

earizing processes were useful for efficient model screening,

as they decreased the criteria values with no need to modify

the mathematical formulation. Thus, such methodologies

used during model development should be incorporated in

similar reports dealing with progressive modeling.

Since our model is population-suited with minimal IIV

assumptions (i.e. a minimal IIV was needed for describing

the inflammation process herein), we can currently apply it

to search a better IL-11 treatment policy for any patient.

Specifically, the effect of long-term CRP accumulation,

and how it may be restrained by altered IL-11 dosing

regimens, is an important goal to study. Model-improved

regimens have been suggested over the years for other

targeted drugs, some validated pre-clinically and clinically

[69–72]. Indeed, an alternative regimen with gradual IL-11

dose escalation is one promising strategy to replace the

FDA-approved regimen of IL-11 (ongoing simulations;

data not shown). Any such model-derived IL-11 regimens

should of course be validated in prospective clinical studies

prior to their application.

On a broader view, the findings in this study may bear

implications for the design of diverse therapeutics that

drive the immune system towards an inflamed phenotype,

either directly (e.g. immunotherapeutic drugs) or indirectly

(e.g. drugs that induce inflammation). We believe that the

regimen planning of such agents should consider complex

patterns of acute and chronic inflammation, perhaps by

computational means.
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