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Summary. Resistance to antineoplastic drugs has been a
major impediment to the successful treatment of cancer.
Recent studies suggest that several mechanisms are re-
sponsible for the emergence of drug resistance but that
high levels of resistance and poor prognosis are strongly
associated with gene or oncogene amplification. In this
report we describe a probabilistic model for gene amplifi-
cation in a tumor that grows under various drug protocols.
The model is new in that it treats drug resistance as a
dynamic process and examines specific assumptions about
the underlying molecular events. Using this model, we
specify the conditions for the emergence of drug-resistant
mutants prior to selection as well as the relationship be-
tween the stringency of the selecting environment and the
characteristics of the resultant cellular phenotype.

Introduction

DNA sequence amplification if frequently observed in
tumors and transformed cells, and it has been suggested
that tumor cells have an abnormal capacity to amplify
DNA with high frequency [8, 18, 26, 44, 49, 50]. Gene
amplification (GA) is known to contribute to the genera-
tion of drug resistance and to have prognostic significance
in several types of cancer. Amplification of the dihydrofo-
late reductase (dhfr) gene confers resistance to the
chemotherapeutic drug methotrexate (MTX) [37, 38, 45,
46], and that of the P-glycoprotein (mdrl) gene and the
gene for both components of ribonucleotide reductase is
correlated with multidrug resistance [8, 14, 18, 26, 28, 31,
32, 44, 50].

Whereas in the past, multidrug resistance has been
thought to be uniquely determined by P-glycoprotein GA,
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currently it becomes more and more apparent that only
high levels of clinical multidrug resistance are associated
with the amplification of this gene; lower levels may be
attributable to other molecular mechanisms, e.g., tran-
scriptional activation [36, 39]. The role of DNA amplifica-
tion in clinical multidrug resistance has perhaps been
somewhat overestimated due to the use of rodents as a
model. It has recently been suggested that the propensity
for DNA amplification and for other mutational events
characterizes rodent but not normal human cell lines
(Schimke et al., submitted for publication).

The role of P-glycoprotein GA in muiltidrug resistance
has yet to be fully clarified, yet aggressive clinical be-
havior, resistance to chemotherapy, and poor prognosis
have clearly been demonstrated to be associated with onco-
gene amplification [11-13, 35, 40, 41, 44, 47]. In par-
ticular, clinical resistance to cisplatin and S-fluorouracil
(F-Fura) was shown to be concomitantly associated with a
2- to 4-fold increase in DNA copy number for deoxythy-
midine monophosphate (d{TMP) synthase and dhfr as well
as with the amplification of myc (2 x), h-ras (4 %), and
c-fos (15 x ) oncogenes. These results suggest that amplifi-
cation of genes and oncogenes that confer drug resistance
may be involved in the development of cisplatin resistance
[34].

Experimental and clinical data indicate that the emer-
gence of drug resistance due to GA is a dynamic process
involving several molecular events whose probability may
be sensitive to environmental constraints. To obtain an
understanding of these complex dynamics, it may be useful
to investigate the effect of various assumptions about the
underlying events within the framework of a mathematical
model. This task is taken up in the present work.

Presented below is a model for GA that assumes for-
ward (amplification) or backward (deletion) changes in the
gene-copy number of one or many genes (see Stark et al.
[43] for review). For purposes of simplicity, we assume
that GA 1s intrachromosomal and associated with cell divi-
sion, with one daughter cell having an altered number of
gene-copies and the other being identical to the mother
cell. The assumption of symmetric amplification has been



470

birth(b) birth (b) birth(b) birth(b)
v
cells celis cells - ... —sjcells
with 1§ <----1with 2 <i---{with 3 «q--- - <==qwith kmax
copy of copies of copies of copies of
the gene the gene the gene the gene
ldeom () ldeoth () J,death () Ideath ()
(b) birth Ibmh birth !birth
|
F——--=T-- ) 1 )
¥ t !!—/_-_} l Fig. 1a, b. Schematic representations of the
one-gene GA process. (a) The one-gene/one-
.. copy case accounting for an amplification
q > 3 K process involving single-copy increments in
max one gene (see the GA model for further
dctails). Parameters b and u stand for the prob-
I] L] I I ability of cell proliferation and cell death, re-
T spectively. (b) The one-gene/multicopy case ac-
counting for amplification increments of more
death death ¥ death death than one copy per cell division

addressed elsewhere [25]; this assumption has no qualita-
tive effect on the results presented below. In an investiga-
tion of a model in which gene amplification is initiated by
unequal mitotic segregation of extrachromosomal DNA
molecules (Harnevo and Agur, submitted for publication),
we have specified the conditions under which such a
process may accelerate the intrachromosomal GA dynam-
ics described in the present report.

Our model assumes that GA can be spontaneous or
drug-induced and that the number of gene copies that con-
fer resistance may be dose-dependent; at higher concentra-
tions, cells bearing a large number of copies may continue
to be susceptible to the drug. This assumption relies on the
observation that cells selected for resistance to a specific
drug retain sensitivity to higher concentrations of the same
drug, provided that resistance is conferred by a multistep
process such as GA [37, 42]. Using this model, we investi-
gate the effect of selection stringency on both genomic
dynamics and treatment prognosis.

The GA model

The present model includes four general amplification
processes. In the simplest process each step involves a
single-copy increment in a single gene. In this case, de-
noted one-gene/one-copy (Fig. 1a), amplification is as-
sumed to be initiated in one normal cell, i.e., in a cell that
carries a single fuctional copy of this gene. This cell
divides to yield two daughter cells, and there is some
probability, ¢, that one of these cells will carry two copies
of the gene. Division of the latter cell has the probability,
o, of yielding one daughter cell bearing three copies of the
gene and the probability, B, of losing a gene copy to yield
a normal daughter cell carrying only one copy of the gene.
The same process occurs independently in all cells such

that the cell population becomes heterogeneous with re-
spect to the cellular gene-copy number. We allow for an
upper bound on the number of gene copies in a cell; how-
ever, if this upper limit is very large, it will have no effect
on the process. Cells divide with probability b, such that a
fraction 1-b of the cells is quiescent, and they die with
probability u, which in the simplest form of the model is
the same for all cells. In a more elaborate form of this
process, we also allow for the possibility that cells bearing
a large number of gene copies are less viable due to the
higher fragility of larger chromosomes; in the latter case, y
becomes dependent on the gene-copy number. More
elaborate GA dynamics are described in Fig. 1b, which
illustrates the forward and backward amplification of one
or more gene copies per cell division (denoted the one-
gene/multicopy process).

In the amplification of two unlinked genes G1 and G2,
denoted the two-gene/one-copy process (Fig. 2), a normal
cell bears a single copy of the gene G1 and a single copy of
the gene G2, and the above-described amplification
process by single-copy increments occurs independently
for each of the two genes. Thus, the cell population can
carry any copy-number combination of genes Gi and Go.
The fourth case of GA involves the amplification in two
unlink genes (denoted the two-gene/multicopy process) of
more than one gene copy per cell division.

To allow for the effect of cytotoxic drugs, we superim-
pose on the model an additional mortality factor. Thus, the
drug’s pharmacodynamics is described by (a) the propor-
tion of sensitive cells eliminated by a given drug concen-
tration; this proportion is denoted the fractional cell kill, d,
and (b) the resistance threshold, i.e., the number of gene
copies in a cell above which the cell is not affected by a
given drug concentration. Two cases are studied with re-
spect to the resistance threshold: (1) the threshold is inde-
pendent of the fractional cell kill, d; and (2) the threshold
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Fig. 2. Schematic representation of the two-gene/one-copy case for the
amplification process of two genes, Gi and G2. Amplification occurs
independently in each gene such that the population of cells originating

from one normal cell can have any combination of 1 to kmax copies of G,
and 1 to jmax copies of G2
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Fig. 3. The distribution of cells in a drug-free environment according to
their gene-copy number for the one-gene/one-copy GA process. The
relative frequency of cells in each copy-number compartment is calcu-
lated according to Egs. 1 and 3. Distributions are depicted after 1000
generations of GA for amplification probabilities o= 10-2, 10-4, and 10-6

depends on d. These pharmacodynamic considerations ren-
der the computations quite elaborate. For example, when
the amplification process involves two genes, the cell
population should be divided into four “metacompart-
ments” as follows:

1. Cells that are sensitive to both drugs (or drug combina-
tions), i.e., cells whose gene-copy number lies below the

resistance thresholds, 4. and j¢, of the genes Gi and Go,
respectively
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2. Cells that are sensitive to the first drug (or drug combi-
nation) but not to the second, i.e., cells bearing fewer than
K. copies of gene G1 and more than jc copies of gene G2
3. Cells that are sensitive to the second drug (or drug
combination) but not to the first, i.e., cells carrying more
than k. copies of gene G and fewer than j¢ copies of gene
G2

4. Cells that are resistant to both drugs (or drug combina-
tions), i.e., cells bearing more than k¢ and j. copies of genes
G and Gg, respectively

The mathematical formulations for these four processes
are described in detail in Appendix 1, whereas the general
formula for the amplification of any number of genes in a
cell can be trivially derived. Note that the present model
can be degenerated to the one-gene model previously ana-
lyzed by Hamevo and Agur [25]. The formulation of the
pharmacokinetic details is given in Appendix 2, whereas
its use in computing the effect of GA dynamics on tumor
size under a large range of protocols is described below.

Results

Using the model described above, we have computed the
temporal changes in the mean number of tumor cells for a
range of laboratory-estimated amplification probabilities
[37, 42, 45] and for many different chemotherapeutic pro-
tocols. The time unit in our computations corresponds to
one cell generation (one intermitotic interval); its transfor-
mation into calendar time therefore depends on the charac-
teristic generation periods of individual cancers.

The distribution of cells according to their gene-copy
number after 1000 cell generations of GA in a nonselective
environment is presented in Fig. 3. This distribution ap-
pears to be strongly dependent on the amplification prob-
ability: for a realistic value of intrachromosomal GA prob-
ability, a = 104, the proportion of cells bearing amplified
genes after 1000 generations of the process is roughly 1%;
all of these cells carry two copies of the amplified gene. In
contrast, if the GA probability is very large, & = 10-2, most
of the cells will carry amplified genes, the average copy
number being larger than 10. If the GA probability is very
low, a=10-5, the frequency of amplified genes will re-
main negligible after 1000 generations of the process. As
demonstrated below, if the amplified gene confers drug
resistance, selection stringency may have a strong effect on
both the distribution of gene-copy numbers per cell and the
treatment prognosis.

One-drug regimens

To study the effect of selection stringency on the evolution
of drug resistance, we computed the changes in tumor size
resulting from various drug protocols. Figure 4 compares
the effect of two protocols: one in which the total drug
concentration is given in large boluses (reflected in the
fractional cell kill of d = 0.99) every seven cell genera-
tions, and one in which a roughly similar concentration is
divided into many low-concentration (d = 0.2) doses that
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Fig. 4 a, b. Effect of GA dynamics on treatment outcomes for the one-
gene/one-copy case. Number of cells (log base 10 of the number of cells)
is plotted as a function of gene-copy number for two drug protocols that
differ in the fractional cell kill (d = 0.3 and d = 0.99). Treatment cycles
are initiated after 500 and 900 cell generations; the number of doses used
in each cycle are 100 for d = 0.3 and 30 for d = 0.99, and the amplifica-
tion probability is & = 10-4. (a) Resistance threshold: k. = | in both pro-
tocols. (b) Resistance threshold: k¢ = 1 for d = 0.3 and k. = 7 for d = 0.99

are applied at each cell generation. For this comparison, we
computed the number of cells (log base 10) in each gene-
copy-number compartment rather than calculating their
relative frequency as shown in Fig. 3; the reason being that
in the calculation of relative frequency, the drug’s effect on
the total cell population may cancel out its effect on the
number of cells in particular compartments. The computa-
tions illustrated in Fig. 4a assume that all of the cells
carrying more than one copy of the gene are resistant to any
dose of the drug. Thus, the difference between the two
protocols is reflected only in the fraction of normal cells
eliminated. A dose that produces a high fractional cell kill
(d = 0.99) when applied once weekly (if cell generation
takes 1 day) for 30 weeks appears to cause somewhat
higher mortality of normal cells than does a smaller dose
(d =0.3) applied every day for 43 weeks. Nevertheless, the
overall effect on prognosis is expected to be similar since
the differences between the two protocols in the total num-
ber of cells affected are small.

We also checked the assumption that higher drug con-
centrations may be associated not only with a larger rate of
elimination of susceptible cells but also with a higher resis-
tance threshold (Fig. 4b). As laboratory measurements for
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Fig. Sa, b. Effect of GA dynamics on treatment outcomes for the one-
gene/one-copy case. Tumor size (log base 10 of the number of cells) is
plotted as a function of time (cell generations) for three drug protocols
that differ in fractional cell kill and in resistance threshold /1, d = 0.9, and
ke=3;2,d=0.95and kc = 6; 3,d =0.99 and k. = 7. Treatment cycles are
initiated after 500 and 900 cell generations: the number of doses used in
each cycle are 100, 35, and 30 for 1, 2, and 3, respectively; the amplifica-
tion probability is =10, a Probability of natural cell mortality is
constant. b Probability of natural cell mortality is copy-number-depen-
dent

the determination of relationships between the fractional
cell kill, d, and the corresponding resistance thresholds, 4,
have not yet been obtained, we assumed arbitrary values
for these relationships. Through these computations, we
hoped to obtain a notion about the sensitivity of the prog-
nosis to the drug schedule under the influence of a variety
of such interactions. Our computations suggest that when
drug resistance due to GA is involved, intermittent high-
concentration dosing results in much greater mortality of
tumor cells than does frequent low-concentration dosing
(cf. Figs. 4b and 4a).

Figure 5 shows the changes observed in mean tumor
size (log base 10) over time for various treatment proto-
cols. These results suggest that the prognosis improves if
the treatment causes a higher fractional cell kill per dose
and if cell mortality is copy-number-dependent. From
Fig. 5a it can be seen that an increase of as little as 5% in
the fractional cell kill per dose may change the prognosis;
if d=0.9, all cells in the tumor become resistant during the
course of the first treatment cycle; a second treatment cycle
of the same protocol has no effect on the tumor, which
reaches a detectable size in about 1000 cell generations
(this corresponds to about 3 years if cell generation takes
1 day). In contrast, if the fractional cell kill is d = 0.95 and
d = 0.99, a second treatment cycle considerably reduces
the cell number and the tumor reaches a detectable size in
about 1600 and 1850 cell generations, respectively (corre-
sponding to more than 5 years if cell generation takes
1 day). The effect of drug concentration (as reflected in the
fractional cell kill) on prognosis is even more pronounced
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Fig. 6a, b. Effect of the fractional cell kill in a combination of two
non-cross-resistant drugs for the two-gene/one-copy case. GA probabili-
ties are o = 107 for the gene G and o = 10-5 for the gene Ga. Three
treatment cycles are applied following the initial GA event at cell genera-
tions n = 400, n = 800, and n = 1200. Each cycle involves the alternating
application of 2 drugs, each of which is used 10 times. The fractional
cell-kill of the drug interacting with G1 is d = 0.3, 0.4, . ., 0.9, corre-
sponding to resistance thresholds of k. = 1,2,.. .7, respectively. The
parameters of the drug interacting with G2 and its resistance threshold are
(@)d=090andjc=3and (b)d=0.50,and j. = 1
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Fig. 7. Eftect of the fractional cell kill in a combination of two non-cross-
resistant drugs, for the mwo-gene/multicopy case. All parameters are the
same as those described in Fig. 6 a

when cell mortality is copy-number-dependent (Fig. 5b,
see Eq. 7 for details), which limits the size of the resistant
tumor; in this case, a fractional cell kill of d = 0.95 or
d = 0.99 yields a complete response (2000 generations are
calculated), whereas a value of d = 0.9 indicates a poor
prognosis. As shown in Fig. 5, the mean tumor size may
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appear to be initially reduced to zero and then to increase in
later stages of the process, since in a probabilistic process
the mean number of cancer cells may be much smaller than
unity while the probability that there are cancer cells in the
system remains positive. The variability in these means has
been computed and discussed elsewhere [25].

Our computations indicate that chemotherapy appears
to have little effect when GA involves multicopy incre-
ments and natural cell mortality is independent of the cellu-
lar number of gene copies. In this case, all residual tumors
rapidly increase in size and become fully resistant. This
finding holds true even for low-amplification probabilities
(results not shown).

Two drug combinations

Computations of GA dynamics involving single-copy in-
crements in two unlinked genes [33, 49] are presented in
Fig. 6, in which alternating cycles of treatment with two
non-cross-resistant drugs (or drug combinations) are im-
posed on the growing tumor and the resistance threshold is
taken to be dose-dependent. The results illustrated in Fig. 6
are displayed in three-dimensional graphs, whereby every
point on the manifold represents the log tumor size at a
given cell generation for a given drug protocol. Such a
concise representation of a large body of calculations has
the advantage of enabling one to obtain a general view of
the effect of drug concentration on the process. In Fig. 6a,
the fractional cell kill produced by one of the drugs is large
(d = 0.9) and the effect of various values for the fractional
cell kill obtained using the other drug is examined. In
Fig. 6b, the fractional cell kill produced by the first drug is
low (d = 0.5). These results lead to the conclusion that
alternating treatment with two non-cross-resistant drugs is
almost always more effective than single-drug therapy. A
comparison of Fig. 6 with protocols 1 and 2 in Fig. 5a
reveals that a two-drug combination yields a complete
remission (d = 0.90 for each drug) as compared with the
treatment failure obtained using a single-drug protocol in-
volving a similar number of doses and a similar fractional
cell kill. Moreover, an impressive remission is observed
for the two-drug protocol, even when the fractional cell kill
in the combination is much lower for one of the drugs
(d = 0.30); when d = 0.40, the size of the residual tumor
remains undetectable (<10%) after 1800 cell generations.
However, when the GA process involves multicopy incre-
ments (Fig. 7), a higher fractional cell kill is required to
maintain the size of the tumor below the limit of detection.

Discussion

In recent years the problem of drug resistance in cancer has
been mathematically attacked by Goldie and Coldman
[20-23], Coldman and Goldie [16], Birkhead et al. [9, 10],
Gregory et al. [24], and other investigators. Underlying
these models was the assumption that drug resistance in
cancer results from a single mutational event whose prob-
ability is constant and independent of external constraints.
The present model is new in that it treats the emergence of
drug resistance as a dynamic process rather than as a single
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event. Using this model, we focus on one of the many
mechanisms that may lead to drug resistance, namely, on
gene (or oncogene) amplification, and show how changes
in the underlying assumptions affect the predictions about
treatment efficacy. Unlike previous models, our GA model
allows for the possibility of dose-dependent resistance.
This assumption is based on the observation that cultured
animal and human tumor cells selected for resistance to a
specific drug regain their sensitivity when treated with
higher concentrations of the same drug ([37, 38, 42]; also
see the comment by Kuceck and Chan [30]). This depen-
dence is expressed in our model by the gene-copy-number
threshold for susceptibility that is associated with each
drug dose.

Our results provide the formal basis for the heuristic
conclusion that an effective treatment should entail a high
drug concentration [5, 6, 19, 27, 29]. We show that under
given conditions, a 5% difference in the fractional cell kill
may completely alter the prognosis. Moreover, our results
suggest that under one-copy GA dynamics with high-
amplification probability, protocols involving frequent
low-concentration dosing may result in the rapid evolution
of large, fully resistant, residual tumors; the same total
drug concentration divided into a few high-concentration
doses applied at larger intervals, may result in a partial or a
complete remission, depending on the actual value of the
amplification probability and on the characteristic cell-
cycle time of the tumor.

One implication of these theoretical results is that when
a choice must be made between a protocol involving high-
concentration doses given at extended intervals and one
involving frequent low-concentration dosing, the former
should be favored. However, as high drug doses may result
in toxicity to the host, the problem of drug resistance
should be considered in conjuction with that of drug selec-
tivity. This task has been taken up by us [4] in an analysis
of the optimal control of cancer growth aimed at the min-
imization of both drug resistance and drug toxicity to the
host. This analysis supports the present conclusion con-
cerning the superiority of intermittent high-concentration
treatments. Another study has provided a formal method
for predicting the effect on drug selectivity of cell-cycle-
phase-specific drugs such as methotrexate, cytarabine, or
zidovadine (AZT) [1-3, 15]. The results show that the
elimination of somatic cells depends not only on the drug’s
pharmacokinetic and pharmacodynamic properties but also
on the duration of the dosing interval per se as well as the
life- cycle parameters, i.e., the duration of the drug-suscep-
tible cell-cycle phase, the duration of the whole cycle, and
the proliferation rate. This work suggests that drug toxicity
to the host may be minimized when the dosing interval is
an integer multiple of the average cycling time of the host’s
susceptible cells. This prediction has been verified in vitro
and in vivo in mice treated with AZT or cytarabine [6, 7].

The GA model described in the present report is also
new in that it allows for the possibility of doubly resistant
cells. The general conclusion arising from the analysis of a
two-gene amplification process is that the alternating ap-
plication of a few non-cross-resistant drugs is more effec-

tive than therapy with a single drug, even at concentrations
that are somewhat lower than those used in the single-drug
treatment. These findings are in agreement with previous
empirical and theoretical studies reporting the higher effi-
cacy of combination chemotherapy [16, 17, 21, 23].

The present results also suggest that treatment progno-
sis may be largely improved if cells bearing a large gene-
copy number suffer higher mortality. Therefore, it may be
interesting to examine the possibility of incorporating in
the treatment an agent that increases the mortality of cells
carrying highly amplified genomes. At present we are not
aware of the existence of such an agent, but its potential
use in improving treatment efficacy underlines the impor-
tance of a search in this direction.

The formal description of GA dynamics presented in
this report enables a rigorous and systematic analysis of the
emergence of drug resistance under a large range of con-
straints. That some of our predictions are supported by
experimental and clinical observations suggests that other,
less evident implications of this work should be seriously
considered (e.g., that protocols involving intermittent
high-concentration dosing are superior to those involving
frequent low-concentration dosing). The present GA mod-
el can be used in studies examining the evolution of the
system under a large range of parameter sets to obtain
quantitative predictions concerning specific treatments.
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Appendix 1: formulating the dynamics of gene
amplification

The present gene-amplification model is an extension of the multicom-
partmental mathematical model for the amplification dynamics of one
chromosomal gene [25]. Using this model, we consider a cell population
that is heterogeneous with respect to the copy number of two unlinked
genes (by unlinked we mean that amplifications at different loci are
independent); the general case of m genes is a simple generalization of
the following description. In our model the amplification process may
occur at different rates, the probability of cell death may be constant or
gene-copy-number-dependent, and tumor growth is taken to be indepen-
dent of cell mass (i.e., young tumors, following surgery or during drug
treatment) such that cell-population dynamics can be described by an
exponential function.

We consider an amplification process initiated in one normal cell,
i.e., a cell bearing one functional copy of the gene G and one functional
copy of the gene Ga. This cell can divide to yield one cell that is identical
to its mother and one cell carrying k copies of the gene Gi (k% 1). The
probability of this event is a; (1, k). Alternatively, the cell can divide to
yield one cell that is identical to its mother and one cell in which the gene
G2 has undergone amplification into j copies (j+ 1). The probability of
the latter event is o2 (1, j). The cell may also divide to yield two identical

daughter cells with a probability of 1 — [ 24 2% a1 (1) + 2 =101 (1)]
which we denote as 1- [ai(1) + a(1)]. Each of the newly generated cells
then undergoes the same process again.

Denoting the variable number of copies of the gene G as & and those
ot the gene Gz as j, we can obtain the expected number of cells bearing &
copies of gene Gy and j copies of gene Ga at the ntt cell generation, E (&,
J. n), as follows:



E(1,Lny=[1+b-bloua(1) + c(DIE (1,1,n - 1), Q)]

for k, j = 1, corresponding to cells carrying a single copy of each gene,
where b represents the proportion of proliferating cells;

E(ljn)=[1 +b-blaa(1)+ ()] E(1jn-1)+

j-1
b Z (i) E (Lin—1) (03}
i=1
fork=1andj =2, corresponding to cells bearing amplifications of gene
Gz only;

E(k,1,n) =1 + b - b(au(k) + ax()]E(k,1,n —1)+

b Ji‘l’ a(ik) E (i,1,n-1) 3)
i=1

for k =2 and j = 1, corresponding to cells carrying amplifications of
gene G only, and

E(k,jn)=[1 +b—b(on(k) + co(DE(k,jn-1)+

k-1
b X i OEGjn 1)+

i=1

j-1
b oL, EK,i,n ~1), 4)

i=1
for k =2 andj =2, corresponding to cells bearing amplifications of both
genes.

Taking into account the natural cell mortality, 4, we obtain the exact

expectation using the formula

EM(k,j,n) = (1 — uY'Etkjin), kj=12,. .., (5)

where E(k,j,n) is computed correspondingly. Further analysis shows that
when natural cell mortality is constant, the relative frequency of cells
carrying a single copy of each gene (normal cells) tends toward zero:

. : blon(1) + ao(1) \ ™
lim g, = lim (1- 2O AN, (6)
with the rate of convergence depending on the amplification probabili-
ties, a1 and o, and on the number of cell generations, ». This analysis
indicates that resistant cells will dominate the tumor when the amplifica-
tion probabilities are large or when n is large. However, note that when o
is small, the limit will not be reached within a relatively short time i.e.,
when n is small.

As the copy number of oncogenes and protooncogenes observed in
human tumors is usually very limited [48], we assume that cell mortality
can be copy-number-dependent, (in this approach, k¥ may be any real
number). To account for this assumption, we use the following logistic
type function for cell mortality (and solution):

MK
WO - L o0 w0l = u9 = T @

where K is the cell’s carrying capacity for gene-copy number, 4(0) = uo
is the initial condition, and

Ho
1—po -
This copy-number-dependent cell mortality creates a natural limit to the
maximal gene-copy number in a cell and the process becomes nonlinear,
with the number of cells in all copy-number compartments reaching an
asymptote at a rate that is dependent on the different parameters and on
the function u(k) for k=1,2.... In the computations, we employ Eq. 7
for integer values of k. The significance of copy-number-dependent
natural cell mortality is demonstrated in Results, in which drug protocols
are superimposed on the models.

M=
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Appendix 2: formulating the effect of drugs

From the clinical point of view, cells in which the number of copies of
the G| gene exceed a certain threshold, k., may be resistant to a given
dose of drug A, and cells in which the number of copies of the G2 gene
exceed the threshold j. may be resistant to a given dose of drug B [38,
391. To account for these dose-dependent resistance thresholds, we refer
to four compartments of cells as follows: (1) cells that are k- and j-sensi-
tive, (2) cells that are k-resistant and j-sensitive, (3) cells that are j-re-
sistant and k-sensitive, and (4) k- and j-resistant cells.

Equations 1-5 are used for calculations of the distribution of cellular
gene-copy numbers during the growth of the tumor. For evaluations of
the effect of the drug on the sensitive cell compartments, we multiply the
right-hand side of Eq. 1-4 by the term 1 — d, where d represents the
fractional cell kill defined in the GA model.
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