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The growth law of primary breast cancer as inferred
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Summary Despite considerable progress in understanding tumour development, the law of growth for human tumours is still a matter of
some dispute. In this study, we used large-scale mammography screening trial data to deduce the growth law of primary breast cancer. We
compared the empirical tumour population size distributions of primary breast cancer inferred from these data to the distributions that
correspond to various possible theoretical growth functions. From this, we showed that the data are inconsistent with the exponential, logistic
and Gompertz laws, but support power law growth (exponent = 0.5). This law indicates unbounded growth but with siowing mass-specific
growth rate and doubling time. In the clinical size ranges, it implies a greater decline in the mass-specific growth rate than would be predicted
by the Gompertz law using the accepted parameters. This suggests that large tumours would be less sensitive to cycle-specific therapies, and
be better treated first by non-cell cycle-specific agents. We discussed the use of our study to estimate the sensitivity of mammography for the
detection of small tumours. For example, we estimated that mammography is about 30% less sensitive in the detection of tumours in the 1 to

1.5-cm range than it is in detecting larger tumours.
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Breast cancer is the most common malignancy in women,
afflicting one in every ten women in the Western world. Recently,
the role of tumour growth dynamics in determining the clinical
course of the disease has been re-emphasized by demonstrating
how such knowledge can lead to more etficient treatment proto-
cols (Crown. 1997). Large-scale breast cancer screening
mammography trials show that significantly smaller tumours are
detected in screened populations. compared with the control. and it
is probable that the disease would be better controlled if smaller
tumours could be detected (Tabar et al. 1992; see also Kimmel and
Flehinger, 1991 and Xu and Prorok, 1997 for theoretical discus-
sions). Nevertheless, the benefit of screening, especially in
younger women (< 50 years). still remains somewhat controversial
(Fletcher et al. 1993: Tabar et al, 1995: see also Flehinger et al.
1993 for lung cancer). As interval cancer data indicate that not all
prevalent tumours are detected by the screening procedure
(Holmberg et al. 1986). any realistic evaluation of mammographic
screening efficiency must account for detection sensitivity. partic-
ularly for smaller sizes.

In the present work. we employed extensive clinical data from
large mammography screening trials that should be representative
of the general population. Using mathematical tools, we extracted
from these data useful information about breast cancer growth.
Our conclusions, corroborated by recent laboratory. clinical and
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theoretical studies. may be relevant to various aspects of tumour
detection and control. In particular. we demonstrate how knowl-
edge of size-dependent tumour growth rates can help evaluate the
relative sensitivity of mammography as a function of tumour size.
This may be useful for determining the optimal interval between
subsequent screenings. In addition. our result may suggest ways to
improve chemotherapy treatment protocols.

Previous attempts to estimate human breast cancer growth rates
as a function of size were mostly based on those cases in which the
primary tumour can be seen in retrospect in previous mammo-
grams. This type of analysis is confined only to very limited and,
possibly. not representative groups of patients (Gershon-Cohen et
al. 1963: Heuser et al. 1979: Fournier et al. 1980: Peer et al. 1993:
Spratt et al. 1993). Several putative laws for tumour growth have
been proposed. based on this type of human study and on experi-
ments in animals. Each of these implies different model-specific
dynamics of tumour growth (Mendelsohn. 1963: Laird, 1965: Steel
and Lamerton. 1966: Norton and Simon. 1976: Norton. 1988).

The most commonly used tumour growth model is exponential
growth. in which the cells divide at a constant rate independent of
tumour size and age. A more general equation. which represents a
very broad family of growth rates (including the exponential). is
the power law differential equation:

dy

— =k (h

dr
where v denotes the tumour mass. £ is a constant of growth and
the exponent B is an indicator of the tumour’s mode of growth
{when B = 0. the growth ix linear. when B = | the growth is



exponential, etc.). The solution of the power growth law (equation 1)

for B # | is given by:
1
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where ¢ is a constant. Equation 1 was introduced more than three
decades ago by Mendelsohn. and was shown at that time to fit
observed growth curves of experimental animal mammary
tumours (Mendelsohn, 1963: Dethlefsen et al, 1968).

A different school of thought is represented by the sigmoidal
family of functions, such as the logistic and Gompertz growth laws.
In these laws it is assumed that tumoral and/or host constraints
gradually inhibit tumour growth to an asymptotic value.

[lustrated in Figure 1A are the growth curves that represent the
power law model. with § = 1 (exponential growth) and f = 0.5
(parabolic growth), as well as Gompertz growth. The exponential
and Gompertz curves have been plotted using accepted parameters
drawn from the literature (Fournier et al. 1980: Norton. 1988).
Figure 1B shows that these models predict remarkably different
time-dependent changes in the mass-specitic tumour growth rate.
Determining which function is most suitable for describing
primary breast cancer growth is therefore warranted.

METHODS

Calculating the probability that a tumour is detected
before screening

Consider a tumour of size s that would be present in a natural
population with no removals. This tumour, in the actual screen
population. might he detected and removed before screening: we
wish to calculate the probability p of this detection. Let u(v) be the
probability density (with respect to tumour size) that a tumour is
detected at size y. Then the probability of detection before the
tumour reaches size s is:

p=] piydy

We can estimate the value of this integral using the data for the
control population. These data consist of the number , of tumours
detected between sizes v, and y,. for each of the m size cate-
gories. k=1.2.....m. The probability density [ in the k size class
1 thus approximately:

nl
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where n = £ n, is the total number of tumours detected in the
control population. The tumour of size s will be on average
approximately in the middle of its size category k. Thus. the above
integral can be approximated as:
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Figure 1A Three possible growth patterns of human primary breast cancer.
For Gompertz growth o = 0.66 and &, = 19 (Norton, 1988), which correspond
to a limiting volume of 3100 ml. Fournier et al (1980), by analysing
consecutive mammograms of 160 breast cancer patients, estimated that the
mean volume doubling time of a tumour of 1.7 cm in diameter (2.6 mi in
volume) is about 7 months. For exponential growth, this corresponds 1o k =
1.2 years™. For parabolic growth (power law growth with f = 0.5, equation 2),
the parameter k = 1.6 was estimated from the same data. For all three
models the initial tumour volume, y, is held to be a volume of a single cell.
The tumour volume was caiculated by assuming that primary breast cancer
grows as a spheroid. B A semilogarithmic piot of the mass-specific growth
rates vs tumour diameter for the discussed growth laws. The same
parameters as in Figure 1a were used
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. Theoretical distributions of tumour sizes in populations

The growth rate of solid tumours depends on a multiplicity of
factors, such as vascularity and nutrient supply, interactions with
surrounding tissues, growth factors, regulation of apoptosis, and so
on. These factors themselves vary with tumour size. Thus, the rate
of growth of the tumour can be considered as a function of size. To
express this in mathematical terms, let y(#) denote the tumour mass
at time . Then the tumour will grow according to some differential
equation of the form:

dv
where fis some differentiable function of the tumour mass v.

We wish to derive the probability density ¢ (v) that a tumour.
randomly chosen from a certain size range and growing according
to the differential equation (3), is of size y. assuming no removals
due to treatment or death. It will also be assumed that the distribu-
tion of tumors, ¢ (v). is stationary, i.e. the probability density of
tumours is independent of time. This is reasonable for populations
that are fairly stable demographically. and for which there has been
no ‘point event’ (such as an acute exposure to radiation or other
carcinogens) that would cause an unusually large number of
tumours to be formed at about the same time.

Consider the population of tumours whose masses lie in the
interval y and vy + Ay. Tumours are entering this population at the
rate:

dy

Q) — = o(y) fiv)
dt

they are leaving the population at the rate:
Oy + AV) fiy + Av) = 0(v + Av) (fy) + 7 (WAY) + o(Av)
Equating these two quantities and rearranging gives:

o)
=—Q(v + Av)
Ay i AW

Qv+ Av) - @(y)

+ 0 (Ay) 4

so taking the limit as Av — 0 gives the differential equation:

) o
Q)= -0(v) IS (5)
Equation 5 has the general solution:
. c
o0 = ;(; (6)

where C is a constant chosen to normalize the probability density
to one. In the case of power law growth (equation 1). fiv) = kv,
and Hence

- Bo(y)

o= — (7)
¥

Using equation 6. equation 7 becomes
C
(p(\) = e
b (8)
Note that as this result does not depend on the tumour growth rate

parameter k. it is valid even when (as is actually the case) & varies
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in the population, provided the distribution of & values is also
stationary.

Gompertz growth satisfies the differential equation:

dv
— =k Wy 9
da " )
where & and o are constants. This equation can be transformed
into the autonomous form of equation 3 with f given by:

Sy =—=rvIn (W/K) (10)

where K is the hmiting size of the tumour and r is a constant
(Edelstein-Keshet, 1988). Inserting this into equation 6 gives:

C
(V)= ——
o viln K -1Iny) (b

The logistic differential equation is:

ﬂ: n (1_;1%)

(12)
dt

where r, and K are constants. representing the intrinsic growth rate
and the limiting size of the tumour respectively. From equation 6
we have:

C
o(v)= —— 3
V(K =v) (1
The graphs of the theoretical distributions derived in equations 8.
11 and 13 with best fit of the two-county Swedish data are shown
in Figure 2.

RESULTS

We focused our analysis on the size distribution ot tumours tound
in the first screen of the two-county Swedish mammography trial,
which is one of the largest and most detailed studies of its kind
(Tabur et al. 1992). Other published mammography screening
trials (Thomas et al. 1984: Fagenberg et al. 1985: Burhenne et al.
1992; Peer et al. 1994: de Koning et al. 1995) are less detailed. but
can provide collaborative information about the tumour size distri-
bution (Table ).

Our first aim was to reconstruct from the two-county Swedish
mammography data the natural tumour size distribution in the
population. i.e. what the size distribution would have been had
there been no removals before the first screen. To this end. we
employed the distribution of tumour sizes at detection in the two-
county Swedish study’s large corresponding control group. We
reconstructed the natural tumour size distribution by estimating the
probability. p, that a tumour of a given size category would have
been detected without screening (see Methods). and then divided
the number of tumours detected by mammography in each category
by I — p. We excluded from the analvsis the smallest (< 1 cm) size
category because of reduced mammography sensitivity in small
tumours (Feig et al. 1977: Yafte et al. 1993). As the probability of
self-detection in the largest size category (> 5 cm) is close to 1.
dividing by 1 — p would produce a number extremely sensitive to
the exact value of p. and thus be unreliable: therefore. this size cate-
gory was excluded as well (Table 1). We assumed that in the 1- to 53-
cm range there is little variation in detection sensitivity (with the
possible exception of the I- to 1.5-cm category). Hence. we took
the probability of detection in these size categories as constant.
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Figure 2 The best fit of the theoretical density distributions of tumour size
(equations 8, 11 and 13) to the reconstructed natural distribution estimated
from the two-county Swedish data (Tabar et al, 1992) (A). Results are
presented on a log—log plot. A highly significant linear fit of the data was
obtained with a slope —f = -0.42; (2 = 0.97). The Gompertz law was fitted
using a limiting size of 3100 ml (Norton, 1988). The logistic growth was fitted
using a limiting size of 1000 ml estimated by Spratt et al (1993)

Table 1 Size distribution of screened, controt and reconstructed natural tum
first screen data for tumours are used. The probability density (P density) for

Deducing breast cancer growth law from screening data 385

10, Power law (B = 0.42)
____________ Extrapolated point (tumour diameter = 0.5 cm)
14 '
s :
E ,,,,,, 4 Empirical point
7
S 0.1 :
> ] i
a |
=
i}
a
0.01+
0.001 — -——= = T B e ——
0.1 1 10

Tumour diameter (cm)

Figure 3 Estimation of mammography sensitivity in small tumours {0.5—
1.5 cm). The theoretical density distribution of tumour size (assuming power
law growth, equation 8) was fitted to the two-county Swedish data (in the
1.5-5.0 cm range) (A) and subsequently was extrapolated to the smatlest
tumour range. The ratio between the theoretical and the empirical points can
be readily converted to the relative probability of detection. The
mammography in the 1-1.5 cm range detects at most 70% of the prevalent
tumours. In the 0.5-1 cm range no more than 40% of the tumours are
detected. Results are presented on a log-log scale

our populations, obtained from published breast cancer screening trials. Only the
a tumour between 1 and 5 cm in a natural population to be found in a particular

size category is estimated. The resuits of linear regression of the logarithm of the natural tumour size distribution vs the logarithm of the relevant tumour

volumes (linear slope —f3, and the corresponding ) are presented. For those
regression analysis, only the linear slopes were caiculated

data sets where the number of data points was not sufficient to perform a

Source Tumour No. No. P. -B r
size (cm)? screen® control® density (line slope)
Swedish two-county (11 year) (Tabar et al, 1992) 0.1-1 100 50 ~0.42 0.97
1-1.4 112 107 0.53
1.5-1.9 74 143 0.44
2-2.9 57 216 0.26
3-4.9 24 143 0.13
S5+ 15 68
Total 382 727
Swedish two-county (6 years) (Fagerberg et al, 1985) 0-1 87 32 -0.41
1.1-2 79 120 0.48
2.1-5 32 103 0.17
5.1+ 5 17
Total 203 272
Guildford (Thomas et al, 1984) 0-0.5 26 -0.32 0.99
0.6-1.5 17 0.52
1.6-2 9 0.34
2.1-5 15 0.19
S5+ 1
Total 68
Netherlands (de Koning et al, 1995) 0-1 549 307 -0.43
1.1- 834 1248 0.5
2+ 362 2051 017
Total 1744 3606
Nijmegen (Peer et al, 1994) 0-1 40 26 -0.54
1.1-2 92 101 0.54
2+ 36 215 0.1
Total 168 342
British Columbia (Burhenne et al, 1992) 0-1 19 -0.38
1.1-2 10 0.47
2+ 5 0.18
Total 34

aTumour diameters as reported in the source articles. ®Number of detected cancers in the group. ©In data sets with no control population. the Swedish control

incidence rates were used. IF. density is the reconstructed natural probability
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density for the tumour population between 1 and 5 cm (0.6 and 5 cm in Guildford).
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We compared this empirical distribution with the theoretical
distributions of primary tumour volumes corresponding to power.
Gompertz and logistic growth laws (see Methods). Figure 2
displays the best-fit plots of these theoretical distributions to the
reconstructed natural distribution obtained from data of the two-
county Swedish trial (Tabar et al. 1992). The points calculated
from the trial data lie nearly on a straight line with slope -3 =
- 0.42 (r* = 0.97). indicating a power law growth function with
B = 0.42. Note that these data are inconsistent with exponential
growth (power law with 8 = 1), nor are they consistent with
Gompertz or logistic growth laws with the accepted limiting sizes
(Norton. 1988; Spratt et al, 1993). Most of the non-linearity in the
two-county Swedish data is due to the density of the lowest size
category (1-1.5 cm). where the sensitivity of the mammography
may be less than for larger tumours. Excluding this point gives a
slightly higher exponent (B = 0.53; r* = 0.99). Thus. the evidence
indicates that primary breast cancer growth is parabolic (power
law growth, B ~ 0.5).

Verification of the result using independent screening
trials

We verified our result by using data from other published
mammography screening trials; only studies that contain sufficient
information for analysis were included. Our analysis of these data.
including an earlier report of the same Swedish study discussed
above (Fagerberg et al. 1985). give consistent results: the data in all
cases are compatible with power law growth, with B between (.32
and 0.55 (Table 1). The slopes of the UK (Thomas et al. 1984) and
British Columbia (Burhenne et al, 1992) trials (§ = 0.32 and B =
(.38) are even more contradictory to the Gompertz law. However.
as these trials did not have their own control groups. they are less
reliable. [f Swedish women were more careful about regular selt-
examination. there would be more large tumours removed betore
screening compared with the British or the British Columbian
studies. In such a case the probability of detection before screening,
p.in the larger size classes would be overestimated by the use of the
two-county Swedish control. so the slope would be underestimated.
Note that in all the controlled studies the slope ranged between (.41
and 0.54. It appears. then. that a control group in each screening
trial is important for the use of this technique.

DISCUSSION

Our results suggest that tumour size increases approximately as a
quadratic function of time (i.e. parabolic growth). This is slower
than exponential. but without the limiting asymptotic size
suggested by sigmoidal growth models. Parabolic growth indicates
a mass-specific growth rate that declines with the square root of
tumour mass, as opposed to the constant mass-specific growth rate
of exponential growth. Whereas the Gompertz and the logistic
laws also predict a slowing mass-specific growth rate, these
declines, using the parameters estimated in Norton (1988) and
Spratt (1993). are less significant in the clinical size ranges than
those predicted by parabolic growth (Figure 1B). This may imply
that the response of breast cancer to chemotherapy may be
different than would be suggested by the Norton~Simon model
that assumes Gompertz growth (Norton and Simon. 1986).

There is substantial evidence at the cellular level of a decline in
the mass-specific growth rate as tumours increase in size. Studies of
the cytokinetics of both human breast cancer and experimental
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tumours show that the thymidine labeling index (TLI) declines in
larger tumours. indicating that the fraction of cells that are actively
growing is decreasing (Schiffer et al, 1979: Meyer and Coplin.
1988). Recent reports indicate that the vascular density of tumours
may decline with growth (Holmgren et al, 1995). In such a case a
significant fraction of tumour cells that lie too far from a capillary
will be driven to a non-proliferating state or possibly even to death.

It should be emphasized that our method does not require
knowledge of the absolute sensitivity of detection. Rather. in this
work we made a simple and not unreasonable assumption that the
sensitivity in the |- to 5-cm size range is approximately constant.
If independent measures of mammography sensitivity could be
obtained [e.g. by comparing with magnetic resonance imaging
(MRD)] it would be possible to use our method for estimating the
tumour growth law for smaller size categories.

Alternatively, assuming that the parabolic growth law holds for
the smaller size categories. the result of this study can be used for
estimating the relative sensitivity of mammography in smaller
tumours. This can be done by observing the deviation from
linearity in these size categories in the log—log tumour natural size
distribution plot. For example. it appears. by analysing data from
the two-county Swedish trials. that mammography in the 1-1.5 cm
range is about a third less sensitive than for larger tumours (Figure
3). By extrapolating the regression line to 0.5- to I-cm range, we
estimated that the relative sensitivity of mammography in this size
range is about 40% (assuming = 0.42) or about 30 (assuming
B = 0.53) compared with larger tumours. This type of sensitivity
analysis, combined with the power law for breast cancer growth.
may help determine the optimal time period between screening
mammography.

This study also may have implications for breast cancer cell
kinetic parameter estimation. For instance. the tumour’s potential
doubling time and cell loss tactor. which may be useful for dose
calculation in radiotherapy. are calculated under the assumption of a
constant cell cycle time and an exponential tumour growth, respec-
tively (Steel. 1967, 1989: Bertuzzi et al. 1993). If. as our study
suggests. tumours follow parabolic growth. it would be necessary
instead to estimate the patient-specific growth constant. & (equation
1). which is probably highly variable (Fournier et al. 1980).

Alternating chemotherapy regimens. proposed by Goldie and
Coldman for minimizing the risk of drug resistance (Goldie and
Coldman. 1979), have becn the rationale of numerous anti-cancer
protocols for the last 20 years. Our findings may imply an alterna-
tive strategy. If. as our results suggest. there is a significant decline
in the percentage of actively dividing cells in large tumours
(Figure [B). these tumours would be fess sensitive to cvcle-
specitic therapies. Therefore. they may be better treated first with
rather broader activity antineoplastic drugs. such as anthracyclines
or alkylating agents. This may be an explanation for the observa-
tion that alternating the non-cell cycle-specific drug. doxorubicin.
with CMF (cyclophosphamide. methotrexate. 3-fluorouracil. the
last two drugs being cell cycle specific) is significantly inferior to
a sequential chemotherapy protocol with doxorubicin as the first
drug for high-risk (i.e. large tumour burden) breast cancer
(Bonadonna et al. 1995).

Our results refer to the growth of untreated tumours only and their
relevance for the growth patterns of tumours under treatment
remains to be investigated. Nevertheless. it is interesting to note that
the relative benefit of accelerated irradiation strategy (Corvo et al.
1995) may be explained in part by our results. If irradiated tumours
are subject to a similar power law growth, according to which as
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tumours shrink under treatment their growth fraction increases, then
the latter period of therapy should be more aggressive.

The optimal growth patterns of interacting cell assemblies have
recently been shown to follow parabolic or other power laws
(Drasdo et al, 1995). These theoretical results corroborate our
analysis of clinical data, and imply that power growth law may
have greater generality than just to mammary tumours. Our very
preliminary analyses of thyroid cancer and renal cell carcinoma
screening data suggest that the growth rate of these tumours may
also follow a power law. More empirical evidence is needed to
assess the universality of power law growth and its usefulness in
the control of cancer.
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