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ABSTRACT

A formal method is provided for predicting the effect on treatment efficacy of
cell-cycle-phase-specific drugs, such as the AIDS drug zidovudine (AZT) or the cancer
drug cytosine arabinoside (ara-C). Our analysis shows that the elimination of somatic
cells or viruses depends not only on the drug’s pharmacokinetic and pharmacodynamic
properties, but also on the duration of the dosing interval per se and on the life-cycle
parameters, that is, the duration of the drug-susceptible life phase, the duration of the
whole life cycle, and the proliferation rate. The results support those of simplified models
in showing that drug toxicity to the host may be minimized when the dosing interval is an
integer multiple of the average cycle time of the host susceptible cells. This prediction has
been verified in mice treated with AZT or ara-C.

1. INTRODUCTION

Many drugs used in the treatment of cancer and viral infections impair
genome synthesis while having no effect on cells or viruses that are not in
the DNA synthesis phase. The effect of such drugs on proliferating normal
host cells can bring about bone marrow depression and other toxic effects
that often result in the patient’s death. Reduction to about half the original
dose is usually recommended for controlling drug toxicity, whereas high
doses are often necessary to achieve responsiveness [9,15,19]. These
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contradicting requirements have led to a practice of tedious trial-and-error
dosage manipulations in the treatment of patients. The aim of the present
work is to provide a formal method for predicting treatment efficacy. This
method may aid in limiting the clinical trials to a reasonable minimum.

In previous studies simple models of cell population dynamics in regimes
of cell-cycle-phase-specific drugs have been investigated. Analysis of these
models suggests that the variability in the cycle duration of cancer cells or
the HIV virus can be employed for designing drug regimens with reduced
host toxicity. More specifically, it was suggested that toxic cell-cycle-
phase-specific drugs should be used so that the dosing interval is an integer
multiple of the average cycle time of the susceptible host cells [1,3,4]. As
the average cell-cycle duration in human bone marrow is about 24 h, it was
suggested that AZT should be administered in a single high daily dose (the
Z-method) [2].

In the above models, specificity and precision were traded off for
tractability and generality, the major simplification being a dichotomous
(““all or none’’) function for the drug effect. However, for rendering our
theoretical results useful to clinicians it is necessary to verify their robust-
ness under realistic assumptions about the drug’s pharmacokinetics and
pharmacodynamics and about the age density distribution of the cell popula-
tion. This task is taken up in the present work.

2. THE BASIC MODEL

2.1. BIOLOGICAL ASSUMPTIONS

Based on the time of DNA synthesis, the cell division cycle can be
divided into four distinct phases: G, (before DNA synthesis), S (DNA
synthesis), G, (after DNA synthesis), and M (cell division). The life cycle
of the HIV virus can be divided into several phases that include attachment
to cell surface, reverse transcription, integration within cellular DNA, and
the production and release of new HIV particles [13]. However, for
analyzing drug effect on the persistence of somatic and neoplastic cells or
viruses, the different life-cycle phases of the cells, or those of the virus, can
be grouped into two essential phases: a phase in which the cell or virus is
susceptible to the drug, and a phase in which the cell or virus is immune to
the drug. The important differences between the somatic and the viral, or
neoplastic, life cycles lie in the distribution of the durations of these two
phases.

In our model we consider the dynamics of cells or viruses with the above
life-cycle properties. For brevity we refer in this section to both the cell and
the virus as the cell. An important simplifying assumption is that each
population is homogeneous with respect to drug susceptibility. Thus we do
not take account of the possibility that drug resistance may emerge or that
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some cells can be sheltered from drug effect. Previous theoretical results
suggest that the existence of a drug-immune cell reservoir, such as G,
cancer cells or latent virus particles, may require a prolonged treatment
period but not a change in protocol (Agur and Norel, unpublished).

Our model considers a cell having age a at the initial moment of drug
treatment, that is, at 7 = 0; by age we denote the cell’s position in the life
cycle, that is, the time since its birth. We denote the duration of the phase in
which the cell is resistant to the drug (e.g., the G, + G, + M phases) by p
and the duration of the susceptible phase (e.g., the S phase in somatic cells
or the reverse transcription phase in the HIV-1 virus) by &, so that the
cell-cycle length is 7 = £ + p. In this section all these parameters are taken
as constant.

Using the above assumption we can formulate cell susceptibility to the
drug treatment by the simple function

1, aesusceptible phase,

x(a) =1’ (1)

aceresistant phase.
Under the assumption that 7 is constant, x(a) is a periodic function; that is,
x(a+nr)y=x(a), n=1,2,.... (2)

2.2. PROBABILITY OF CELL SURVIVAL

Looking at an arbitrary cell whose age is @ at the moment of treatment
initiation and defining p(¢, a) as the probability that the lineage descending
from this cell will survive up to the moment #, we obtain

p(t+At,a)=[1-g(t,a)-At] p(t,a), (3)
where by g(¢, a) we define the effect of the toxic drug at time ¢. This effect

is the product of the drug’s killing efficacy and the availability of suscepti-
ble cells at time ¢, as follows:

g(t,a)=K(t) x(t+a). (4)
To account for a saturation effect of the drug, the killing efficacy, K(¢), at

time ¢ may be taken as a function of the current drug concentration, C(¢),
as follows:

K(t)=1-e KcM K constant> 0. (5)
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Assuming a conventional first-order kinetics of drug elimination, the rate of

loss of the drug from the body is given by

dcC

—F=-kC, C(0)=0, (6)

where k is the decay coefficient.

If every drug dose is fully eliminated prior to the consecutive dosing, and
the same initial concentration C, is given cyclically, then K(f) is a periodic
function, so that, for / being the dosing interval, we obtain

K(t+nl)=K(t), n=1,2,.... (7)
When At — 0, we have

30(l-0) __ 4(t,0)p(t,a). (®)

Since we consider here the case of a single cell lineage, the initial
condition is

p(0,a) =1, (9)

so that
p(t, a) =exp[-/0'1<(s)x(s+a) ds]. (10)

2.3. THE DYNAMICS OF AN ASYNCHRONOUS CELL POPULATION

The analysis is now extended to allow for the dynamics of an asyn-
chronous cell population. At treatment initiation (¢ = 0), the number of cells
is N,, and their age density distribution is f(a), 0 <a<7. We wish to
investigate the dynamics of this cell population by evaluating its size after
the first, second, etc. dosing. Denoting by N, .(0) the number of cells
whose age lies in the interval (a, a+ €) at ¢ =0, we obtain

N, .(0) =N0/a+€f(s) ds= N f(a)e, (1)

where ¢ is small.
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After the first dosing the number of cells in the cohort whose age lies in
the interval (a,a+ ¢) is

N, (1) = o'""[ Nof(a)ep(l, a)]. (12)

The total number of cells after the first dosing is
N(l) = /"N, /OTf(a)p(I, ) da, (13)
and after m successive dosings it is
N(ml) = a™/'N, /0 "#(a) p(ml, a) da. (14)

Let us denote by A, the event
A; = {a lineage initiated by a cell of age @ survives the ith dose}. (15)

Assuming no overlap between any two consecutive doses, the events A, are
independent, so, using (10), we can write

p(ml,a)=p(A,NA4A,0--NA,)=p(A)p(A4;) - p(A,)

m-1 @i+l
=exp{ — . / K(smod!)x[(s+ a)mod 7| ds
i=0 v

=exp{ _/O’K(S) m;: x[(s+ a+il)mod 7] ds}, (16)

where we define *‘x mod y’’ (x, y positive real numbers) as the positive
real number z such that x = ny+ z holds, n being the largest natural
number that satisfies ny < x.

Substituting (16) into (14), we obtain the number of cells after m doses:

N(ml) = a™/"N, /0 "f(a)

XCxp{—/OlK(s) ,:";(: x[(s+a+ilymod 7] ds} da. (17)
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Below, we analyze the effect of long term treatment, that is, m —o. For
computing lim,, ., N(ml), it is convenient to use the notation

m-—1
% iz::o x[(s+a+il)mod 7] = A4,(s,a). (18)
In this way (17) becomes

T al/‘r

N(ml)=Ny | f(a) 7
/0 exp[/o K(s)A,(s,a)ds

As (18) is related to the dynamical aspect of ergodicity, it is natural to use
some results in ergodicity to evaluate lim,, _, , N(m/). More precisely, we
consider a cell of age a and look at the cell or the cell lineage states at each
new dosing, that is, {a,(a+ /)mod7,(a+2/)mod7,...,[a+(m—
1)/Jmod 7}. Thus (18) measures the number of times the cell lineage has
entered the S phase during m dosings.

The analysis that follows is carried out for two types of protocols: (1)
protocols with an irrational relation between the dosing interval / and
cell-cycle time 7, and (2) protocols with a rational relation between / and 7.

Irrational /7 . In this case the transformation
t=(t+)modr (20)

is measure-preserving and ergodic, and from ergodic theory [7, 8] we obtain

lim Am(s,a)=—§ a.e. (21)

m— o

Substituting (21) into (19) we obtain the necessary and sufficient condition
for exponential decay of N(ml):

al/r
[ -<1la.e. (22)
o (6/7) [ (5 s
0
From here,
ma<t /OIK(S) ds, (23)

which yields the condition for treatment efficacy.
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Rational I /7. 1If 1/7 is rational, then
x[(s+ a+ il)mod 7] is periodic with period T = p7= g/, (24)

D, g coprime integers.
A straightforward computation shows that in this case

lim N(ml)= lim NO/ f(a) da.
e e exp[

/O'K(s) A,(s,a) ds}
(23)

A necessary and sufficient condition for N(ml)— 0 would therefore be

al/‘r .
- <la.e., (26)
exp[/ K(s)A,(s,a)ds
0
which is equivalent to the condition
!
1noz<§/0K(s)Aq(s,a) ds a.c. (27)

Remark. From a practical point of view the distinction between ratio-
nal and irrational //7 makes no sense. Therefore our model is consistent if
we capture this phenomenon mathematically as well, that is, if we show that
(27) is consistent with (23). If //7 is an irrational number and p,/q, is a
sequence of rational numbers converging to / /7, we have to show that

A, &/ (28)

If (28) is true, then the inequalities (27) and (23) are identical, thus
proving that the model is consistent. To show that (28) is true, we note that

. /
when lim &=—, then g, .
n—oo n T
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This is due to the fact that / /7 is irrational while p, /g, is rational, so that
(28) follows in view of (21).

3. DISCUSSION

A mathematical model of cell population dynamics in regimes of cell-
cycle-phase-specific drugs is studied in this work. The model allows for the
pharmacokinetics and pharmacodynamics of the drug, as well as for the age
density distribution, which represents the level of synchronicity in the
timing of cell division. For analytic tractability, a constant cycle duration is
assumed, but, as is shown below, in the numeric simulations of the model
this assumption can be replaced by a more realistic distribution of this
parameter. In the latter case the function x in (17) is no longer periodic, so
the summation should be performed explicitly and the integration limit
should refer to 7 at £ =0.

Our analysis shows that for eliminating a given cell population, condition
(23) has to be satisfied if the relation between 7 and / is irrational, and
condition (27) if the relation between 7 and / is rational. As real-life
measurements yield a rational relation between the biological and pharmaco-
logical periodicities, we focus on condition (27) and show how it can be
employed in a straightforward manner for increasing drug selectivity. To
illustrate this we represent time by a circle of perimeter 7 and denote the
first g successive drug dosings by points on the circle, at times ¢, f, +
l,...,ty+(g—1)! (Figure 1). After g doses, because of the periodicity
(24), we return to the initial point on the circle. When this happens, the
interval between two neighboring such points is 7/g. Denoting the episode
in which each dose is effective by 4, the drug-free interval becomes
7/q — 8. This interval is a crucial parameter in the system; for eliminating
a given population we must make sure that it is short enough that no cells
can complete their drug-susceptible life phase. More precisely, a necessary
condition for population elimination is

T T
—q‘—5<g"’a—£<5. (29)

In general, relation (29) can be satisfied for relatively large g’s and
violated for relatively small g’s. This property leads to a selective treatment
by means of which we aim to eliminate the neoplastic cells or the virus
while minimizing damage to the host cells. The above analysis suggests that
when &, 7, and 6 are given both for the host cells and the neoplastic cells,
or the virus, one can choose / (thus g will follow) such that (29) is satisfied
for the population we wish to eliminate and violated for the host cells.
Moreover, it is clear from (29) that toxicity will be minimal, for a given
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Oh,24h
18h 6h
12h
Fig.1-a
Oh,216h
189h 27h
162h 54h
135h 8th
108h
Fig.1-b
Oh, 24h
Fig. 1-¢

Fic. 1. Time is represented by a circle of perimeter 7 =24 h, and the marked points
represent the first g consecutive times at which the drug is applied. (a) Dosing interval is
6 h. In this case, the drug-free interval is always less than 6 h, so bone marrow cells
whose susceptible life phase (S phase) is longer than 6 h are progressively eliminated. (b)
Dosing interval is 27 h. Here again, in spite of the relatively long dosing interval, all
bone marrow lines are expected to be affected by the drug, as the ratio between the
dosing interval and the cell-cycle time is 27/24 = 9/8 = p/q. This means that in the long
run the treatment ‘‘hits’’ at eight different timings over the 24-h cycle, leaving no rescued
cell lines that can complete the S phase during the drug-free interval. (c) Dosing interval
is 24 h. Here only a small fraction of the bone marrow population is expected to be
eliminated by the drug; most cells will be in their susceptible life phase during the
drug-free interval.

population and a given drug, if / is an integer multiple of 7, so that g =1
and & < 7 — £. Note that condition (29) is insufficient for estimating popula-
tion size because it uses only ‘‘temporal’’ parameters (£, 7, 6), leaving aside
the ‘‘physical”’ effect of the drug on the susceptible cells (K). For
incorporating the latter effect, one should use condition (27).
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Our analysis is based on the assumption of a continuous age density
distribution f(a), but this distribution does not appear explicitly in the
conditions for population elimination. For this reason the above conclusions
are applicable to any continuous cell age density distribution, indicating the
robustness of our model. Note, however, that f(a) does appear in the
formula for the number of cells at any given time (17).

What are the practical implications of our analysis for the treatment of
AIDS patients with AZT? We are interested in checking if different interval
AZT dosings can exert different relative toxicity to HIV-1 and host bone
marrow cells, as a function of their different life cycles. To this end we
compute the size of populations subjected to interval drug dosing, according
to (17). Two populations are considered: one with a small variation in cycle
duration, 7, representing the normal host cells, and one with a large
variation in cycle duration, representing the virus (see below). The analysis
presented above implies that dosing intervals similar to the average cycle
duration of the normal cells will be more selective than other dosing
intervals. This possibility is explored below.

In the results presented in Figures 2 and 3, we compare a protocol
involving a single daily AZT application with the currently used protocol in
which the same daily dose is divided into four dosings [10]. We assume that
bone marrow cells have a constant or a normally distributed cycle duration,
whose average is 24 h [12], and a drug-susceptible phase (S phase) whose
duration is in the range of 9-11 h [18]. The virus cycle duration is a
random variable in the range 10-50 h [11], and its drug-susceptible phase
(reverse transcription) is assumed to be in the range of 1-3 h [17].

Simulation results suggest that a relatively fast viral elimination may
occur under a 6-h dosing interval. However, this protocol is expected to
exert extremely high bone marrow toxicity (Figure 2). A dosing interval of
24 h is somewhat slower in virus elimination; its great advantage lies in its
capacity to preserve the bone marrow cell pool (Figure 3). Results in this
figure also suggest that a larger bone marrow toxicity will be exerted if the
variation in cycle duration of bone marrow cells is relatively large. Still, for
a given distribution of cell-cycle duration, a single daily dosing is expected
to be significantly less toxic than four daily dosings, using the same total
dose. These conclusions remain unaltered for other mean transit times of the
viral distribution as long as the fraction of time spent in the viral drug-sus-
ceptible life phase remains large enough (Figures 2 and 3). However, if the
distribution of viral cycle time is very large (e.g., 5-100 h), no protocol
with drug-free intervals can effectively eliminate the virus (results not
shown).

The present analysis supports our previous prediction in showing that
host toxicity may be minimized, while pathogen elimination may not
necessarily be hampered, when the dosing interval is an integer multiple of
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Fic. 2. Effect of 100 days of drug treatment, using a dose of 370 mg every 6 h. The
numbers of bone marrow cells and of three types of viruses differing in the duration of
reverse transcriptase activity are calculated according to (17). Host average cell-cycle
time is 24 h, with standard deviation 0.0 (H1), 0.2 (H2), 0.5 (H3). Duration of
susceptible life phase (S phase) is 10 h. Virus cycle duration is taken as a uniformly
distributed random variable in the range 10-50 h, and the drug-susceptible life phase
(reverse transcriptase) is 1 h (v1), 2 h (v2), 3 h (v3); half-life of the drug 3 h, initial
killing 38% (k= 0.0013).

the average susceptible host cell-cycle time. This prediction has been
verified in vitro for a leukemic cell line treated with ara-C [4], and in vivo
in mice treated with AZT or ara-C. The latter experiments show that when
the dosing interval is similar to the average bone marrow cell-cycle time,
the drug is significantly less toxic to the host than with other dosing
intervals [5, 6].

Putative effects of factors such as the circadian rhythm [14] or the drug
effect on cell-cycle synchronization and on shortening cycle duration [16]
can be incorporated into our model. However, further laboratory experi-
ments are warranted for checking how significant such effects are. More-
over, as noted above, the condition for population elimination is indepen-
dent of the specific age density distribution as long as this distribution is
continuous. For this reason, we do not expect circadian rhythms to have a
meaningful effect on the prospects of population elimination.
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Fic. 3. Effect of 100 days of drug treatment, using a dose of 1500 mg every 24 h.
The number of bone marrow cells and three types of viruses differing in the duration of
reverse transcriptase activity are calculated according to (17). Host average cell-cycle
time is 24 h, with standard deviation 0.0 (H1), 0.2 (H2), 0.5 (H3). Duration of
susceptible life phase (S phase) is 10 h. Virus cycle duration is a uniformly distributed
random variable in the range 10-50 h; virus-susceptible life phase (reverse transcriptase)
is 1 h (v1), 2 h (v2), 3 h (v3); half-life of the drug 3 h, initial killing 85% (k, = 0.0013).

The general conclusion of this work is that treatment efficacy is highly
dependent on the susceptible host cell cycle or the viral cycle parameters,
and that cell and pathogen dynamics should be considered when designing
treatment regimens. We hope that this work provides tools for predicting
the efficacy of specific drug regimens.

We are much obliged to R. Brunham and L. Harnevo for discussion
and to the John D. and Catherine T. MacArthur Foundation and the
Sherman Foundation for support.
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