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Abstract 

Clinical trials have been traditionally carried out in a “trial and error” fashion, which 

is highly inefficient in measures of human and animal suffering, cost and time to 

market of the newly discovered compounds. Currently, pharmaceutical companies 

investigate various methods for increasing their productivity in drug development, in 

order to compensate for increasing costs and to avoid regulatory fiascos.  

 

The major drawback of the traditional system lies in the lack of a priori guidance 

about the potentially successful treatments.  The need for a change in paradigm of 

clinical trial design has been reiterated, and it has been suggested that the new 

paradigm should be based on formal methods for predicting disease progression 

under specific treatment regimens of given drugs or drug combinations.  

 

A complex set of mathematical models, denoted Virtual Patient Model, retrieving the 

dynamics of key biological, pathological and pharmacological processes in the body 

of a patient undergoing anti cancer drug treatment has been developed. The Virtual 

Patient Model has been employed for studying improved regimens for cytotoxic and 

cytostatic mono- and combination drug regimens and for selecting optimal 

personalized treatments. By simulating in the Virtual Patient Model in a population of 

patients, one can conduct Virtual Clinical Trials recreating and improving drug 

development. To this end a collection of Virtual Patients Models is created (denoted 

Synthetic Human Population). Each Virtual Patient in the population is represented 
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by a set of parameters for the Virtual Patient Model. The inclusive set of parameters 

represents the distributions of disease, physiological and PK/PD parameters in the 

population. The Virtual Clinical Trials can be employed in drug development in 

conjunction with an elaborate algorithm, Interactive Clinical Trial Design (ICTD), 

which provides a method for a step-by-step process of model prediction and in-vivo 

verification. The user can employ the ICTD for fine-tuning and testing the 

drug/disease/population models interactively with the “real” clinical trials, so that 

relatively early during development the Virtual Patient Model can be employed for 

checking the most appropriate treatment schedules for the drug, or for making an 

early  “No-Go” decision. The ICTD algorithm is expected to replace the current drug 

trial-and-error policy by a new policy of clinical trials, which will be based upon a 

gradual improvement and zeroing-in on the best prediction-directed treatment 

schedules.  
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1. Introduction 

The number of new drugs brought into the market has dropped significantly in the last 

few years, despite the substantial effort of pharmaceutical companies in medical 

research and development and in capital investments. In addition, the regulatory 

agencies have become more cautious about approving new molecular entities, in the 

wake of several fiascos of new. The resulting depleted pipelines may have serious 

consequences for industry, society and government, and a big crisis is foreseen if 

drug development becomes too risky and unprofitable. If the Pharmaceutical industry 

is to remain at the forefront of medical research and continue helping patients, it must 

become more innovative in reducing the development time and costs of new therapies 

("Pharma 2020 - Which path will you take?” (PriceWaterhouseCoopers, Report 

2008). 

 

Currently, the physical and toxicological properties of drug candidates are mostly 

studied in vitro, by screens to find molecules that “hit” a designated target. The most 

promising candidates are then selected to be tested in animals, and subsequently, in 

large scale clinical trials, essentially conducted by ‘trial and error’. Pharmacometric 

research develops models for the response-time profiles observed in a clinical trial. 

These models may be then used for designing further clinical studies, for deciding 

upon dosing strategies and for other developmental decisions. Pharmacometrics also 

analyzes dose-concentration-response data from trials to understand therapies with 

existing drugs, with the aim of allowing improved therapy. However, 

Pharmacometrics analyses are mostly retrospective, relying on large data bases 

obtained during the clinical trials. The Pharmaceutical industry needs a faster, 

cheaper and more predictive way of testing molecules before they go into the clinic.  

One strategy is to use "virtual R&D," i.e., R&D aided by computer simulations of the 

human body, to dramatically shorten the period of development of new drugs, and 

substantially reduce the chance of clinical failure, for substantially reducing costs 

across clinical development. 
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Research shows that drug effects may crucially depend on the internal dynamics of 

the cancer growth processes, as well as on the relevant patient’s physiology. These 

aspects might often be too complex to be estimated by the naked eye, and slight 

changes in the treatment schedule may be critical for the effect (1-4). In theory, if all 

potential treatment schedules could be tested, considering all the available 

information on the involved biological processes, pathological processes and the 

momentary effect of the drug on every element of these processes, one could, a-priori, 

suggest a theoretical set of the most promising treatment schedules for a given 

indication, or, even, for a given patient. Subsequently, these promising schedules 

would be clinically tested, thus saving human resources and time, and helping to 

achieve maximal possible therapeutic effects of the tested drug. 

 

Moreover, such a method would enable to take off the shelf drugs with valid 

properties, which failed during the development process, due to insufficient efficacy, 

or limitations of toxicity, which could possibly be overcome by modifying the 

treatment schedule. In addition, it would enable a Go–NoGo decision to be made 

early during the clinical trial process. 

 

In this chapter we will discuss the development of the Virtual Patient Model, and its 

use for identifying improved drug schedules. The Virtual Patient Model of a solid 

cancer disease includes a mathematical model of tumor progression, and we will 

explain how such a model is constructed and simulated. We will briefly describe 

retrospective clinical validation of the basic Virtual Patient model. Subsequently, we 

will discuss how Synthetic Human Populations (SHP) are created that transfer the 

real-life distribution of parameters into the Virtual Patient model. Interactive Clinical 

Trial DesignTM (ICTD; (5), for use of the SHP-implemented Virtual Patient Model in 

virtual clinical trials, will be discussed and compared to adaptive clinical trials. The 

ICTD involves massive simulations of a population of the Virtual Patient Models, 

reflecting the patient population (to be denoted Synthetic Human Population). The 

ICTD enables the drug developer to generate, fine-tune and validate a reliable 

drug/disease/host model for forecasting improved treatments during an ongoing 
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“real” clinical trial. Thus, relatively early during development, i.e., by the end of 

Phase-I, and no later than in mid-Phase-II, the model already contains the PK/PD 

drug parameters, to be embedded in the Virtual Patient Model. At this stage numerous 

drug schedules, termed “infinite regimen space”, are simulated for any desired 

indication, and optimization methods are employed for selecting, among the vast 

number of simulation scenarios, those yielding best results according to the list of 

specifications set by the drug developer. This method carries little risk of yielding 

false predictions, since the algorithm has been designed so as to be continuously 

validated and improved by information derived in parallel from clinical trials. 

 

In this way one can identify the most appropriate patient-population/schedule for the 

drug, or alternatively, make a “NoGo” decision. The method is expected to replace 

the current drug trial policy, essentially one of “shots in the dark,” by a new policy of 

rationally designed clinical trials, which will be based upon a gradual improvement 

and zeroing-in on the best prediction-directed treatment schedules.  

 

2. Development of the Virtual Patient Concept 

The Virtual Patient model (Fig 1) is a set of multi-scale mathematical models that 

describe disease progression and the progression of relevant physiological toxicity 

processes. These models are simulated in conjunction with pharmacological models, 

fully accounting for the pharmacokinetics/pharmacodynamics (PK/PD) and dosing 

regimens of specific drugs or drug combinations. Simulation results are used for 

predicting the efficacy and toxicity of the drug under multitudes of putative treatment 

regimens. In addition, the platform of the Virtual Patient model includes powerful 

optimization algorithms, which select the best treatment for specific patient 

population, out of a large number of potential treatments. 
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Figure 1. The Virtual Patient of a vascular cancer disease in a nutshell.  
Mathematical models for the PK and the PD of the drug(s) are derived based on the available 
preclinical information (left panel). These are integrated into the mechanistic multiscale disease 
model and the relevant toxicity models. The latter are multilevel models describing molecular, 
cellular, tissue dynamics and the interaction between them. The PK\PD models integrated into the 
relevant biological process models are now simulated over a large range of potential treatment 
regimens, and regimen-associated efficacy and toxicity are predicted. Finally (right panel) powerful 
optimization algorithms are used for identifying the most appropriate drug regimen for particular 
endpoints set by the drug developer. 
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2.1 The basic Virtual Patient Model 

In the 1980s Agur suggested a mathematical model, which takes account of cell-cycle 

dynamics of tumor and host cellular dynamics. The model suggested that intermittent 

delivery of cell-cycle phase-specific drugs, at intervals equivalent to the mean cell-

cycle time, might minimize harmful toxicity without compromising therapeutic 

effects on target cells (Z-Method (6-7)). Subsequently, explicit general formulae have 

been derived for the growth or decay of cell populations that are subjected to repeated 

pulse delivery of cell-cycle phase-specific drugs (2), and an algorithm has been 

developed for calculating the required length of treatment for this regimen (8). 

 

On the basis of the above theory Agur and colleagues (9) have developed a heuristic 

optimization method, which uses Operations Research techniques for identifying 

improved drug schedules in any group of patients. The work focuses on developing 

the general concept of the optimization method, rather than on the particular 

implementation and hence, the much simplified, but already validated, cell-cycle 

model, briefly mentioned above and described below, was selected for describing 

disease progression. The heuristic optimization method resulting from this simplified 

approach admits dynamic mathematical models of any desired level of complexity 

and is employed by the Interactive Clinical Trial DesignTM (ICTD) method, also to be 

described below. 

 

The cell-cycle model, considers two types of target cells in the human body. The host 

cells, denoted h-cells, and the malignant cells denoted m-cells, which are, in fact, the 

tumor. Both types of cells may be damaged when exposed to drug treatment. Our aim 

is to reduce the number of m-cells, while maintaining a certain level of h-cells in the 

body. We assume that the lengths of the cell-cycle phases are deterministic and 

known, both for host and malignant cells. Both host and malignant cells are 

susceptible to the drug during some of the cell-cycle phases, denoted here the critical 

cell cycle phases. If a cell is exposed to drug treatment, typically chemotherapy, 

during part of its critical phase there is a chance that it will be eliminated. 
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Specifically, we assume that during each unit of time in which treatment is applied, a 

fraction of the cells which are in their critical phase will be eliminated. Our aim is to 

reduce the number of m-cells to a certain fraction of their initial level. However, in 

order not to cause irreversible damage to the patient, we must schedule treatments so 

that the number of h-cells will always remain above a fraction of its initial level. Cells 

of both types multiply, but not necessarily at the same rate. If the number of m-cells is 

reduced below the desired level, we assume that the remaining m-cells will not 

multiply anymore. 

 

We assume that treatments can be of variable length and can be given at any time. A 

solution, i.e., a treatment schedule, determines those time intervals in which treatment 

is to be applied. This model is computationally intractable, as it is proved to be NP-

complete, even in extremely simplified special cases. Consequently, an approach was 

put forward, aimed at obtaining good solutions that are not necessarily optimal. The 

approach solves the model by applying local search heuristics (9). 

 

2.1.1 A simple cancer progression model  

Let us denote by i  and is  the length of the cell cycle and the Critical phase, 

respectively, of i -cells, },{ hai . At the end of the cell cycle the cell may produce 

daughter cells. The average number of daughter cells produced by a single i -cell that 

reaches age i  is the growth rate in the i -cells' population and we denote it by ir . 

 

If the proportion of m-cells is reduced to a fraction a  of its initial level, then the 

patient is considered cured and the treatment may be stopped. In practice, the 

proportion of h-cells must remain above a fraction h  of its initial level during the 

entire treatment. If the proportion of h-cells falls below this level, the patient is 

considered dead. However, we will allow solutions that do not satisfy this condition 

to be tested, with the aim of achieving good solutions at a later stage of the process. 

In our model, the patient can only die as a result of the treatments' toxicity - death is 

not caused by the tumor. This model assumption would not result in solutions that 
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leave a patient without treatment, since growing cancer cells will quickly reduce the 

fitness to  . Hence, solutions that result in a patients' death due to treatment have 

higher fitness values than solutions that do not treat the patient at all. 

 

For each ][0,Tt , the state of the system is characterized by two ``density'' 

functions, ),( twni  },{ hai , that are defined for )[0, iw  . For iqp 0 , the 

number of i -cells whose age is in the interval ],[ qp  at time t  is 
dwtwni

q

pw
),(

= . In 

particular, the total number of i -cells at t  is 
dwtwntx i

i

wi ),(=)(
0=



. The units by 

which cells are cunted are normalized so that the initial quantity is 1=(0)ix . 

 
Initially, before treatments begins, it is assumed that the cell ages distribute uniformly 

along the life cycle, that is, i
i wn


1

=,0)(
, ][0, iw  . When chemotherapy is applied, 

the cell age distribution obtains some non-uniform shape, depending on the treatment 

schedule. 

 
With no treatment the number of a -cells is assumed to double during each cell cycle, 

that is, 2=ar . In reality we may find that the actual growth rate is lower. However, a 

growth rate of 2 defines the worst case scenario, and the solutions found for this case 

still hold when the rate is lower. The host cells' growth rate depends on their number. 

The growth rate at time t  is ))(( txr h , where )(xr  is a (non-linear) decreasing 

function that tends to 1 as x  goes to 1. Therefore, the growth of the host cells slows 

as they multiply. Note that our model assumes that although influenced by the total 

number of host cells, their growth rate is independent of the age distribution. 

  

We denote by i  the proportion of all i -cells that that are destroyed during one time 

unit of treatment (host or malignant). Note that different rates for h- and m-cells may 

be eliminated by newly developed drugs that are more aggressive to m-cells than to h-
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cells. A treatment policy (schedule) consists of the times at which specific doses are 

applied. 

 
Any policy that cures the patient without damaging more h-cells than is linically 

affordable is a good policy, and can be accepted as a solution of high quality to our 

problem. However, defining a most desirable policy is not an easy task, since both  

the time of cure, and the number of h-cells at time T  determine the quality of a 

treatment: The relative importance of each one of these factors has to be defined in 

order to refine the performance of the algorithm. The fitness function constructed to 

meet these criteria is 

  
 )())()(2)((=)( TxTxTxsfitness ahhhh    

 curedalivecuredalive IIcIcIc 321   

 .
__

)(1
__

curedalive I
K

cureoftime
I

K

deathoftime
  

 where aliveI  and curedI  are indicator functions stating the patients condition at the end 

of the treatment period. Detailed analysis of this fitness function follows in Section 

2.1.2.2. 

 

Our approach is to compute a regimen through numerical computations since 

theoretical analysis is possible only for very simplified models (8). To make the 

process computationally tractable, we measure time and age by discrete units of a 

given length. To make computations reasonably quick, we divide the cells' cycle into 

discrete time units, and assume that the number of cells is constant over this unit. 

Thus, treatment policy consists of the times, ][0,,,1 Ttt m  , at which treatments are 

given. 

 
The distribution of the cells' age is generated using the following simulation rule: 

When no treatment is given, all cells mature by one time unit, and the cells that have 

reached the end of their cell cycle multiply. When chemotherapy is applied, all cells 

mature by one time unit, cells that are in the critical phase are reduced by a given 

fraction, and the cells that have reached the end of their cycle multiply. 
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The growth rates are calculated using the following rules: The m-cells double their 

number at each cycle, therefore the m-cell growth rate always equals 2. In contrast, 

the population of h-cells can never exceed its initial level - there is no uncontrolled 

growth in the h-cells. Their growth rate is assumed to be the highest number not 

greater than 2 that will keep the total number of host cells at most 1. This growth rate 

becomes smaller as the host cells replicate. 

 

2.1.2 Optimization  

The generality of the above model renders it computationally intractable. Therefore, 

good, but not necessarily optimal, solutions were computed by different local search 

heuristics. 

2.1.2.1 Search algorithms 

Simulated annealing (SA) is one of the three search heuristics used in the study (9). 

It is a well-known heuristic (for details see (10-11)).  Here, we briefly describe the 

two other heuristics used in the mentioned study. 

 

 Threshold acceptance (TA) is a deterministic version of SA. The difference between 

the two heuristics lies in the criterion for making a downhill descent - accepting a 

solution s  for which )(<)( 0sfitnesssfitness , 0s  being the current best solution. In 

SA, downhill descent is made with a certain probability that depends on 

)()( 0sfitnesssfitness   and on the temperature that is gradually reduced as the 

simulated annealing process continues. In TA, the temperature is replaced by a series 

of descending thresholds ntt ,,0  . A solution s  such that )(<)( 0sfitnesssfitness  

will replace 0s  as current solution at stage i  of the process if 

itsfitnesssfitness )(>)( 0 . We refer the reader to (12) for further details. 

 

The TA parameters were tested in the mentioned work by running a series of different 

instances of the problem, and comparing the performances of the algorithm under 
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different parameter values. The series of thresholds that was taken was geometrically 

descending, and several values of a descent rate, noted as the reduction factor, were 

tried. The threshold was reduced after two complete searches of the entire 

neighborhood, which is similar to the rule used for reducing the temperature in SA. 

The algorithm terminates when two consecutive thresholds ended with the same 

fitness value, which is also similar to the SA termination rule. 

 

Old bachelor acceptance (OBA) is a modification of TA, where the threshold doesn't 

always decrease. In this method, the threshold depends on the acceptance or rejection 

of the several most recently tried solutions. The heuristic is described in (13), and was 

slightly changed to suit the specific problem at hand. Thus, the original algorithm 

used 0=0T  as the initial threshold, but here 0>0T  was used. The reason for this 

modification is that the first solutions tested, always cause an increase in the fitness, 

and, therefore, lowers the threshold rapidly. When these consecutive improvements 

stop, many solutions are rejected till the threshold enables another acceptance. 

 

2.1.2.2 Fitness function 

In the generic algorithms each treatment schedule is represented by a binary string of 

length T. Each bit in this string is equivalent to one time unit, say one hour, where a 0 

means that no treatment is applied during this hour, and 1 means that treatment is 

applied. For example, the string 110001 shows that treatment is applied for 2 hours, 

following which there is no detectable drug in the system during 3 hours, and again 

treatment is applied over a period of 1 hour. The length of this string can be 

determined by the user. Such a string is equivalent to a series of treatments, not 

necessarily of equal length, with drug-free system at variable intervals. 

 

 

 

The fitness of a solution includes several factors: )(txh  and )(txa  denote the relative 

numbers of h- and m-cells, respectively, at time t . We measure these numbers as 
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proportions which are taken with respect to the initial level, so that by definition 

=(0)=(0) ha xx 1. When all m-cells are eliminated we assume that the patient is 

cured. Our discrete representation of the cell age distribution implies that:  

 ),(=)(
1

0=

twntx h

h

w
h 



 

and  

 























.<),(0

),(),(

=)(
1

0=

1

0=

1

0=

aa

a

w

aa

a

w
a

a

w

a

twn

twntwn

tx









 

In addition, let us define two indicators (using obvious notation): curedI  and aliveI , that 

indicate the patient's status during the treatment series. curedI  indicates that at some 

moment during the treatment, the number of m-cells decreased under the required 

threshold, and from this point on we considered the patient cured. As mentioned 

earlier, we assume that once a patient is cured the m-cells do not replicate any longer, 

so that we consider the tumor totally eliminated. The indicator aliveI  shows that the 

patient was alive during the entire treatment period, and that at no time did the 

number of h-cells decrease below the permitted limit. If the patient is cured, 

cureoftime __  is the time elapsing until cure happens, and if the patient dies 

deathoftime __  is the period until the patient's death. 

 

Our aim is to cure the patient as quickly as possible, when a certain level of h-cells 

must be maintained throughout the entire treatment period in order not to threaten the 

patient’s life. Until the patient is cured, we attempt to preserve as many h-cells as 

possible. No more treatments need to be given after the patient is cured, and it is 

assumed that given sufficient time, the h-cells will recover. 

 
As stated, if the patient is cured, we prefer that cure will occur as early as possible. 

Similarly, in case of the patient's death, we prefer to delay the death as much as we 
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can. These preferences are made under the assumption that solutions that prolong a 

patient's life can be more easily modified into solutions that keep the patient alive. 

 

All these considerations taken into account, the following fitness function was 

constructed: 

 )())()(2)((=)( TxTxTxsfitness ahhhh    

 curedalivecuredalive IIcIcIc 321   

 .
__

)(1
__

curedalive I
K

cureoftime
I

K

deathoftime
  

  Let us now examine how this fitness function depends on each one of the required 

variables. 

The fitness increases as )(Txh  increases. However, this increase is not linear. The 

quadratic argument which includes )(Txh  in the function is equal to 0 when 

hh Tx =)( , and is maximized when 1=)(Txh . Thus, the function changes more 

rapidly around the critical value of h , where h-cells are very valuable, than around 

the maximal value of 1, where h-cells can easily be spared. Its derivative changes 

from 2 when hh Tx =)(  to h2  when =)(Txh 1. Comparing this to the derivative of 

the argument representing )(Txa  in the fitness function, which always equals 1, we 

see that many h-cells can be sacrificed in order to eliminate one m-cell when )(Txh  is 

around 1. When )(Txh  is close to h , we will sacrifice an h-cell only if many target 

cells will be eliminated at the same time. This way, h-cells affect the fitness more 

when they are most needed. 

 

A ``bonus'' of 1c  is given if the patient survives the treatment, and 2c  if the patient is 

cured. In addition, if both goals are achieved, an additional bonus of 3c  is given. Note 

that cured doesn't necessarily mean alive. Two thresholds exist, one for the h-cells 

and one for m-cells, that determine the patient's status: if the h-cells are reduced 

below their threshold then the patient is considered dead. If the m-cells are reduced 

below their threshold, the patient is cured. 
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Since the effect of the deathoftime __  variable should never exceeds the effect of any 

of the indicators that were mentioned earlier, its contribution to the fitness is 

normalized such that it will never be greater than 1. This is done by dividing the 

deathoftime __  by a constant TK > . 

 
Following the same logic, if a patient is cured we would like the cure to occur as early 

as possible. In this case this demand is not just a means of comparing ``good'' 

solutions in order to modify them, but an actual benefit to the patient. The 

contribution of the cureoftime __  variable is also normalized as mentioned before, for 

the same reasons. 

 

Possible solutions to the above defined optimization problem are scheduling plans 

represented by strings of "0"'s (no treatment) and "1"'s (treatment). The possible 

schedules have been tested by three local search-based heuristics, to find a solution 

that will locally optimize the fitness function. The comparison between the three 

approximation methods mentioned above shows that they are competitive, but the 

computational effort is much higher in SA than in the other two methods. All three 

methods produced solutions of similar quality and therefore the choice among them 

should be done according to their computational efficiency.  

2.2 Discussion 

The general approach for selecting desired chemotherapy schedules, described in the 

above section, can satisfy a realistically complex medical optimization problem. In 

order to enable its implementation in the clinic, elaborate mathematical models of 

pathology and physiology have been developed, yielding precise quantitative 

predictions of cancer progression and the drug-susceptible physiological processes, 

notably, hematopoiesis. One of these models describing vascular tumor growth will 

be briefly described below. 
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3. Use of Virtual Patient concept to predict improved 

drug schedules  

  

3.1 Modeling Vascular Tumor Growth 

The progress in understanding the biology of tumor neovascularization (angiogenesis) 

enables formalization of the known properties of this process. A detailed model is 

required to reflect the role of growth factors (cytokines) in the signaling cascade of 

tumor vascularization, so as to depict the non-monotonic and unstable angiogenic 

behavior, observed even under no anti-cancer treatment (14-16).  

 

The first simple model that incorporates the mediating role of angiogenic signaling by 

tumor cells is explored in Agur et al., (17-18). It consists of three ordinary differential 

equations (ODEs) describing the dynamics of three variables: the tumor size, N, the 

concentration of the protein involved in angiogenic signaling, P, and the volume of 

blood vessels, V.  

  

The tumor growth rate is assumed to depend on nutrient supply, which is proportional 

to vessel density, defined by NVE  , as follows.  

                 

                                                                                                                        (1) 

   

Here, the function f1 is increasing,   001 f , 
  0lim 1 


Ef

E , i.e., the tumor will 

regress for zero vessel density and will grow with bounded rate for high vessel 

density. 

The signaling protein is assumed to be secreted by the tumor as a result of nutrient 

deficiency: 

                                                                                                                         (2) 

 

  .1 NEfN 

  .2 PNEfP 
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Here, the function f2 is decreasing,   002 f , 
  0lim 2 


Ef

E , i.e., when vessel 

density is large, the secretion of the pro-angiogenic protein drops, while at small 

vessel density each tumor cell secretes more protein. The second term accounts for 

first-order decay of the protein.  

 

The size of the vessels is determined by the protein, as follows: 

 

                                                                                                                        (3) 

 

Here, the function f3 is increasing,   003 f , 
  0lim 3 


Ef

E , i.e., small amount of 

protein causes vessel regression, while high amounts induce growth of vasculature.  

 

The model given by equations (1–3) is studied in (17-18) in numerical computations 

using sigmoid-like functions. It turns out that in contrast to previously published 

models, here no positive stable biologically relevant steady state exists. Note that the 

steady state 0 EPN  is of no interest, since the model describes the dynamics 

of existing vascular tumors. It was analytically proven in this model that both the 

tumor and the vessel volume always grow monotonically showing no oscillations. 

The vessel density can either increase unlimitedly or stabilize at some level, so that 

the tumor and the vessels grow proportionally. Since these modeled tumor and 

vascular dynamics fail to capture the full range of the observed real life cancer growth 

behavior, such as oscillations, one has to consider the introduction of additional 

assumptions that may enrich the model behavior. 

 

In (17-18) the above model is extended by introducing time delays into the equations. 

Specifically, it is assumed that the current tumor growth rate and vessel formation 

rate depend on the prior vessel density and protein concentration some time before. 

Mathematically, this leads to the following system of delayed differential equations 

(DDE). 

 

  .3 VPfV 

  NtEfN 11 
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                                                                                                                        (4) 

                                                                                                                        (5) 

                                                                                                                        (6) 

 

Here all the functions are the same as in the system of equations (1–3), 1  and 2 are 

time delays, so, for example, tumor growth rate depends on vessel density some 1  

time units ago, rather than depending on the current vessel density. In Agur et al. (17) 

it is shown that this model exhibits a specific behavior, termed Hopf bifurcation, 

namely  periodic oscillations of tumor size and vessel volume under some specific 

conditions. Since such behavior is observed in laboratory experiments in untreated 

animals (19), it can thus be concluded that the system of equations (4–6) is a minimal 

model able to reproduce the experimentally observed non-monotonic behavior of the 

angiogenic tumor.  

 

In Bodnar and Forys (20) the models expressed in equations (1–3) and (4–6) are 

modified by introducing the logistic term into the equation for tumor growth. The 

addition of this term is justified by the observed deceleration in tumor growth and the 

existence of natural limit for the tumor size, even if no limitations are imposed by the 

vascular system. Thus, for the system of equations (1–3) the first equation now 

becomes  

  

                                                                                                                       (7) 

 

and for the system of equations with delay (4–6) the first equation becomes  

 

                                                                                                                       (8) 

 

where 1f is the same as in equation (1) and   is the maximal tumor growth rate. The 

analysis in (20) shows that these two models always exhibit at least one stable steady 

state with 0N , thus representing a realistic saturation in tumor growth. The model 

  PNEfP  2

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with delays also exhibits oscillatory behavior, similar to the model given by equations 

(4–6).  

 

It should be noted that the simple concept of carrying capacity as used in (21) was 

replaced in the models presented above by the more elaborated notion of vessel 

density, reflecting the relationship between the vessel volume and tumor size. In fact, 

the crucial factor governing tumor growth is the efficiency of the vascular support. To 

account for this, in (22-23) the notion of effective vessel density (EVD) is introduced. 

It differs from the previously used vessel density in that it takes into consideration 

that different types of vasculature can contribute differently to nutrient supply. 

Following this notion, the blood vessels involved in tumor angiogenesis are divided 

into two groups – the immature vessels and the mature vessels. The more detailed 

description of the angiogenic process takes this distinction into account. The new 

vessels are formed by endothelial cells, which proliferate and migrate upon 

angiogenic signals. These newly formed vessels are unstable and inefficient in 

nutrient supply. They are termed immature vessels. However, these vessels can 

stabilize by undergoing a maturation process, essentially coating the endothelial cells 

by smooth muscle cells, named pericytes. This process is governed by a different type 

of molecular signal - the maturation signal. Mature vessels can also destabilize, as a 

result of decaying maturation signals or the appearance of anti-maturation signals. 

Experimental observations (14-16) suggest that the dynamics of maturation and 

destabilization may be responsible for the non-monotonicity in tumor and vasculature 

growth. Following this suggestion an additional model of five DDEs was proposed in 

Agur et al. (17). This model describes the growth of immature and mature vessels, V1 

and V2, respectively, as two inter-related processes. Two types of   signaling proteins 

are considered. The first, P1 is secreted by tumor cells and assumed to stimulate 

immature vessels growth. Its role is equivalent to that of P in the previous models. 

The second protein, P2 stimulates maturation. It is also assumed to be secreted by 

tumor cells. This model takes the following form: 

 

                                                                                                                        (9)   NtEfN 11 

  1121 PNEfP 
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                                                                                                                        (10) 

                                                                                                                        (11) 

                                                                                                                        (12) 

                                                                                                                        (13) 

Here equations (9, 10, 12) are similar to equations (4–6), except for the indices of P1 

and V1 added here. The function 4f , accounting for the maturation rate, is positive 

and increasing. The function 5f  computes mature vessels destabilization; it is positive 

and decreases to zero. In addition, the computation of E is changed. Now it depends 

on both types of vessels,   NVVE 2211   , 1  and 2  being the relative 

contribution of immature and mature vessels to the EVD. In this work, both were 

taken to be 1. This model also exhibits oscillatory behavior, suggesting the possible 

role of blood vessels maturation and destabilization in tumor growth.  

 

Finally, a more comprehensive model of the processes discussed above has been 

developed in order to better represent experiments where human ovary carcinoma 

spheroid were implanted in mice and tumor growth as well as immature and mature 

vascular dynamics were monitored  in vivo (22-23). This model is formulated in 

terms of difference equations discrete in time and also, by ODE formalism. The 

model captures the dynamics of the angiogenic tumor, calculating the following 

variables over time: tumor size, immature vessels density, mature vessels density, 

number of endothelial cells, number of pericytes, concentration of Vascular 

Endothelial Growth Factor (VEGF), concentration of Platelet-Derived Growth Factor 

(PDGF), concentration of pro-maturation factor Angiopoietin1 (Ang1), and 

concentration of its competitor, anti-maturation factor Angiopoietin 2 (Ang2). The 

equations for these variables reflect the biological understanding of the role of the 

system components, similar to the models described above. We refer the reader to 

Arakelyan et al., (23) for more detailed description.  

 

In Arakelyan et al. (23) it is shown that, consistent with the simpler models: if the 

maturation process is neglected, tumor and vasculature growth become monotonic. In 

        .232512412131 VtPfVPfVtPfV  
222 PaNP 

     .23251242 VtPfVPfV 
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contrast, the introduction of vessel maturation and their destabilization dynamics into 

the model reduces tumor growth and leads to highly non-monotonic behavior, 

including irregular oscillations of tumor and vasculature size. Further, by simulating 

anti-VEGF and anti-PDGF treatments, it was demonstrated that anti-angiogenic 

treatment alone will not suffice to eliminate the tumor and has to be combined with 

anti-maturation treatment. As will be described below, this prediction has been 

corroborated in the pre-clinical setting by showing in pancreatic cancer mouse models 

that the combination of a VEGFR inhibitor with another distinctive kinase inhibitor 

targeting PDGFR activity (Gleevec) was able to regress late-stage tumors   (24). 

 

In summary, an accurate and detailed description of system dynamics can be obtained 

using complex models, which account for known relevant components and processes. 

Even more importantly, mathematical modeling allows one to determine the minimal 

necessary components required to produce the observed phenomena and to understand 

how the complex behavior emerges from basic system properties. Once experimentally 

validated, the model can be used to assist researchers to improve and accelerate drug 

development and help identify the most promising treatment regimens for different drugs 

that may subtly vary in drug action mechanism. See (25) for a more comprehensive 

review of the development of angiogenesis models. 

 

 
3.1.1 A multiscale vascular tumor growth model retrieves the 

clinical scenario and suggests efficacious regimens 

Mathematical analysis and numerical simulations of the Arakelyan et al’s 2002 model 

shed important light on vascular tumor dynamics. Thus, it was suggested that there 

are circumstances in which small tumors oscillate in size instead of growing steadily. 

If such circumstances can be medically replicated then this may be a powerful way of 

controlling cancer growth (23, 26). Notably, it was suggested that monotherapy by 

anti-angiogenic drugs alone can slow tumor growth, but cannot altogether eliminating 

it, and that anti-angiogenesis drugs combined with drugs that target mature vessels 
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may be superior to anti-angiogenic monotherapy (19, 27-28). As was mentioned 

above, these conclusions were later corroborated experimentally (24). 

In order to check whether or not the model is a high-fidelity portrayal of vascular 

tumor growth, its predictions are to be experimentally validated. This is essential if 

one is to use the model in the context of the Virtual Patient, where new drugs are 

examined for their efficacy. In (28), the vascular tumor model was verified in 

xenograft experiments. Thus. tumor growth, vascular maturation and functionality 

were studied noninvasively by magnetic resonance imaging (MRI) in human 

epithelial ovarian carcinoma spheroids, xenografted in mice. Individual tumor growth 

curves were input into the model for evaluating the tumor-specific parameters, and 

predictions of vascular dynamics were compared with the MRI readings. The 

revealed accuracy and critical importance of model predictions is demonstrated by the 

following example. The model predicts complete maturation of all neovasculatures in 

a tumor, within about one month. Indeed, the experimental results support model 

predictions quite remarkably  and further explain the model-predicted and clinically-

observed short-term effects of the anti-VEGF drug Bevacizumab (29-30) 

The accuracy of the mathematical model of vascular tumor dynamics was further 

validated clinically, by comparing its predictions to the clinical response of metastatic 

breast cancer (MBC) patients to Docetaxel; this drug is among the few monotherapy 

options available for patients that are resistant to other alkylating agents. Predicting 

individual response to Docetaxel may improve the efficacy of treating MBC patients.  

The mathematical model of solid tumor dynamics, previously validated in preclinical 

studies, was employed in a retrospective study of MBC patients.  

Clinical and histopathological data were collected from 25 MBC patients treated with 

tri-weekly Docetaxel. The patients were randomly divided into a training set (18 

patients), for adjusting population-specific PD, and a validation set (7 patients), for 

predicting disease progression under individually assigned Docetaxel regimens. 

Once-weekly Docetaxel regimens were also simulated for the patients and compared 

with their actual clinical performance. 
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The model accurately predicted the observed tumor sizes over the entire observation 

period (R2=0.7; p<0.001) and the objective tumor response assessed according to 

RECIST (85.7% of match between the observed and predicted, Kappa=0.72, p<0.05; 

Figure 2). Significantly improved efficacy was predicted for the once-weekly 

schedule in 48% of the patients. Model analysis revealed that angiogenesis-intensive 

tumors can be controlled by more frequent Docetaxel dosing, whereas angiogenesis-

poor tumors may be treated by less dense regimens (29). 

 
Figure 2. Predicted vs. measured tumor diameter. Prediction accuracy of the vascular tumor model. 
Tumor size at the end of treatment, R2=0.7 (p<0.001); objective tumor response assessed according 
to RECIST; 85.7% (Kappa=0.72, p<0.05). Regression model line (solid line); 95% confidence 
interval (dashed line).  
 
 

3.2 Synthetic Human Population (SHP) 

 In the preceding sections, we described the concept of the Virtual Patient model 

using simple models of tumor growth and patient toxicity, as well as optimization 

problem formalism in order to identify treatment regimens which will maximize drug 

efficacy while minimizing its toxicity. We were noting that the Virtual Patient can 

admit more complex biological progression models, and went on to describe the 

methodology underlying the development of a multi-scale mathematical model for 

vascular tumor growth. We then pointed out that the use of the Virtual Patient model 

in drug development requires preclinical and clinical validation, and showed 

examples of such validation experiments. In the same way as described for the 
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efficacy model, namely for drug effects on tumor progression, one embeds toxicity 

models in the Virtual Patient “platform.” That is to say that, models describing 

physiological processes that are known to be target to the drug under study are 

simulated in parallel to the pathology models and specific optimization problems are 

then solved, as described above. 

 

To use the Virtual Patient platform in order to predict the effect of a drug treatment 

on the entire patient population (or sub-population), a Virtual Patient population 

needs to be generated. To this end one must replace the parameters evaluated for a 

single patient model, by a distribution representing the population distribution of each 

of the parameter. In practice, the individuals belonging to the “virtual population” 

share most of the model parameters. However, several parameters are individually 

selected from a predefined distribution. These parameters and their actual values are 

selected based on studies indicating that they may have a prognostic value, and given 

that most of them are readily measured in the laboratory (31-33). 

 

The SHP method is to be employed whenever we wish to generate a larger sample of 

patients that probes different areas in the parameter space and may also provide 

higher accuracy in prediction the real population response.  

 

The general definition of the problem to be solved is the following. Given a set of p 

parameters that is assigned to N individual patients – how to generate a larger set, M 

>N, of the p parameters such that the statistical properties of the initial set are 

preserved. Three restrictions should be made. The first determines that the average 

value of each parameter is the same in the real set and in the SHP set. Secondly, the 

standard deviation of each parameter in the SHP should reflect that in the real world. 

Lastly, the covariance matrix in the SHP set should reflect that in the real world. 

 

Three methods for obtaining Virtual Patient populations will be described below. 

These are Parameter Inflation, Convex Biased Interpolation and Statistical Sampling. 
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3.2.1 Parameter Inflation (“cherries and flies”). 

Initially, we define each input "individual" as a point, npppP ,...,, 21


, in the 

parameter hyperspace, according to the parameter values (pi) obtained in the 

parameter evaluation process. Subsequently, multiple, normally distributed, random 

points R


, are generated around each of the input "individuals", such that 

),(~ 2
iii pNr  , where ip  and ir , are the values of the i-th input and output 

parameters, respectively, and i , the standard deviation, determines the degree of 

variability. Empirically, we have selected σi to be between 1% and 5% of the 

estimated value ip . This parameter inflation approach is relatively fast and little error-

prone.  
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Figure 3. Demonstration of parameter inflation in two dimensions (two parameters). Thick red 
points represent values obtained during the parameter evaluation process. Thin black dots represent 
the generated values. The term “cherries and flies” method was inspired by the shape of this plot. 
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3.2.2 Convex Biased interpolation 

In this method we generate additional experiments by taking a linear combination of 

the initial set of χ experiments, as follows 




 


iNjPrPE k
j

k
ki

i
ji :}1:{ }{

1
,}{

. 

The requirement that the coefficients, kir , :  k1 , sum up to 1, provides new 

experiments which fall inside the convex hull, defined by the χ points in the N 

dimensional space that represents the initial experiments. In other words the 

parameter range restriction is met. 

When the values of kir , are randomly chosen within the range [0, 1], the parameter 

values of the resulting new experiments would not meet the standard deviation 

restriction mentioned above. The standard deviation of the new experiments would be 

smaller than the one of the original experiments. 

 

To handle the σ restriction, as well as the correlation restriction, the linear 

combination coefficients kir , , has to be taken from the “tails” of the range [0,1]. This 

is done by raising kir , to the power of 0q , kiR ,  = (
0),

q
kir , for some constant 0q , where 

kiR ,  are normalized 

 

The generated additional experiments are points in the N-dimensional space, located 

‘close’ to the χ points (which stand for the initial “real” experiments) inside their 

convex hull. 
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Figure 4. Demonstration of the convex biased interpolation method in two dimensions (two 
parameters). Thick red points represent values obtained in parameter evaluation process. Thin black 
dots represent the generated values.  
 

3.2.3 Statistical sampling 

This method generates a multivariate normal random series. First, we define the 

distributions of each parameter, p1.. pn, by calculating the mean, µ, and variance σ2 of 

the estimated values of the observations for each parameter. Then a new set of values 

for the parameters, p1.. pn, can be randomly sampled based on the mean and the 

covariance matrix of the parameters.  

 

3.2.4 Application considerations 

The SHP should not be used when the size of the original real-life population is too 

small. Specifically, there is no point in trying to generate SHP when the size of the 

original population is smaller than 10 patients. Moreover, the estimation of the 

parameter covariance should not be considered reliable when the number of 

measurements is less than 10 fold the number of independent parameters (e.g. for 3 

parameters we have 3 non-diagonal covariance, for 5 we have 10 non diagonal 
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covariances and for 7 individual parameters we have 21 independent parameters. 

Thus the non-diagonal covariances should not be considered reliable unless we have 

at 30 patients for 3 individual variables, 50 patients for 5 individual variables and 210 

for 7 individual variables. In the later case, and in general, if the original population is 

large enough (>100), no SHP is necessary for evaluating the distribution of patients’ 

parameters to be implemented in the virtual patient models which will be simulated.  

 

 

4. The Interactive Clinical Trial Design (ICTD) algorithm 

Above, we have sketched the basic concept of Virtual Patient using very simple 

model.  Subsequently we described the development of more complex and more 

accurate models for vascular tumor growth, which need to be implemented in the 

Virtual Patient platform in order to retrieve quantitative predictions of disease 

progression under drug treatment. We have described methods for enlarging the 

Virtual Patient to a Virtual Patient population, SHP, in order to represent a specific 

population of patients, and below we go one step further and briefly describe the 

Interactive Clinical Trial Design (ICTD) algorithm by which an SHP is used for 

carrying out virtual clinical trial that predict the response in the various stages of the 

clinical trials. 

 

4.1 Pre-Clinical Phase: Constructing the PK/PD Module  

The pre-clinical phase of drug development concerns the retrieval of the drug’s PD 

and PK in animals and the initialization of human PD research. In this phase a virtual 

population of the experimental animal, usually that of human cancers xenografted 

mice, is created, and adjusted to the drug under development, as is detailed below. 

  

Based on the in vitro studies, the drug PD module of the virtual animal is constructed. 

Thus, putative mechanisms of drug action are simulated, retrieving the most 

appropriate action mechanisms. The mechanism showing best fit to the experimental 

results is selected as most probable. From the results of the in vitro studies, the 

parameters of the drug’s effect on the different target tissues are empirically estimated 
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and inputted into the module. These include the data of experiments using different 

tumor types, also in combination with another drug. Inversely, the model here can 

simulate and comparatively estimate the efficacy of treatment in combination with 

other known drugs, as well as the effect of the drug on different tumor types. By 

evaluating parameters to be implemented in the model of the average animal bearing 

a given cancer disease, and by evaluating the distribution of this parameters in the 

experimental population, one can create a virtual experimental population, which can 

direct the pre-clinical research to the most effective avenues. The model is 

continuously fine-tuned, by “on-line” implementation in the Virtual Animal 

Population, of the pre-clinical research results. In this way, the model can 

interactively guide the preclinical research. 

 

Using animal studies, the PK module of the virtual animal is adjusted to describe the 

PK of the given drug, as evaluated in animal studies. The PD module, which until 

now was based solely on the in vitro data, is adjusted to represent the in vivo animal 

results, and is supplemented by animal parameters for the functions of drug effect 

time series. This, again, includes data on different tumor types and on the effects of 

combinations with other drugs. From animals treated by multiple doses, some data on 

cumulative effect can be obtained and implemented in the model.  

  

The toxicity module is designed on the basis of the qualitative and quantitative data 

on side effects observed during the animal studies. For example, the Virtual Patient’s 

module describing hematopoietic processes is provided with evaluated values of the 

parameters of the drug effect on hematopoiesis, if observed in animals. From animals 

treated by multiple drug doses, some data on cumulative toxicity may be obtained and 

implemented in the model as well.  

 

At this stage the model already has the capacity to simulate the administration of the 

drug to humans. Known inter-species differences in the target tissue characteristics 

are taken into account when simulating the human PK model, in order to consider a 

reasonable dose range for Phase-I human studies. This procedure is expected to offer 
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an improvement on the traditional LD10 initial dose for Phase-I trials (the dose lethal 

for 10% of mice administered drug), which is often too low to show effect on the 

disease. That is to say that already in this stage, based on in vitro and in vivo data the 

model can be used for predicting the minimal dose within therapeutic range, i.e. the 

lowest dose, which has a rationale to be tested. It is possible at this point to use the 

model for predicting failure for the drugs with therapeutic doses too toxic to be 

tolerated.  

 

4.2 Phase-I: Finalizing and Validating the PK/PD Module  

During dose escalation testing in the Phase I clinical trials, the PK/PD module in the 

Virtual Patient model is interactively fine-tuned and validated according to the 

results of the dose escalation experiments. This could, possibly, save steps during 

dose escalation process, necessary for obtaining the toxicity profile and an initial 

efficacy profile. During Phase-I trials, while using intra-patient dose escalation 

method, the model is to be provided with data on cumulative effect and cumulative 

toxicity, if observed. 

In this way, by the end of Phase-I, a fully in vivo verified human model is available, 

integrating all the existing data on PK and PD of the drug. The general algorithm for 

conducting interactive clinical trials during Phase I is shown in Figure 5 . In the last 

stage of the Phase I  ICTD work, one uses the SHP formalism to yield a population 

distribution model for the PK/PD model. 
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Figure 5. One panel describing the detaled Interactive trial design  (out of a total of 12 panels for 
the whole trial period); X – a difference between simulated results and clinical trial (CT) results; F1 – 
a counter;n: D – a “step” for dose elevation; M1 – duration of fit between the simulation to and the 
clinical observations for model validation; DLT – dose-limiting toxicity; Z3  - a counter; Min Effective 
Dose (mED) – a dose at which the effect was first observed; MTD – maximal tolerated dose (after 
which the DLT is observed); n – number of steps to be defined for going from mED to MTD;  NO GO 
– no rationale to continue developing the drug. 
 
 

4.3 Interim Stage Between Phase-I and Phase-II: Intensive Simulations 

of Short-Term Treatments  

 

Following Phase-I the model can yield reasonable, short-term predictions for the 

population effects of specific drug administration schedules on disease progression 

for specific indications. This allows one to perform an exhaustive search in the 

regimen space (i.e., within all the treatment schedule possibilities), for those mono- 

and combination therapy schedules, expected to yield the highest response and lowest 

toxicity for any potential cancer type to be treated. This may help the drug developer 
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to predict the most effective treatment schedule and the most promising indication, 

thus saving patient health, time and cost. 

 

 

4.4 Phase-II and Phase-III: Focusing the Clinical Trials 

At the onset of Phase-II trials and following the interim stage outlined hereabove, a 

few potential treatment schedules for the selected indication(s) are applied in short 

pilot trials testing a relatively small number of patients. After the first results are 

obtained (lasting 6 months, on the average), the SHP model is further adjusted by 

implementing the new data on the observed effects.  

 

Subsequently, a new set of intensive simulations are carried out, predicting 

population response to the drug during an extended period of up to two years,  and 

predicting which of the schedules, tested in short-term trials, are expected to yield the 

best results in the long-run. At this stage the predicted effect for each selected 

schedule is compared with that of the “Gold Standard” therapy for the same 

indications.  

 

At this time already, the SHP model can predict failure, that is, recommend a NoGo 

decision, for the drugs that are incapable of showing benefit over the “Gold Standard” 

therapy. The schedule(s) predicted to carry the most significant benefit over the 

“Gold Standard”   are selected for further testing in Phase-III. After the efficacy and 

safety profile of the selected schedule(s) is confirmed in further Phase-II trials (for 

another 6 months), the selected schedules should be further tested in a larger patient 

population in Phase-III trials.  

 

The general algorithm of ICTD was compared to a classical clinical trial design of 

anti-cancer drugs (denoted original). Fig. 6 illustrates the average differences in the 

number of patients expected to be recruited for the clinical trials designed according 

to each of the two methods. 
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Fig. 6: An illustration of the structure of the Interactive Clinical Trial Design (ICTD) as compared 
to the classical design for the duration and number of patients (averages; colors signify different 
regimens). 
 

One can notice in figure 6. a significant potential saving in time and in the number of 

patients, recruited for ICTD. Figure 7A, 7B schematically present the results of our 

theoretical comparison between the classical design in the development of a, recently 

approved, drug to be nicknamed “O”, which was in development in a big 

pharmaceutical company and the putative design of the same drug under the ICTD 

method; the differences (in percentage) in the number of patients and the total 

duration of drug development are noted at the bottom of each figure. 
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Figure 7A. An illustration of the structure of the classical clinical trial process for drug “O.” 
Numbers specify number of patients in the specific arm (averages); colors signify different drug 
regimens. 
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Figure 7B. An illustration of the structure of the classical clinical trial process for drug “O,” 
(summarized; see detail in figure 7A) as compared to the ICTD-proposed trial. The saving by ICTD 
depends on the stage when ICTD methodology was implemented; in the current illustration ICTD is 
implemented in Phase I. Numbers specify number of patients in the specific arm (averages; colors 
signify different regimens). 
 
 
 
4.5 Interactive Clinical Trial Design (ICTD) method as compared to 

Adaptive Clinical Trial Design (ACTD) methods  

The use of Adaptive Clinical Trial Design (ACTD; Figure 8) methods in clinical 

research and development has become popular in recent years, due to its flexibility 

and efficiency. ACTD allows modifications made to trial and/or statistical procedures 

of ongoing clinical trials. ACTD suggests an improvement to the classical design, as 

it offers the ability to stop trials relatively early, to drop or add treatment groups, to 

change group proportions or shift seamlessly into a later phase, etc. These models aid 

in planning trials by predicting the probability distribution of trial outcomes 

conditional on current knowledge and assumption, and thus evaluating the ability of 
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the trial to support a certain decision. These models rely upon prior knowledge on 

population probability distribution (34-36). 

 

However, since ACTD is based on the assumptions of Bayesian statistics it is a 

concern that major adaptations of trial and/or statistical procedures of on-going trials 

may result in a totally different trial that is unable to address the scientific/medical 

questions the trial intends to answer. We believe that this difficulty is much reduced 

in the ICTD, which is based on mechanistic models of disease and physiology 

progression and on the drug mechanism of action and PK/PD, and are therefore 

significantly less dependent on the trial data than is ACTD.  

 

 

 

 

 Figure 8.  An illustration of the structure of the adaptive Trial Design, as compared to the classical 
design.  
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Another significant difference between the ACTD and the ICTD method suggested 

here lies in the effort in each suggested clinical trial design method. The trials 

according to ICTD are onset as early as the Pre-clinical stage, or Phase I, whereas 

those according to the ACTD begin in Phase II. Moreover, while the first and 

potentially most important decision-making impact of the ICTD takes effect already 

at the end of Phase-I, the ACTD’s impact can be effectuated almost only towards the 

end of Phase-III. The reason for these differences lies in the significant distinction 

between the tools employed by each of the designs. The major asset offered by the 

Virtual Patient technology is the predictive power, rather than the improved data 

analysis methods, offered by ACTD. In other words, our design is primarily 

prospective, integrating all the available biological, medical and pharmacological, 

theoretical and clinical information. In contrast, ACTD is primarily retrospective, 

integrating statistical methods with the information from the clinical trials. 

 

 

5. Summary and Conclusions  

Drug development is a challenging, costly and time consuming process.  Drugs that 

fail in clinical trials, often due to low efficacy and/or high toxicity levels, are shelved 

or altogether discontinued. Together with the recent stringency of the regulatory 

authorities, the high attrition in drug development increasingly exhausts the new 

product pipelines. Therefore, it becomes mandatory for pharmaceutical companies to 

revisit their decision-making process at all stages of drug development. 

 

In this chapter we have introduced the concept of the Virtual Patient, and further 

illustrated its construction by briefly describing mathematical models for tumor 

progression at different levels of biological detail and at different levels of system 

complexity. We have described the consideration by which a Synthetic Human 

Population (SHP) is constructed, that is, a population of Virtual Patients that 

embodies a specific patient population, and is used to test the potential cost-efficiency 

of mono- or combination drug therapy. We then described the Interactive Clinical 

Trial Design (ICTD) method for conducting virtual clinical trials intertwined with and 
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directing the real-life clinical trials. This method does not replace the Adaptive 

Clinical Trial Design (ACTD). Rather, we firmly believe that the two methods should 

be integrated in order to provide drug developers with a comprehensive and powerful 

tool to navigate drug development towards improved success and improved aid to the 

well being of our society. 
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