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Abstract

The paucity of clinical treatment data on rare tumors, such as
mesenchymal chondrosarcoma (MCS), emphasizes the need in
theranostic tools for these diseases. We put forward and
validated a new theranostic method, combining tumor
xenografts and mathematical models, and used it to suggest
an improved treatment schedule for a particular MCS patient.
Growth curves and gene expression analysis of xenografts,
derived from a patient’s lung metastasis, served for creating a
mathematical model of MCS progression and adapting it to
the xenograft setting. The pharmacokinetics and pharmaco-
dynamics of six drugs were modeled, with model variables
being adjusted by patient-specific chemosensitivity tests. The
xenografted animals were treated by various monotherapy
and combination schedules, and the MCS xenograft model was
computer simulated under the same treatment scenario. The
mathematical model for xenograft growth was then up-scaled
to retrieve the MCS patient’s tumor progression under
different treatment schedules. An average accuracy of 87.1%
was obtained when comparing model predictions with the
observed tumor growth inhibition in the xenografted animals.
Simulation results suggested that a regimen containing
bevacizumab applied i.v. in combination with once-weekly
docetaxel would be more efficacious in the MCS patient than
all other simulated schedules. Weekly docetaxel in the patient
resulted in stable metastatic disease and relief of pancytope-
nia due to tumor infiltration. We suggest that the advantage of
weekly docetaxel on the triweekly regimen is directly related
to the angiogenesis rate of the tumor. Further validation of
this conclusion, and the theranostic method we provide, may
facilitate personalization of solid cancer pharmacotherapy.
[Cancer Res 2008;68(21):9033–40]

Introduction

Mesenchymal chondrosarcoma (MCS) is a rare disease that
accounts for about 1% of all chondrosarcomas. Overall, 5-year
survival is 55%. This disease usually follows an aggressive course,
with a high rate of distant metastases (1, 2). Lack of efficacious

therapies for this and other rare tumors that progress rapidly
accentuates the need to develop accurate, predictive personaliza-
tion tools in a timely fashion.
Prediction of personalized therapy, or theranostics, is the process

of selecting the best treatment for a given patient by accounting for
patient-specific factors, such as gender, age, and genetic character-
istics. A possible theranostic solution is to assess the relative
efficacy of various treatments in laboratory animals, which bear the
patient’s cancer (3). However, xenograft models suffer from three
major impediments: slow, costly, and labor-intensive cellular
acquisition from tumor biopsies and xenograft growth; animal
physiology not reflecting the human pharmacokinetics (PK); and
xenograft methods not accounting for patient safety.
Underlying these impediments is the complexity of the involved

dynamics due to which one cannot estimate, by intuition alone, the
relationships between measurable molecular biomarkers and the
behavior of the organism as a whole. In contrast, mathematical
models formally and systematically describe the major biological
processes that relate the measured biomarkers to the phenotype in
question. By integrating these mathematical models into compre-
hensive computer algorithms, one can compute what will be the
effect on the phenotype of changes, even small changes, in
biomarker levels. In theranostics, laboratory experiments in
xenografted animals could be used in conjunction with mathe-
matical models for the pathologic and physiologic growth
dynamics and for drug PK and pharmacodynamics (PD).
Mathematical models for tumor progression (4–6), cancer

therapy (7–10), and related genetic (11, 12), hematologic (13, 14),
and immunologic processes (15, 16) have been developed. Using
these models, the efficacy of various drug monotherapy and
combination schedules was predicted (7, 8, 14, 15, 17, 18). These
computer-implemented models allow clinicians to analyze the
effects of drug regimens on disease progression, as well as provide
the power to check various biomarkers for their suitability to
represent different aspects of the disease in question. New methods
for treatment optimization have also been developed, which grade
the therapeutic potential of specific regimens according to clinical
criteria, such as efficacy/toxicity ratio (17, 19). The biological
process models, in conjunction with the optimization methods,
introduce into clinical oncology a quantitative prediction-based
decision-making facility.
Several preclinical and clinical trials have been carried out for

testing the prediction accuracy of mathematical model for tumor
progression (20–24). In the present work, we applied a validated
model for vascular tumor progression (see below) to create a novel
theranostic method for a large class of anticancer drugs. The
method was validated in xenografts derived from a MCS patient’s
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lung metastasis and then used for predicting an improved therapy
for the patient himself.
By controlling its variable values, the validated model was

adapted to describe the metastatic tumor growth of a specific MCS
patient as well as of its xenografted biopsy. We used these two new
models to analyze the reasons underlying the relative advantage of
one treatment option over another.

Materials and Methods

The Patient
A 45-y-old white male was in excellent health until a growing mediastinal

mass was found in 2004. His primary tumor was resected and identified
histologically as MCS. Despite the initial resection, multiple new bilateral

pulmonary nodules were discovered 30 d after the operation. Despite

aggressive chemotherapy with ifosphamide, cisplatin, and etoposide for six
cycles, VACA (vincristine, doxorubicin, cyclophosphamide, and dactinomy-

cin) for 2 cycles, and sunitinib p.o. for 8 wk, the patient progressed with

additional liver and bone metastases. As a consequence of prolonged

chemotherapy and documented bone marrow infiltration, the patient
suffered severe myelosuppression with pancytopenia.

Study Design
The workflow of this study is described schematically in Supplementary

Fig. S1.
Tumor fragments were taken from lung metastases of the MCS patient

and implanted in mice. This xenograft model was established and amplified

until sufficient tumor was available to implant a control and several
treatment groups. In this model, cells are only propagated directly as

smaller pieces from a previous xenograft and never propagated as a cell line.

Mice were divided into groups, each treated by different drug regimen, in

addition to a control group of untreated animals. In parallel to the
laboratory work, a general mathematical model for vascular tumor growth

dynamics was adapted to describe the growth of untreated xenografts of the

MCS patient’s lung metastases. In silico experiments, similar to those

performed in vivo , were conducted to predict growth of MCS xenografts and
their response to various drug therapies. This was done by simulating the

adapted tumor growth model in conjunction with the relevant PK/PD

models and the particular dosing regimens. Where available, patient-

specific chemosensitivity information was used to fine-tune the PD models.
Otherwise, only publicly available data were used for the mathematical PK

and PD models of the drugs in the xenograft experiments. Following the

initial assessment of model prediction accuracy (25), the variables of several
drug models were reevaluated and the accuracy was assessed again.

Subsequently, the mathematical model was adjusted to describe the

patient’s metastatic growth dynamics. This was done using gene expression

analysis of key proteins in mice and human and various treatment regimens
were tested for efficacy in the MCS patient.

Experimental Setup
Immunohistochemistry. Tissue from the primary sarcoma was

removed after surgery and fixed in 10% buffered formalin and embedded
in paraffin. Tissue sections of 5 Am were deparaffinized in xylene and

rehydrated in increasing concentrations of ethanol. Endogenous peroxidase

activity was quenched with 0.01% H2O2, sections were boiled in 0.01 mol/L
citric acid (pH 6.0), and nonspecific binding was blocked with 10% normal

rabbit serum. After washing, rat anti-mouse CD34 monoclonal primary

antibody (PharMingen) specific to vascular endothelium was applied at

25 Ag/mL and incubated overnight at 4jC. After washing in PBS,
biotinylated rabbit anti-mouse antibody, diluted 1:100, was applied followed

by incubation at room temperature for 30 min. After washing again in PBS,

avidin-biotin complex (Vector Laboratories), diluted 1:25, was applied and

incubated at room temperature for 30 min and washed again in PBS. Tissue
sections were developed with diaminobenzidine and peroxide and counter-

stained with hematoxylin. Microvessel density (MVD) was assessed by

counting the microvessels at �200 in a field that had the highest

vascularization by scanning at �40 (12) and then converted to MVD/

mm2. Stained slides were examined blind and were also scored from one to
four with increasing vascularity.

Animal model. For establishment and propagation, tumor fragments

obtained from the MCS patient were s.c. implanted using an 11-gauge

cancer trocar on the right flank of male CD-1 nude mice, as we assumed

that mouse flank provides a good mirror of primary sarcoma growth in the

soft tissue microenvironment of the patient from which it originated. Mice

were weighed twice weekly and tumor measurements were taken with a

Vernier caliper twice weekly, beginning 7 d after implantation. Tumors were

considered established once growth reached log stage as determined by

tumor measurements. Once established tumors reached a predetermined

volume (1–3 cm3), they were excised and sectioned into 15 to 30 mm3

fragments, which were implanted s.c. as above; implantation was unilateral

on the right flank. Once tumors grew to 50 to 150 mm3 in size, animals were

pair matched by tumor size into treatment and control groups. The animals

were ear tagged and followed individually throughout each experiment.
Data collection and analysis. Tumor volume was calculated by

conversion of two-dimensional caliper measurements as follows (19):

V ¼ 1

2
W 2L ðAÞ

where V, W, and L are the tumor volume, width, and length, respectively.

Mean tumor growth inhibition (TGI) of each treated group was compared
with vehicle control and a TGI value was calculated using the following

formula:

TGIð%Þ ¼ 100 � 1� T � T0

C � C0

� �
ðBÞ

where T0 and C0 are initial tumor sizes of the treated and the control tumor,

respectively, and T and C are sizes of treated or control tumor, respectively.
In vitro proliferation assays. Patient-specific tumor cells were obtained

from xenografts, generated by inoculation of lung metastases into

immunocompromised mice, which were collected when they had grown

beyond 150 mm3 in size. The tumors were minced into small pieces

(<1 mm), digested for 2 h with collagenase-DNase, mechanically dissociated,

and passed through sterile nylon mesh to produce single-cell suspensions.

Viable tumor cells were enriched by elutriation and Ficoll-diatrizoate

density centrifugations (26). Tumor cell suspensions were plated in

microtiter wells (50,000 per well) and incubated in the presence or absence

of the indicated drugs or combinations for 4 d in 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT; ref. 27) or 7 d in the differential

staining cytotoxicity (DiSC; ref. 28) assays.

Mathematically Modeling Vascular Tumor Growth
A mathematical model of angiogenesis-dependent tumor dynamics and

its underlying assumptions is described in detail elsewhere (4, 5, 24). The

reader is referred to Fig. 1 in ref. 24 for a schematic representation of the

model. The model describes three main interactive growth dynamics: of

tumor cells, of blood vessel formation (angiogenesis), and of new vessel

maturation.
Generally, our model assumes that the tumor volume is formed by living

cells, which undergo mitosis or death, and dying cells, which are

progressively eliminated. The living cells consume nutrients and secrete

proteins that affect angiogenesis. We distinguish between two types of

vessels, mature and immature, which differ in their perfusion efficiency.

Mature vessels are coated by pericytes, mesenchymal-like cells, which

support these vessels and enable improved blood flow (29, 30). The

immature vessels are only tubes of endothelial cells, which are more ‘‘leaky’’

than the mature ones, and conduct oxygen and nutrients less effectively to

the tumor (31, 32). Another property of immature vessels in our model is

their higher degradation tendency. The degree of tumor vascularization

strongly affects its growth rate: higher and more effective vascularization

triggers vigorous proliferation of tumor cells while inhibiting angiogenesis.

In contrast, insufficient vasculature causes hypoxia and starvation of the

tumor tissue, thus inhibiting cell proliferation and promoting angiogenesis

(33–37). Four proteins that are related to angiogenesis are modeled:
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vascular endothelial growth factor (VEGF), platelet-derived growth factor

(PDGF), angiopoietin-1 (Ang-1), and angiopoietin-2 (Ang-2). The growth
factor VEGF drives angiogenesis by inducing endothelial cell proliferation

and by serving as a survival factor for immature vessels. PDGF drives

maturation by inducing the proliferation of pericytes, which coat the
immature vessels and turn them mature. The proteins Ang-1 and Ang-2 also

affect the processes of vessel maturation and destabilization. The protein

Ang-1 promotes vessel maturation by facilitating the binding of free

pericytes to the extracellular matrix. In contrast, Ang-2 causes pericyte
dropout, thus promoting vessel destabilization (38, 39).

Personalizing the MCS Patient Model
The growth of six untreated xenografts was monitored for estimating the

variables of the MCS patient tumor model when xenografted in mice. Only
three of them actually grew in size. Results of histopathologic assays of the

patient’s lung metastasis (e.g., tumor density, mitotic index, necrotic index,

and vessel density) were used to define valid variable ranges in the
evaluation process. Twelve model variables common to all the xenografts

were evaluated. In addition, two variables, which represent the vascular bed

at implantation site, were evaluated for each xenograft individually. Two

additional xenograft growth curves were monitored for validating model
predictability.

Mathematically Modeling PK/PD
We adopted linear compartmental PK models for all the drugs in this

study (see refs. 40, 41 for general reviews on compartmental PK modeling).
Each effect of the drug is mathematically defined as a function of drug

concentration in a predefined model compartment. In general, the

concentration-effect relationship is defined using a sigmoid function (42):

EðCÞ ¼ Emax � Emax �Emin

1þ ðC=CnorÞm ðCÞ

where E is the measured effect at the given plasma concentration C ;

Emax and Emin are the maximal and the minimal possible effects,

respectively; Cnor is the drug concentration that produces the effect that
equals to the average of Emax and Emin; and m is the curve slope at the

point [Cnor; E(Cnor)]. However, when the available information does not

permit a reliable reconstruction of the variables for the sigmoid function,
a more simplistic linear relationship is used:

EðCÞ ¼
Emin 0 � C < Cmin

Emin þ Emax�Emin

Cmax�Cmin
� ðC � CminÞ Cmin � C � Cmax;

Emax Cmax

8<
: ðDÞ

where Emax and Emin are the bounding maximum and minimum effects,
respectively, and Cmax and Cmin are the respective drug concentrations

that cause these effects.

The model of drug effect depends on its actual mechanism of action. For

example, the effect of a cytotoxic drug, such as docetaxel, is modeled as a
fraction of cells that are killed during the current time step (Eqs. C and D).

Thus, in the context of docetaxel, Emax and Emin (Eqs. C and D) are taken as

1 and 0, respectively. The overall effect on treated tumor shrinkage

compared with the untreated tumor is calculated by Eq. B.
The variable identification of the MCS model and the various PK and PD

models was performed using a cross-entropy method, described in ref. 43,

as well as experimental records of xenograft dynamic and publicly available

PK data. The sources for PK and PD data can be found in Supplementary
Tables S1 and S2, respectively.

Personalizing PK/PD Models Using Xenograft Experiments
Six drugs and their combinations were tested in mice bearing xenografts

from the patient’s cancer tissue to determine the best possible treatment:

bevacizumab, docetaxel, doxorubicin, gemcitabine, irinotecan (CPT-11), and
sorafenib. Results of in vitro proliferation assays of the patient’s tumor cells

were used to establish patient-specific concentration-effect curves for the

chemotherapeutics (docetaxel, gemcitabine, CPT-11, doxorubicin, and

docetaxel/gemcitabine combination). Two different concentrations of each
drug were tested, enabling to construct linear dose-response functions

(Eq. D). Response was measured using DiSC and MTT methods and

concentration-effect equations were constructed separately for each
method and then averaged. For docetaxel and gemcitabine/docetaxel, only

DiSC results were used for parameterization. These data were modeled as

the fraction of cells killed during the current time step.

Modeling PD of targeted drugs (bevacizumab and sorafenib) was based
on relevant data of treated lung cancer xenografts and was implemented as

a sigmoid dependence (Eq. C). In our mathematical model, we included

bevacizumab single-action mechanism as a VEGF inhibitor and that of

sorafenib triple-action mechanism (i.e., direct inhibition of tumor
maturation, inhibition of pericyte activity, and decreasing the cell

proliferation rate). The estimated individualized PD was combined with

the corresponding PK to yield a complete PK/PD model. No PK
individualization was performed in this work.

To model drug combinations, the independent effects of each drug in the

combination were added. An additive effect was assumed due to lack of

quantitative information on potential PK/PD interactions. An exception is
the case of docetaxel/gemcitabine combination, where data from the

patient-specific in vitro proliferation assays were available. Theoretically, the

combined effects of docetaxel and gemcitabine may be synergistic or

antagonistic depending on the type of tumor cells and on the order of drug
administration (44, 45). PK interactions are partially responsible for the

dependence of the combined effect on drug sequencing (45). As the

chemosensitivity tests are PK independent, and due to the shortage of
quantitative data, we assumed that no PD interactions exist between the

modeled drugs.

Simulating MCS Xenograft Dynamics and Response to Drug
Treatment
The full PK/PD models of numerous therapy schedules were simulated

in conjunction with the MCS xenograft model. Mouse body weight was
taken as 30 g. Efficacy was measured in terms of TGI (Eq. B). As stated

above, necrotic tumor cells do not disappear from the system

immediately, but are eliminated with a finite rate, and therefore

contribute to tumor volume. Thus, the control and treated tumor sizes
in Eq. B may refer to the total number of cells, or to living cells alone,

resulting in TGI values that consider the tumor volume as a whole (TGIT)

or only the living fraction (TGIL).

Xenograft simulations were carried out for a period of 22 d, similar to the
period for TGI calculations in the experimental setup.

Validating the Model Predictions
Growth of MCS xenografts treated under various therapies was

monitored for 22 d after treatment initiation. Model prediction accuracy

Figure 1. Growth in mouse of a tumor derived from a lung metastasis of a MCS
patient. Simulation results of the MCS xenograft model (line ) compared with
experimental measurements of tumor size in a test mouse (circles). Tumor
cells from the MCS patient biopsy were grown in vitro and implanted into the
animal on day 0.

Weekly Docetaxel
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was calculated as follows. For the control group, the growth of the tumor

during the experiment, G , is given by

G ¼ C

C0
ðEÞ

where C0 and C are the initial and final sizes of untreated xenografts,

respectively.
Prediction accuracy, A , for the control group was calculated using the

observed, Gobs, and calculated, Gcalc, G values as follows.

Acontrolð%Þ ¼ 100 � jGobs �Gcalcj
Gobs

� �
ðFÞ

Prediction accuracy for the treatment groups was calculated using the
observed and predicted TGI values, TGIobs and TGIcalc, respectively.

Atreatedð%Þ ¼ 100 � jTGIobs � TGIcalcj
TGIobs

� �
ðGÞ

Refining the Models
Following the initial assessment of prediction accuracy, the PK and PD

models of each drug were independently revisited by detailing the action
mechanisms of the involved biological drug models and by additional

refinement of PK/PD variables. Only publicly available data were used in this

process. Unlike the original models, the reviewing process was performed only

after receiving the experimental xenograft sensitivity. However, these were
blinded in the refinement process. Thus, the results belowmay be regarded as

prospective ones. Results of the initial assessment are also reported (25).

Simulating Tumor Dynamics and Response to Drug
Treatment in the MSC Patient
The personalized disease model of the MCS xenografts served as the

basis for the human model. Gene expression analyses of key proteins (e.g.,
VEGF; ref. 46) in the patient’s metastases and in the xenografted tumor

(denoted as Met/F1 ratio) were used to scale relevant xenograft variables.

For example, gene expression analysis shows that the Met/F1 ratio of Ang-2

is 0.7. Therefore, values of corresponding variables in the xenograft model
were multiplied by this coefficient to yield a new value in the human model.

Published data on the involved drugs were used to model their PK in

human. We assumed that administering equivalent doses to a mouse and a
human would result in effects of similar maximum magnitude but with

different time profiles. Therefore, the same PD functions used in mice

modeling were used in human models [i.e., patient-specific concentration-

effect curves for cytotoxic drugs (CPT-11, docetaxel, doxorubicin, and
gemcitabine) and literature-based functions for bevacizumab and sorafe-

nib]. Note that for simplicity we describe here only our predictions about

drug efficacy. Predictions about drug toxicity will be discussed elsewhere.

The full PK/PD models were simulated in conjunction with the MCS
human model under various therapy regimens. A treatment period of 90 d

was simulated, but simulations were carried out for a total period of 120 d

to allow confirmation of response 4 wk after the end of treatment.

Table 1. Chemosensitivity-tested response of the MCS
patient’s tumor cells to cytotoxic drugs, as measured by
DiSC and MTT methods

Drug Concentration

(Ag/mL)

Response

DiSC MTT

Docetaxel 37.5 96 N/A

18.75 40 N/A
Gemcitabine 260 14 26

130 10 15

Gemcitabine + docetaxel 260/37.5 30 N/A
130/18.75 30 N/A

Doxorubicin 1.2 59 57

0.6 20 27

Irinotecan 30 48 18
15 24 20

NOTE: A higher response indicates a lower number of surviving cells

(i.e., better efficacy).
Abbreviation: N/A, not available.

Table 2. Mathematical model validation

Regimen Results* Accuracy
c

No. Treatment Dose (mg/kg) Route Schedule Observed Predicted

— Control — — — 2.11 2.01 94.8

1 Irinotecan 100 I.p. q7dx3 59.40% 57.16%. 96.2

Bevacizumab 10 I.p. q3dx10
2 Gemcitabine 40 I.p. q3dx4 109.27% 76.61% 70.1

Docetaxel 6.3 I.v. q2dx3

Bevacizumab 10 I.p. q3dx10

3 Doxorubicin 2 I.v. qdx5 56.39% 65.31% 84.2
Bevacizumab 10 I.p. q3dx10

4 Sorafenib 60 P.o. qdx10 38.85% 40.38% 96.1

5 Sorafenib 60 P.o. qdx10 87.22% 71.02% 81.4
Bevacizumab 10 I.p. q3dx10

Average accuracy 87.1%

NOTE: TGI of the different treatment schedules, as predicted by the mathematical model, compared with those measured in mice bearing xenografts

originating from MCS patient’s tumor.
*Results for control group: ratio of tumor size at day 22 to initial tumor size. Results for treatment groups: TGIT.
cAs calculated using Eq. F for control and Eq. G for the treated cases.
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Results and Discussion

Experimental results. Personalized PD variables of the cytotoxic
drugs docetaxel, doxorubicin, gemcitabine, and CPT-11 were
estimated using the chemosensitivity tests of the patient’s tumor
cells to the respective drugs. In addition to assessing the sensitivity
to a single compound, docetaxel/gemcitabine combination was also
tested (Table 1). This combination (docetaxel, 260 Ag/mL; gemcita-
bine, 37.5 Ag/mL) was found in vitro to be less efficacious than
gemcitabine alone (70% versus 14% surviving cells, respectively).
Moreover, after 1:2 dilution, the docetaxel/gemcitabine combination
became completely inactive (100% surviving cells).
The xenografted animals were treated by five different drug

schedules (regimens 1–5; Table 2). Tumor sizes of the treated and
control animals were measured and registered at treatment onset
(day 0) and on day 22. The calculation of TGIT was performed
according to Eq. B. In our experiments, the TGIT values for the five

regimens ranged from 38.9% (sorafenib monotherapy, regimen 4) to
109.3% (bevacizumab/docetaxel/gemcitabine, regimen 2).

Validating the predictions of the mathematical model. The
mathematical model successfully retrieved the growth curves of the
untreated MCS xenografts, including the calculated 3-month lag
period between implantation and growth (Fig. 1). Validated for
untreated tumor dynamics, the model was then simulated under
different treatment regimens. The values of TGIT were calculated
from the predicted tumor sizes (Eq. B). Model predictions were
compared with the experimentally observed values. In the initial
assessment, the average prediction accuracy was 81.9% (25). Having
refined the drug models, the accuracy of model predictions
increased to 87.1% (Table 2). The analysis below refers to the
results obtained using the refined models.
The predicted efficacy ranking of the different treatment

regimens was correct, except for the swapping of rank 3 and 4

Table 3. Simulated docetaxel/bevacizumab combinations

Regimen Total dose TTP (d)
c

No. Drug Dose Schedule

6 Docetaxel 45 mg/m2 q7dx12 540 mg/m2 20.25

Bevacizumab 15 mg/kg q21dx4 60 mg/kg

7 Docetaxel 60 mg/m2 q7dx12 420 mg/m2 22.25

Bevacizumab 15 mg/kg q21dx4 60 mg/kg
8 Docetaxel 75 mg/m2 q7dx12 900 mg/m2 19

Bevacizumab 15 mg/kg q21dx4 60 mg/kg

9 Docetaxel 90 mg/m2 q7dx12 1080 mg/m2 29.75
Bevacizumab 15 mg/kg q21dx4 60 mg/kg

10 Docetaxel 45 mg/m2 q14dx6 270 mg/m2 18.5

Bevacizumab 15 mg/m2 q21dx4 60 mg/kg

11 Docetaxel 60 mg/m2 q14dx6 360 mg/m2 18
Bevacizumab 15 mg/kg q21dx4 60 mg/kg

12 Docetaxel 75 mg/m2 q14dx6 450 mg/m2 17.75

Bevacizumab 15 mg/kg q21dx4 60 mg/kg

13 Docetaxel 90 mg/m2 q14dx6 540 mg/m2 18.5
Bevacizumab 15 mg/kg q21dx4 60 mg/kg

14 Docetaxel 45 mg/m2 q21dx4 180 mg/m2 18.5

Bevacizumab 15 mg/kg q21dx4 60 mg/kg
15 Docetaxel 60 mg/m2 q21dx4 240 mg/m2 17.75

Bevacizumab 15 mg/kg q21dx4 60 mg/kg

16 Docetaxel 75 mg/m2 q21dx4 300 mg/m2 17.5

Bevacizumab 15 mg/kg q21dx4 60 mg/kg
17 Docetaxel 90 mg/m2 q21dx4 360 mg/m2 18.25

Bevacizumab 15 mg/kg q21dx4 60 mg/kg

18 Docetaxel 45 mg/m2 q28dx3 135 mg/m2 18.5

Bevacizumab 15 mg/kg q21dx4 60 mg/kg
19 Docetaxel 60 mg/m2 q28dx3 180 mg/m2 17.75

Bevacizumab 15 mg/kg q21dx4 60 mg/kg

20 Docetaxel 75 mg/m2 q28dx3 225 mg/m2 17.5

Bevacizumab 15 mg/kg q21dx4 60 mg/kg
21 Docetaxel 90 mg/m2 q28dx3 270 mg/m2 18.25

Bevacizumab 15 mg/kg q21dx4 60 mg/kg

22 Docetaxel 25 mg/m2 q7dx12 360 mg/m2 18.75
Bevacizumab 15 mg/kg q21dx4 60 mg/kg

NOTE: The resulting predictions of tumor dynamics curves are presented on Fig. 2A .

Abbreviation: TTP, time to progression.
cSimulated time to progression (F0.25 d).
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(regimens 3 and 1). Note the small difference in the experimental
TGI values of these two regimens—59.4% for regimen 1 and 56.4%
for regimen 3. This may suggest that the difference between these
two schedules is not significant.
The most accurate prediction was achieved in the bevacizumab/

CPT-11 combination (regimen 1). The model-predicted and
measured TGIT values were 57.2% and 59.4%, respectively (accuracy
of 96.2%). The two most efficacious regimens, in terms of TGI, were
regimen 2 (bevacizumab/gemcitabine/docetaxel) with measured
TGIT being 109.3% and regimen 5 (bevacizumab/sorafenib) with
measured TGIT being 87.22%. Our prediction for regimen 2 (TGIT =
76.6% predicted versus 109.3%measured) was the less accurate of all
the predictions (accuracy of 70.1%). Nevertheless, it was correctly
identified as the most potent schedule. Note that excluding this
lowest accuracy value results in mean accuracy of 90.5%.
Antagonism between gemcitabine and docetaxel was experi-

mentally observed in vitro using the patient’s tumor cells (Table 1).
This result is corroborated by our model simulations, which
suggest that removing gemcitabine from regimen 2 (bevacizumab/
gemcitabine/docetaxel) yields a slightly larger TGIT: 78.6% versus
76.6%. However, whereas the in vitro result is probably related to
the drug sequencing effects on cell kinetics, we believe that the
in silico predicted antagonism better reflects the in vivo setting,
where the added, relatively large, cytotoxic effect of the two drugs
may generate intensive angiogenesis, eventually leading to
excessive tumor recovery.

Proposing an improved treatment for the MCS patient. Drug
efficacy experiments in the personalized xenograft model alone are
of limited use as a theranostic tool (see above). Having validated our
mathematical model, we could use it, jointly with the results of the
empirical xenograft experiments, for analyzing putative treatment
alternatives for the patient so as to maximize the TGI (Eq. B).
Many clinical trials have been reported comparing q7d with q21d

docetaxel regimens for various indications. Nevertheless, no
definitive conclusion about the superiority of either dosing interval
can be made. In addition, several toxic effects have been associated
with weekly regimens (47). Because our preliminary simulations
pinpoint the bevacizumab/docetaxel combination as superior to
most other therapies in suppressing the growth of the MCS
patient’s xenografts (25), we wished to test whether the patient
would benefit from weekly docetaxel administrations. To this end,
a series of bevacizumab/docetaxel regimens was simulated
(regimens 6–21; Table 3). In all the studied regimens, delivery of
triweekly i.v. doses of 15 mg/kg bevacizumab combined with four
alternative docetaxel doses (45, 60, 75, and 90 mg/m2) in four
different dosing intervals (q7d, q14d, q21d, and q28d) was
simulated. The associated treatment efficacy, in terms of time to
progression and final tumor sizes, was predicted; time to
progression is defined as the time needed for 20% increase in
tumor size. Results are summarized in Table 3 and in Fig. 2A ,
where the predicted tumor growth curves of the 16 simulated
treatments are shown. Our simulations suggested that once-weekly
regimens (Fig. 2A, filled circles) would be superior to other
simulated regimens for the MCS patient, both in terms of final
tumor size and time to progression. The improvement in tumor
dynamics that is predicted for once-weekly regimens is caused by
the interdosing interval and not by increasing the total drug dose:
dividing the total docetaxel dose from regimen 16 to once-weekly
dosing interval [i.e., doses of 25 mg/m2 (regimen 22)] results only in
a minute decrease in the predicted efficiency compared with
regimen 7 (75 mg/m2 q7d). Both these weekly regimens are

predicted to be more efficacious than the triweekly regimen 16
(Fig. 2). This result supports theory, suggesting that interdosing
intervals per se significantly affect drug efficacy (7, 8).

Effect of angiogenesis on treatment outcome. To understand
the mechanism underlying the predicted q7d versus q21d
superiority, we artificially changed various model variables and
examined their effects on docetaxel efficacy. By altering the kinetic
rate of new vessel formation, as influenced by VEGF secretion,
density of VEGF receptors, etc., we could test the effect of
angiogenesis on docetaxel effect over time. Our mathematical
model simulations show that a single administration of the
cytotoxic docetaxel perturbs the dynamic equilibrium between
the living tumor cells and the blood vessels that support them, thus
triggering a cascade of tumor recovery events. The more intensive
the angiogenesis, the faster the tumor recovery is (Fig. 3A and B).
Comparing the simulated tumor size in the MCS patient, after a

single docetaxel dosing, with the predicted tumor size with no
treatment, we calculated the expected TGIL at each time point
according to Eq. G. The calculated TGIL on day 7 was 46%. On day
21, the effect almost disappears, as shown by a TGIL value of only
10%—decrease of 36% (Fig. 3A). When the rate of new vessel
formation is halved, the predicted reduction in TGIL values from

Figure 2. Effects of docetaxel scheduling on tumor dynamics as predicted by
simulations of the in vivo MCS patient’s disease model under 16 bevacizumab
and docetaxel treatment combinations. Schedules include bevacizumab
(15 mg/kg i.v. q21d) combined with docetaxel (1-h i.v. infusion of 45, 60, 75, and
90 mg/m2; four docetaxel schedules are presented: q7d, q14d, q21d, and
q28d; A) and docetaxel [i.v. infusion applied in three different schedules:
75 mg/m2 q21d (regimen 16), 45 mg/m2 q7d (regimen 7), and 25 mg/m2 q7d
(regimen 22)]. The simulated treatment period is 90 d.
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day 7 to day 21 is only 29% (39% and 10%, respectively), indicating
slower recovery from drug-induced tumor inhibition. In contrast, if
the rate of new vessel formation is doubled, compared with that
calculated for the real MCS patient, the difference in the extent of
tumor inhibition by docetaxel dose, between day 7 and day 21,
increases to 92%: 69% at day 7 versus a negative value of �22% in
day 21. The negative TGIL value means that at this point, the
number of living tumor cells is larger than it would have been if no
treatment were administered. The dependence of tumor recovery

rate on the rate of new vessel formation is almost monotonic over a
wide range of kinetic rates (Fig. 3B ). This suggests that
angiogenesis-intensive tumors can be controlled by more frequent
docetaxel dosing, whereas angiogenesis-poor tumors may be
treated by less dense regimens. Adding to docetaxel, the anti-
VEGF monoclonal antibody bevacizumab is shown in our
simulations to slow down tumor recovery. The result is a predicted
TGIL value of 76% at day 7 compared with 45% without
bevacizumab. As time goes on, bevacizumab is eliminated, which
allows rapid tumor recovery resulting in 10% TGIL on day 21
(a difference of 66%).
This work does not address drug-induced hematopoietic toxicity

(48), which is the major dose-limiting factor in radiotherapy and
chemotherapy of cancer (49). However, in another work, the
superiority of calculated 10-day interdosing docetaxel intervals for
alleviating neutropenia was theoretically shown, supporting the
superiority of the weekly docetaxel regimens.6 A clinical decision
was made to proceed with docetaxel therapy in addition to
antiangiogenesis treatment with bevacizumab. For fear of aggra-
vating the severe pancytopenia with larger q21d doses of docetaxel,
a weekly schedule, as predicted here, was administered to the
patient. The patient had a dramatic response to therapy with a
marked decrease in serum alkaline phosphatase from bone and an
immediate substantial recovery of all three blood elements
(hemoglobin, WBCs, and platelet count). Soft tissue disease in
the lungs and liver remained stable and the patient enjoyed a
6-month period of good quality of life, ending only after pulmonary
progression of his disease to which he finally succumbed. Thus, a
combined experimental and modeling approach for treatment
personalization benefited this MCS patient.
Taken together, our results suggest that a methodology

combining xenografted biopsies and mathematical modeling has
promising prospects in personalized oncology. As our model had
predicted, the patient showed a markedly improved clinical course
after weekly docetaxel and bevacizumab combination. Our
prediction, about the superiority of once-weekly docetaxel in
patients with intensive angiogenesis, may explain observed
variability in the relative efficacy of q7d versus q21d docetaxel
regimens in cancer patients (47). This prediction should be
validated in the preclinical and clinical setting. On further
validation, it may aid physicians in identifying improved treatment
schedules for individual patients.
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Figure 3. Model simulations of MCS dynamics in the patient after a single
docetaxel dosing (75 mg/m2, 1-h i.v. infusion). A, estimated TGIL after a single
docetaxel dosing for tumors with different levels of angiogenesis intensity.
Angiogenesis intensity is determined by scaling the model variable, which
combines VEGF secretion and activity rates. Simulations using two arbitrary
scaling factors (SF ) are compared with those with estimated angiogenesis
intensity of the MCS patient and, in combination with bevacizumab (BEV ;
15 mg/kg i.v.), are presented. B, predicted decrease in TGIL from day 7 to day 21
following docetaxel administration as a function of angiogenesis intensity.

6 Z. Agur et al., unpublished results.
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