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1. Introduction 

 

Despite growing capital investments of pharmaceutical companies in medical 

research and development, the number of new drugs brought into the market has 

dropped over the last decade. Moreover, the leading national and multinational 

regulatory agencies have become more cautious about approving new molecular 

entities, in the wake of the problems with Vioxx and other new drugs. ("Pharma 2020 

- Which path will you take?” PriceWaterhouseCoopers, 2008). The resulting shortage 

in drugs may have serious consequences on industry, society and government, and a 

big crisis is foreseen if drug development becomes too risky and unprofitable. If the 

Pharmaceutical industry is to remain at the forefront of medical research and continue 

helping patients, it must become more innovative in reducing the development time 

and costs of new therapies. 

 

Currently, the physical and toxicological properties of drug candidates are mostly 

studied in vitro, by screens to find molecules that “hit” a designated target. The most 

promising candidates are then selected to be tested in animals. In silico methods are 

used to design new molecules only where the structure of the target is known. The 

new Quantitative structure-activity relationship (QSAR) applications to drug 

development, employed to predict ADMET parameters, are often more complex to 

use and are relatively early in their development.  The Pharmaceutical industry needs 

a faster and more predictive way of testing molecules before they go into man.  

 

One strategy is to use "virtual R&D," i.e., R&D aided by computer simulations of the 

human body, to dramatically shorten the period of development of new drugs, and 

substantially reduce the chance of clinical failure, thus saving amortized costs across 

clinical development. 

 

Indeed, Virtual Mice, Virtual Monkeys, and Virtual Patients have already been 

developed and pre-clinically and clinically validated for accuracy of prediction of 
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both drug efficacy and drug toxicity, as well as in suggesting improved drug 

regimens. For example, the use of virtual mice and Rhesus monkeys accurately 

simulated mice and individual Rhesus thrombopoieis and responses to different 

thrombopoietin (TPO) regimens, and suggested an improved TPO regimen, which 

maintains drug efficacy but alleviates its immunogenic effects (Skomorovski et al., 

2003). This Virtual Animal-suggested regimen keeps its superiority even following 

several years of TPO administration (Fatima et al., 2008). In another study, to be 

briefly discussed in this chapter, the use of virtual xenografted mice was 

prospectively validated to precisely replicate tumor shrinkage in mice xenografted by 

biopsied tumors of a Mesenchyma Chondrosarcoma (MCS) patient, treated by 

various combinations of biological and chemotherapy drugs. Up-scaling drug 

response parameters and embedding them in the Virtual MCS Patient resulted in an 

improved Docetaxel regimen, which was administered to the patient, relieving 

pancytopenia and stabilizing disease (Gorelik et al., 2008b).  

 

In this chapter we will discuss the construction and use of the Virtual Patient 

technology. We will do so focusing on an important module of the Virtual Patient, 

namely, tumor vascularization. Recently, tumor vascularization has emerged as an 

especially important target in drug development. A study by Cancer Research (UK), 

based on 974 cancer drugs starting initial Phase I clinical trials since 1995, calculated 

there was an 18 percent probability that a drug would make it to commercial 

registration, as compared to 5 percent in 2004. The sharp improvement is due to more 

targeted drug development, which is based on a better knowledge of the biology of 

cancer. Most notably, kinase inhibitors are almost three times more likely to reach 

patients than other types of anti-cancer drug (Walker, 2008). Well-known examples 

of kinase inhibitors include trastuzumab (Herceptin) and Imatinib mesylate (Glivec). 

Trastuzumab suppresses angiogenesis by both induction of anti-angiogenic factors 

and repression of pro-angiogenic factors and Imatinib mesylate impairs angiogenic 

capacity by normalization of vascularity. Understanding the dynamics of the complex 

angiogenesis-related processes is crucial for predicting long-term efficacy and safety 

of novel and more traditional drugs. 
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In this chapter we discuss the construction of a multi-scale mathematical model for 

angiogenesis, from the molecular scale through the tissue scale, at different levels of 

model complexity. Rigorous mathematical analysis of the angiogenesis model is 

presented, and its role in drug development discussed. Model validation in a treatment 

personalization case study is used to illustrate a new theranostic method, which in this 

case is based on angiogenesis modeling. Finally, we show how the angiogenesis 

model, embedded in the Virtual Patient technology, is used to demonstrate that an 

arrested drug candidate can be efficacious if applied in combination with Sunitinib 

Malate (Sutent). 
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2. Modeling Angiogenesis 

2.1. Introduction  
 

The first models of tumor angiogenesis appeared as early as mid 1970s (Deakin, 1976; 

Liotta et al., 1977; Saidel et al., 1976), following the new J. Folkman paradigm 

concerning the crucial role of vascularization in tumor development (Folkman, 1971). 

These works, driven by experimental data on tumor progression in animals, accounted for 

growth and movement of tumor cells and tumor-supporting blood vessels, and their 

mutual influence. Since the early 1990s, along with significant advances in the 

understanding, and detailed characterization of biological processes involved in tumor-

blood vessel dynamics, a vast body of theoretical work has been developed by different 

researchers. Several groups have published studies that developed and explored 

mathematical models describing different aspects of tumor-induced angiogenesis, tumor 

growth and blood vessel dynamics. These works also addressed the significance of the 

above processes for chemotherapeutic, radiological or anti-angiogenic treatments. 

Naturally, these models significantly differ, both in their mathematical underpinnings, 

and in the biological phenomena they represent.  In many reviews (e.g., (Alarcon et al., 

2006 ; Araujo and McElwain, 2004; Mantzaris et al., 2004)) an effort was made to 

summarize and compare the different models. However, at present, no clear classification 

has been established. When attempting to present such a classification, one can select 

various criteria for comparison between the models. One type of criteria relates to the 

formal details of the modeling approaches, i.e., type of equations used. In contrast, one 

can classify the works by their applications, namely, the exact biological phenomena 

captured by the model or the clinically relevant questions to which the model can be 

applied.  

 

Below we describe several mathematical models depicting tumor growth and 

angiogenesis. We will focus on the models that have been already verified by pre-clinical 

and clinical studies. From a mathematical point of view, the models we will discuss here 

neglect spatial aspects. Clearly, angiogenesis is a 3D-process, as well as tumor growth 
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itself. Consequently, most of the models developed in this field are taking into account 

the spatial dimensions of vessels and tumor growth. However, the immense complexity 

of the process, coupled with the intricacy of a spatial description, renders these models  

difficult to parameterize and thus almost impossible to investigate analytically and 

difficult to simulate numerically. All such models at present capture only a part of the full 

complex picture (Mantzaris et al., 2004). Yet, simpler models (as those discussed herein) 

can sufficiently account for observed tumor-vasculature dynamics and are used to explain 

and predict real experimental and clinical results, even though they overlook spatial 

aspects. Thus, using the models presented here allows incorporation of experimental data 

towards clinically meaningful validation and prediction. In addition, these models are 

both simple enough to allow efficient mathematical investigations and comprehensive 

enough to represent important components of the tumor angiogenesis.  

 

2.2. Simple two-dimensional modeling 
 
The first model we present here was proposed by Hahnfeldt et al. in 1999 (Hahnfeldt et 

al., 1999). This simple model consists of two coupled ordinary differential equations 

(ODEs) describing tumor mass and vascular support. For the tumor dynamics, the basic 

hypothesis is that the tumor mass (V) (measured either in volume or cell units) follows 

the Gompertz growth law:  

 

                                                                                                                      (1) V
K

V ⎟
⎠⎝

−= lnλ V ⎞
⎜
⎛

1
&

This equation is accepted as a standard description of saturated tumor growth, supported 

by experimental evidence (Skehan, 1986; Spratt et al., 1996). Parameter λ1 is a constant 

relating the dimensionless expression ln(V/K) to the growth rate. Parameter K is usually 

termed the carrying capacity of the tumor, to which the tumor mass always converges. 

From a practical point of view, K is a constant representing the maximal tumor burden 

the host could support, and when the tumor mass approaches this value, the growth rate is 

reduced to zero. This may be explained by a limitation on nutrient supply, as shown both 

experimentally (Freyer and Sutherland, 1980; Kunz-Schughart, 1999; Sutherland et al., 

1971) and theoretically (Byrne, 1999; Greenspan, 1974; Landry et al., 1982; Marusić et 
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al., 1994) for avascular tumors in which growth was limited due to lack of diffusion of 

exterior nutrients.  

 

The ability of the tumor to recruit a vascular system through angiogenic signaling has an 

augmenting effect on tumor carrying capacity, due to better availability of nutrients. This 

simple concept is considered in (Hahnfeldt et al., 1999) in order to represent the 

contribution of recruited blood vessels, and to describe the dynamics of vascular tumor 

growth and reaction to anti-angiogenic treatment. In this model, K is no longer assumed 

constant and its behavior is given by the second ODE in the general form: 

 

                                                                                                             .          (2) ( ) ( ) ( )eKgKdIKbSK +−= 2λ VVK −− ,,& t

Here, K is the time-dependent carrying capacity of the tumor, representing the 

effectiveness of the vascular support, λ2 represents the intrinsic spontaneous loss of 

vasculature, resulting in decrease in tumor support, S(V,K) and I(V,K) represent, 

respectively, the stimulatory and inhibitory effects produced by tumor and vasculature 

together, g(t) is current concentration of anti-angiogenic drug and b, d, e are rate 

constants. In order to further characterize the functions S(V,K) and I(V,K), the authors 

refer to the experimental observation that stimulatory factors are local and short-lived, 

while inhibitory factors act over a longer range and time span (Hahnfeldt et al., 1999). 

The explicit formulations of these functions are established using the following 

argumentation. A diffusion-reaction equation for a stimulator or inhibitor concentration, 

n, is written where 

 

                                                                                            ,                          (3) 

D is a diffusion coefficient, c is the decay rate and s is a production rate, assumed to 

be equal to s0 inside the tumor and zero outside the tumor. To solve this equation, it is 

assumed that the tumor grows relatively slow, 0=∂∂ tn , and that the tumor is 

spherically symmetric of radius r0. Via these assumptions, one can obtain explicit 

expression for the concentration n inside and outside the tumor: 

 

                                                            ,                                                                     ,   (4) 
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where Dcru 21
00 =  and Drcu 21= . Assumptions regarding the clearance rates can next 

be applied. For the inhibitor, it is assumed, that 2
0

2 rDc << , leading to:  

 

 

                                                      ,                                         .                      (5) 

 

For the stimulator, c is assumed to be large and 

                                    ,                                  .                                               (6) 

It is concluded that the overall impact of the inhibitor grows as , i.e. as 2
0r

32V , while the 

effect of the stimulator is independent of tumor size and vascularization. Thus, the 

inhibitor term is taken to be KdV 32 , i.e. the rate of decay of K being defined by . 

Further, for a similar reason it is argued that the ratio between inhibitor and stimulator 

terms in equation (2) will be approximately with 

2
0r

βαVK 32≈+ βα . This relation gives 

the stimulation function in the form , where δγ KbV 1≈+δγ . In (Hahnfeldt et al., 1999), 

this term is assumed to be if the form bV . Equation (2) then takes the form:  

 

                                                                                                                        (7) 

 

The expression for the drug concentration is computed using the standard one-

compartment linear PK model:  

 

                                                                      ,                                                 (8) 

 

where ( )τC  is the rate of administration of the anti-angiogenic drug, and  is the 

elimination rate for this drug.  

ek

 

This model is applied to the control and treatment data for three angiogenesis inhibitors, 

mouse endostatin, mouse angiostatin and TNP-470 (see [11] for experimental details). 

The model was fit to the control data and to one dosage experiment for each drug. 
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Subsequently, it successfully predicted the experimental results using different dosages of 

endostatin and the combination of angiostatin and endostatin. Further, from the 

simulations it was found that in the absence of treatment, the ratio KV  increases 

asymptotically to 1 and the tumor size is limited. Simulations also suggested that the 

vasculature is more responsive to anti-angiogenic treatment, and that more continuous 

delivery of the drug may have enhanced efficacy.  

 

In the continuation work (Sachs et al., 2001), the model was slightly modified, removing 

the linear decay term, K2λ , which has a small influence on the system dynamics. This 

model is found to have a single global attractor in the positive V, K quadrant,  with the 

steady-state values ( ) 23
00 dbKV == , supporting the results of the simulations reported 

in (Hahnfeldt et al., 1999).  

 

To summarize, the model presented above illustrates the application of mathematical 

theory to biological reasoning and practical clinical questions. The model’s underlying 

assumptions are based on two major biological observations, namely that blood vessels in 

the tumor microenvironment support tumor growth, and that angiogenesis is stimulated 

by the tumor. Biological knowledge about the competition between the stimulatory and 

inhibitory angiogenesis factors is also translated into assumptions for this minimal 

mathematical model, which is constructed to capture these important postulated 

properties. This approach allows one to analyze the model and compare its predictions to 

the experimental data in order to check its validity. Furthermore, in this case, the model 

has a prognostic value, predicting the outcomes of applying a new monotherapy regimen 

and even drug combination. 

 

2.3. Higher complexity models 
 

The models described below include additional details of tumor angiogenesis. Their first 

key feature is the introduction of one or more signaling molecules, which were 

discovered to be involved in angiogenic signaling. This progress in understanding the 
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biology of angiogenesis enables formalizing the known properties of these cytokines. An 

additional key feature is motivated by experimental results reporting more complex 

dynamics of the tumor-vasculature system, in particular, an oscillatory pattern in the 

growth of tumor size and vessel density (Gilead et al., 2004; Gilead and Neeman, 1999; 

Holash et al., 1999). Since the model in (Hahnfeldt et al., 1999) does not reflect these two 

features, more detailed models are required to incorporate the cytokine role in the 

signaling cascade and allow for non-monotonic and unstable behavior, even under no 

anti-cancer treatment. 

 

First we describe the simplest model that incorporates the mediating role of angiogenic 

signaling by tumor cells. This model, explored in (Agur et al., 2004; Forys et al., 2005), 

consists of three ODEs describing the dynamics of three variables: tumor size, N, amount 

of protein involved in angiogenic signaling, P, and volume of blood vessels, V.  

The tumor growth rate is assumed to depend on nutrient supply, which is proportional to 

vessel density, defined by NVE = . Hence, the first equation:  

                 

                                                                                                                        (9) ( ) .1fN = NE&

   

Here, the function f1 is increasing, ( ) 001 <f , ( ) 0lim 1 >
∞→

Ef
E

, i.e., the tumor will regress 

for zero vessel density and will grow with bounded rate for high vessel density. 

The signaling protein is assumed to be secreted by the tumor as a result of nutrient 

deficiency: 

                                                                                                                         (10) ( ) .2fP δ−= PNE&

 

Here, the function f2 is decreasing, ( ) 002 >f , ( ) 0lim 2 =
∞→

Ef
E

, i.e., when vessel density is 

large, the secretion of the pro-angiogenic protein drops, while at small vessel density 

each tumor cell secretes more protein. The second term accounts for first-order decay of 

the protein.  

 

The size of the vessels is determined by the protein, as follows: 
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                                                                                                                        (11) ( ) .3fV = VP&

 

Here, the function f3 is increasing, ( ) 003 <f , ( ) 0lim 3 >
∞→

Ef
E

, i.e., small amount of protein 

causes vessel regression, while high amounts induce growth of vasculature.  

 

The model given by equations (9–11) is studied in (Agur et al., 2004; Forys et al., 2005) 

in numerical computations using sigmoid-like functions. It turns out that in contrast to the 

previous models, here no positive stable biologically relevant steady state exists. Note 

that the steady state 0=== EPN  is of no interest, since the model describes the 

dynamics of existing vascular tumors. It was analytically proven in this model that both 

the tumor and the vessel volume always grow monotonically showing no oscillations. 

The vessel density can either increase unlimitedly or stabilize at some level, so that the 

tumor and the vessels grow proportionally, thus resembling the behavior of the previous 

model. Since these modeled tumor and vascular dynamics fail to capture the full range of 

the observed real life cancer growth behavior, such as oscillations, one can consider the 

introduction of new assumptions that may enrich the model behavior. 

 

In (Agur et al., 2004; Forys et al., 2005) the above model is extended by introducing time 

delays into the equations. Specifically, it is assumed that the current tumor growth rate 

and vessel formation rate depend on the prior vessel density and protein concentration 

some time before. Mathematically, this leads to the following system of delayed 

differential equations (DDE):  

 

                                                                                                                        (12) ( )( )NtE& fN 11 τ−=

                                                                                                                        (13) ( ) PNEfP δ−= 2
&

                                                                                                                        (14) ( )( ) .VtP&
23fV τ−=

 

Here all the functions are the same as in the system of equations (9–11), 1τ  and 2τ are time 

delays, so, for example, tumor growth rate depends on vessel density some 1τ  time units 
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ago, rather than depending on the current vessel density. In Agur et al. (Agur et al., 2004) 

it is shown that this model exhibits a specific behavior, termed Hopf bifurcation, namely  

periodic oscillations of tumor size and vessel volume under some specific conditions. 

Since such behavior is observed in laboratory experiments in untreated animals 

(Arakelyan et al., 2003a), it can thus be concluded that the system of equations (12–14) is 

a minimal model able to reproduce the experimentally observed non-monotonic behavior 

of the angiogenic tumor.  

 

In Bodnar and Forys (Bodnar and Foryś) the models expressed in equations (9–11) and 

(12–14) are modified by introducing the logistic term into the equation for tumor growth. 

The addition of this term is justified by the observed deceleration in tumor growth and 

the existence of natural limit for the tumor size, even if no limitations are imposed by the 

vascular system. Thus, for the system of equations (9–11) the first equation now becomes  

  

                                                                                                                       (15) 

 

and for the system of equations with delay (12–14) the first equation becomes  

 

                                                                                                                       (16) 

 

where is the same as in equation (9) and 1f α  is the maximal tumor growth rate. The 

analysis in (Bodnar and Foryś) shows that these two models always exhibit at least one 

stable steady state with , thus representing a realistic saturation in tumor growth. 

The model with delays also exhibits oscillatory behavior, similar to the model given by 

equations (12–14).  

0>N

 

It should be noted that the simple concept of carrying capacity as used in (Hahnfeldt et 

al., 1999) was replaced in the models presented above by the more elaborated notion of 

vessel density, reflecting the relationship between the vessel volume and tumor size. In 

fact, the crucial factor governing tumor growth is the efficiency of the vascular support. 

To account for this, in (Arakelyan et al., 2005; Arakelyan et al., 2002) the notion of 

( ) ,
1

1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
NN α

Ef
N&

( )( ) .
1

1
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
τtEf

& = α NNN
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effective vessel density (EVD) is introduced. It differs from the previously used vessel 

density in that it takes into consideration that different types of vasculature can contribute 

differently to nutrient supply. Following this notion, the blood vessels involved in tumor 

angiogenesis are divided into two groups – the immature vessels and the mature vessels. 

The more detailed description of the angiogenic process takes this distinction into 

account. The new vessels are formed by endothelial cells, which proliferate and migrate 

upon angiogenic signals. These new vessels are immature, being less stable and less 

efficient in nutrient supply. These vessels may undergo maturation by being covered by 

pericytes, the smooth muscle cells. This process is governed by a different type of signal 

- the maturation signal. Mature vessel can also undergo destabilization, due to weakening 

of maturation signals or appearance of anti-maturation signals. Experimental observations 

(Gilead et al., 2004; Gilead and Neeman, 1999; Holash et al., 1999) suggest that the 

dynamics of maturation and destabilization may be responsible for the non-monotonicity 

in tumor and vasculature growth. Following these hypotheses an additional model of five 

DDEs was proposed in Agur et al. (Agur et al., 2004). This model describes the growth of 

immature and mature vessels, V1 and V2, respectively, as two inter-related processes. Two 

types of   signaling proteins are considered. The first, P1 is secreted by tumor cells and 

assumed to stimulate immature vessels growth. Its role is equivalent to that of P in the 

previous models. The second protein, P2 stimulates maturation. It is also assumed to be 

secreted by tumor cells. This model takes the following form: 

 

                                                                                                                        (17) ( )( )fN 1=

                                                                                                                        (18) 

NtE 1τ−&

1 NE& ( ) 12 PfP δ−= 1

                                                                                                                        (19) 

                                                                                                                        (20) 

                                                                                                                        (21) 

Here equations (17, 18, 20) are similar to equations (12–14), except for the indices of P1 

and V1 added here. The function , accounting for the maturation rate, is positive and 

increasing. The function  computes mature vessels destabilization; it is positive and 

decreasing to zero. In addition, the computation of E is changed. Now it depends on both 

types of vessels, 

4f

5f

( ) NVVE 2211 αα += 1, α  and 2α  being the relative contribution of 

( )( ) ( ) ( )( ) .221241211 VtPVPfVtP τ −−&
2 P&

353 ffV τ−+=
2aNP δ−= 2

( ) ( )( ) .2354 ffV τ−= 2122 VtPVP +&
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immature and mature vessels to the effective vessel density. In this work they both were 

taken to be 1. This model also exhibits oscillatory behavior, suggesting the possible role 

of blood vessels maturation and destabilization in tumor growth.  

 

Finally, a more comprehensive model of the processes discussed above has been 

developed in order to better represent experiments where human ovary carcinoma 

spheroid were implanted in mice and tumor growth as well as immature and mature 

vascular dynamics were monitored  in vivo (Arakelyan et al., 2005; Arakelyan et al., 

2002). This model is formulated in terms of difference equations discrete in time and 

also, by ODE formalism (analyzed in the next section). The model captures the dynamics 

of the angiogenic tumor, calculating the following variables over time: 1) tumor size, 2) 

immature vessels density, 3) mature vessels density, 4) number of endothelial cells, 5) 

number of pericytes, 6) concentration of angiogenic factor VEGF, 7) concentration of 

maturation factor PDGF, 8) concentration of pro-maturation factor Angiopoietin1 (to be 

denoted Ang1), and 9) concentration of its competitor, anti-maturation factor 

Angiopoietin 2 (to be denoted Ang2). The equations for these variables reflect the 

biological understanding of the role of the system components, similar to the models 

described above. We refer the reader to Arakelyan et al. (Arakelyan et al., 2002) for more 

detailed description.  

 

In Arakelyan et al. (Arakelyan et al., 2002) it is shown that, consistent with the simpler 

models: if the maturation process is neglected, tumor and vasculature growth become 

monotonic. In contrast, the introduction of vessel maturation and their destabilization 

dynamics into the model reduces tumor growth and leads to highly non-monotonic 

behavior, including irregular oscillations of tumor and vasculature size. Further, by 

simulating anti-VEGF and anti-PDGF treatments, it was demonstrated that anti-

angiogenic treatment alone will not suffice to eliminate the tumor and has to be combined 

with anti-maturation treatment. This prediction has been corroborated in the pre-clinical 

setting by showing in pancreatic cancer mouse models that the combination of a VEGFR 

inhibitor with another distinctive kinase inhibitor targeting PDGFR activity (Gleevec) 

was able to regress late-stage tumors  (Bergers et al., 2003).  
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In Arakelyan et al. (Arakelyan et al., 2005) this model was applied to results of animal 

experiments, in which implanted tumor size and vascularization were measured. The 

model was able to fit quantitatively the experimental data, including non-monotonic 

changes of tumor size and mature and immature vessel density. The model predictions of 

subtle behaviors of mature and immature vessel dynamics were confirmed 

experimentally. 

 

In summary, a more accurate and detailed description of system dynamics can be 

obtained using more complex models, which account for known relevant components and 

processes. Even more importantly, mathematical modeling allows one to determine the 

minimal necessary components required to produce the observed phenomena and to 

understand how the complex behavior emerges from basic system properties. Once 

experimentally validated, the model can be used to assist researchers to improve and 

accelerate drug development and help identify the most prominent treatment approaches. 

 

 

3. Use of rigorous mathematical analysis for gaining insight 

on drug development 

 
Theoretical and numerical analysis are crucial elements in the development of a 

mathematical model that aims to mimic any realistic behavior of a biological or physical 

system. It enables one to take into consideration the types of behavior patterns that the 

model can reproduce. Typically, one would like to examine the robustness of the model 

to its initial conditions and check whether chaotic, periodic or other types of behavior can 

arise. For example, comparing transfer function rates in dynamical systems can identify 

key processes thereby enhancing biological understanding. Under specific conditions 

analysis enables dissociation of certain parts of the model from others, and the 

consequences of decoupling these elements can be examined. When this occurs, one can 
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test whether the model can be reduced to a simpler model. Analysis of the reduced model 

is frequently easier and can lead to a wider understanding of the system.  

  

At the steady state of a dynamical system, all variables remain constant.  Underlying 

processes may still be active in the steady state, yet the ongoing processes cancel out. An 

example of such processes is when constant production and elimination are equal in 

magnitude. Mathematically, the steady state of the system is denoted a fixed point of a 

system at a point where all the time derivatives of the system vanish simultaneously. At 

the fixed point, the steady state problem is equivalent to solving a set of equations (in our 

case this set of equations is non-linear). Finding the fixed points of the system and 

understanding it’s in- and outflow, can provide knowledge on the behavior patterns of the 

system. 

 

The flow problem is referred to as stability analysis. It is addressed by checking how 

perturbations around the fixed point evolve in time. Fixed points can be characterized in 

several manners. Among them are 1) stable fixed points, where the system tends towards 

the fixed point; 2) unstable fixed points, where the system diverges away from the fixed 

point; 3) limit cycle, where the system revolves in cycles around the fixed point.   

 

 The phase plane is a mathematical representation of the model variables at different time 

points and their values. The phase plane analysis reveals the various behavior patterns of 

the system. In order to check the stability of the whole system, the Jacobian, matrix of 

partial derivatives, is calculated. Often numerical simulations are performed to create a 

map of possible points of the system. In this map, arrows indicate flow directions 

between points. This information is pivotal for the comprehension of the model 

regardless of our ability to analyze the whole phase plane.  

 

The types of questions we would like to answer by this stability analysis are the 

following: How many fixed points exist? Where in the phase plane do these fixed points 

occur? Are these fixed points stable? Are the identified fixed points biologically 

reasonable? For instance, a trivial example of an unreasonably biological fixed point is 
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when the system variables take negative values. These data regarding the biologically 

feasible steady state conditions are of great relevance. In this way, steady state analysis 

sheds light on how to stabilize or destabilize a biological system. This insight could be 

crucial in drug development efforts. 

 

Establishing the existence of one or more fixed points in a solid tumor system, other than 

the obvious tumor free one, is not trivial.  Clinically, there is no significant evidence of 

stable untreated cancer patients.  The prerequisite clinical success is to eliminate the 

tumor, that is to achieve a complete response. However, a more likely possibility may be 

to transform a progressive disease into a chronic disease by stabilizing tumor progression.  

It is important to note that introduction of a drug to the system can give rise to additional 

fixed points. The existence of such additional fixed points will depend on the specific 

pharmacokinetic/pharmacodynamic (PK/PD) profile of that drug. 

 

The behavior around the fixed points is important. Although, clinically, we are interested 

in stabilizing or reducing tumor size, model parameters other than tumor size, such as 

growth factors and vessel density, are of a great relevance, as they dictate the behavior of 

the entire tumor. Thus, mathematical analysis of these factors is instrumental for proper 

targeting during the drug discovery process, and can serve in the target selection and 

validation processes. For example, targeting angiogenesis alone, by administering anti-

angiogenic monotherapy, is known to only delay tumor progression (Quesada et al., 

2007). This phenomenon is an example of a system that does not converge to a fixed 

point (steady state) despite the imposed perturbations (pharmacotherapy). Furthermore, 

thresholds on variable levels may determine to which stable fixed point the system 

eventually converges. 

 

In this section we attempt to find fixed points in a complex biological system for a 

vascular tumor (VT) model. The model underlying the work presented here was 

described and analyzed previously (Agur et al., 2008; Arakelyan et al., 2003b; 

Arakelyan et al., 2005; Arakelyan et al., 2002). The model in its simplified version is 

described here by a set of non-linear ordinary differential equations (ODE).  We show 
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that this system has a non-trivial fixed point, and define the conditions for its 

existence. For further explanation on fixed point the reader is referred to Lee A. Segel 

(Segel, 1984). 

 

3.1. Methods 
 
Here we provide an example of a mathematical analysis searching for a fixed point in a 

biological nonlinear system. The model at hand is an angiogenesis dependent solid tumor 

model. This model is a simplified version of Arakelyan et al., 2002 (Arakelyan et al., 

2002).  The variables that represent this simplified model may be divided into three main 

groups.  

1. The tumor variables; the number of living tumor cells, L, and the number of 

necrotic tumor cells, N. Both these variables are measured in volume in units of  

mm3  

2. The growth factors concentrations; consisting of Vascular Endothelial Growth 

Factor (VEGF), Platelet Derived Growth Factor (PDGF), Angiopeitin1 (Ang1) 

and Angiopoeitin2 (Ang2); their amounts are measured in nanograms per 

milliliter (ng/ml)  

3. The vessel related variables; consisting of volumes of immature vessels, Vim, 

mature vessels, Vmat, and free Perycite cells, Per;  their amounts, are measured in 

mm3. The nutrition supply to the tumor is evaluated by the Effective Vessels 

Density, EVD (Arakelyan et al., 2002), which is dependent on the vessel related 

variables and the tumor related variables.  
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Figure 1. A scheme of the mathematical model for vascular tumor growth (Arakelyan et 

al., 2002). The notation for molecular and cellular entities is defined in the text. 

 

The main model assumptions are listed below (see also Fig. 1). 

• Living cells, L(t), can proliferate and can undergo necrosis. Both processes are 

controlled by transfer function of nutrient supply to the tumor, EVD. 

• The number of necrotic cells grows according to the death of the living cells 

controlled by EVD  

• VEGF(t) is secreted by the living cells, L(t), and its secretion is controlled by the 

nutrient supply to the tumor, EVD. VEGF disintegrates with a characteristic 

disintegration time. 

• PDGF(t) is secreted by the living cells, L(t), and its secretion is controlled by the 

nutrient supply to the tumor, EVD. PDGF also disintegrates.  

• Ang1(t) is secreted by the living cells, L(t). Ang1(t) is also produced by immature 

vessels. Its secretion in both cases is controlled by the nutrient supply to the tumor, 

EVD. Ang1 also disintegrates. 
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• Ang2(t) is treated in a similar manner as Ang1(t). 

• Immature vessels may form mature vessels. This maturation process is controlled 

via transfer functions dependent on the amount of Ang1 and by the Ang1 to Ang2 

ratio. Destabilization of maturate vessels occurs when mature vessels shed perycites 

and turn again to become immature vessels. This is controlled via transfer functions 

dependent on the amount of Ang1, Ang2 and on the Ang2 to Ang1 ratio, thus 

enlarging the immature vessels pool. Immature vessels may also disintegrate in a 

characteristic time. 

• Mature vessels, Vmat(t), are formed when immature vessels mature. These are 

exactly the same Vessels that were subtracted from the immature vessels term. As 

mentioned above, this process is controlled via a transfer functions dependent on 

the amount of Ang1 and on the Ang1 to Ang2 ratio. Destabilization of mature 

vessels is controlled via transfer functions dependent on the amount of Ang1, Ang2 

and on the Ang2 to Ang1 ratio. Mature vessels can not disintegrate naturally. 

However we added this term to the model to allow for a later drug effect on drug 

related mature vessels functionality/disintegration. 

 

To efficiently analyze the system, we utilize the fixed point definition, the point where all 

time derivatives vanish, to relate a single model variable to all other model variables. In 

addition to model variables, this mathematical expression also involves model parameter 

values. As an example of this approach, we consider the volume of immature vessels in 

the tumor, Vim, as the single variable. Other choices would not alter the results.  

 

We survey the model equations to identify their inner relations at the fixed point. First, 

we analyze the system as a whole, checking for the existence of fixed points. Secondly, 

we verify the possibility that this point(s) exists within the biologically realistic parameter 

space (e.g., positive values of variables, such as cell numbers). We also show the 

existence of biologically relevant constraints on the system parameters. In this case these 

constrained parameters can be growth factor production rates, replication rates, etc. 

Finally, we suggest a numerical method for identifying clinically relevant fixed points 

based on the mathematical analysis.  
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3.2. Theoretical analysis of the angiogenesis model 
 
Fixed point analysis of the equation for living cells 

 

The living cell equations at the fixed point is expressed as follows: 

   LEVDfLEVDfL LLLL )()(
sr

& µλ −=   (19)  

Here we establish the following definitions and relations: 

• )(EVDfL

r
 is a monotonically increasing transfer function bounded by two 

asymptotes at 0 and 1. 

•  )(EVDfL

s
 is a monotonically decreasing transfer function bounded by two 

asymptotes at 0 and 1.  

• EVD=F(Vim, Vmat, L) 

Demanding that the derivative of the living cells numbers vanishes 0L =& yields the 

trivial zero solution and an additional solution: 

 
( )
( )

L L

LL

f EVD
f EVD

λ
µ

→ =

suu

uur    (20) 

 

The existence of such an EVD, as in equation (20), depends on an overlap in the 

effectively non-zero parts of the transfer functions. As the increasing and decreasing 

functions describe modification of proliferation and death as a function of nutrition 

supply, it is obvious that the functions overlap to some extent. Equation (20) defines a 

unique value, or values, for EVD which is used in the analysis for the rest of the 

equations. 

Necrotic cells 

 
The death of cells is described by: 
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 ( )L L NN f EVD L Nµ= −µ
suu

&  (21) 

so 

 0 ( )L
L

N

N f EVD Lµ
µ

→ =
suu

0

)

 (22)  

Substituting the expression obtained from EVD in equation (20) in (Lf EVD
suu

above yields a 

fixed point for N, the number of cells in necrosis, which depend solely on L. Hence, N0, 

the number at the fixed point of necrotic cells, is related to L0, the number of living cells, 

at the fixed point, and the already determined EVD value at the fixed point. 

 

VEGF growth factor 

 
Similar to the necrotic cells case, the VEGF level fixed point, VEGF & 0, is obtained as a 

function of the living cell fixed point and EVD   

 

VEGFLEVDfGFEV VEGF
L

VEGF
L
VEGF µλ −= )(

r
&                               (23) 

so  

 

         0 ( )
L

LVEGF
VEGF

VEGF

VEGF f EVD Lλ
µ

→ =
uuur

0  (24) 

The level of VEGF at the fixed point depends on the living cells and the EVD value at the 

fixed point.  

PDGF growth factor 

 
The PDGF fixed point is dictated by the living cells, similarly to the described above. In 

our system, PDGF secretion influences pericyte production.  
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Ang1 growth factor 

 
The growth factors Ang1 and Ang2 are secreted by living cells and by endothelial cells 

that comprise the immature vessels: 

  

 Ang1 &  = 1 1( )L L
Ang Angf EVD Lλ

uuur
 (25) 
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Ang2 growth factor 

 Ang2 &  = 2 2 ( )L L
Ang Angf EVD Lλ

uuur
 

  + 2 22 ( )Vim Vim
Ang AngAng 2f EVD Vim Angλ µ−

uuuur
 (27) 

  

Demanding that =0, Ang2’s fixed point is obtained similarly to Ang1’s. The levels 

of Ang2 and Ang1 at the fixed point depend on the number of living cells and the density 

of immature vessels at the fixed point, in addition to the EVD determined by equation 

(20).  

2GNA &

Vessels fixed points 
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Immature vessels can proliferate. They are subtracted from the system when undergoing 

maturation, and they can be added to the system by mature vessels destabilization. They 

can also regress The equation describing the immature vessel dynamics is therefore:  

( )
( )
( , )

VimVim
VEGF VEGF

Vmat

Vim f VEGF Vim
F Vmat
F P Vim

λ

µ

=

+
−
−

ur
&

    (28) 

The equations describing the mature vessel dynamics are governed by mature vessel 

creation by maturation of immature vessels and their destabilization.  

  

( , )
( )

Vmat

Vmat F P Vim
F Vmat
µ

=
−
−

&

        (29) 

 

Adding up these two equations, upon demanding a fixed point Vim & ≡0 and Vmat & ≡0, 

yields a rather simple connection. Note: some model elements do not appear in the 

steady state solution as they have been canceled out., The following result does not 

depend on their specific form:  

 

VmatVimVimVEGFf VmatV
V

VEGF
V
VEGF im

imim µµλ =−)(
r

 (30) 

   

This equation has important consequences as detailed below.  

1) Links between Vmat to Vim at the fixed point by substituting in equation (30), 

three connections that were already described; 

• Volume of living cells, L, relation to Vmat and Vim that is defined by the 

expression of EVD and its value at the fixed point.  

• The living cells are related to the dead cells in equation (22).  

• VEGF is related to L in equation (24).  
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Furthermore, once Vmat0 is related to Vim0 the expression for EVD0 can relate the 

living cells L0 to Vim0. 

 

2) Another important consequence is revealed when we consider a system that lacks 

mature vessels ( ) (for example very early in the tumor progression when 

mature vessels have not been formed yet or under some medication when mature 

vessels can not be formed) in equation (30)  

0Vmat =

 

( )
VimVim

VEGF VimVEGFf VEGFλ µ 0− =
ur

    (31)     

( )
Vim Vim
VEGF Vim

VEGF

f VEGF µ
λ

→ =
ur

 

     

The transfer function values (
Vim
VEGF )f VEGF

ur  are limited by two horizontal asymptotes at 

zero and 1. Clearly, a meaningful result for equation (31) is obtained only if 

λVim
VEGF>µVim, so that the transfer function values are smaller than 1. This gives a non-

trivial biological constraint in this case (Vmat=0) on the proliferation rate of the 

immature vessels relative to their regression rate. 

 

It is possible to look for other fixed points where mature vessels are present in the 

model. This can be done only numerically, as the resulting system can be highly non 

linear. For these fixed points, the pericytes that cover vessels walls during the 

maturation process can be related to the immature vessels Vim. This relationship is 

added to the previously described connections between the rest of the variables and 

Vim. Thus, a graphical solution to the general problem can be obtained by plotting 

Vmat & =F(Vim) and finding the intersection with the abscissa. We note that in this case 

the existence of such a fixed point can depend on the parameter values. No additional 

fixed points were found for any specific selection of parameters (not shown).  
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3.3. Discussion of mathematical analysis methods 
 
Solid tumors are an extremely complicated biological system that involves a plethora 

of internal and external factors. The theoretical analysis of an angiogenesis-dependent 

vascular tumor model described above was able to identify a non-trivial fixed point in 

this complex system. We found that there is a constraint on the existence of this fixed 

point, namely, that it exists when the immature vessel proliferation rate exceeds its 

death rate. This intriguing result, which may bear important consequences for anti-

angiogenic therapy, could not have been found without a mathematical examination 

of a formal, simplified description of the system. Biologically, the fixed point that 

was identified here was characterized by the absence of mature vessels from the 

system. This finding implies that targeting vessel maturation and destabilizing already 

existing mature vessels may force the tumor to a fixed point. The stability of this 

fixed point is yet to be determined.  

 

Other fixed points may also exist. A complex multidimensional system, such as the 

one described above, is practically impossible to analyze theoretically. Hence, a 

numerical analysis is required. The phase plane was numerically investigated for 

other fixed points by plotting the time derivative of the variables representing mature 

vessels with respect to the variable representing the immature vessels, as described 

above. It is important to stress again that in contrast to our general theoretical 

analysis, this method is numerical and thus depends on the specific choice of 

parameters. No additional fixed points were found in this numerical analysis.  

 

Numerical stability analysis was also performed. For a specific choice of parameters, 

calculation of the Jacobian revealed that the system was not stable, but rather had 

potentially stable directions. Simulating behavior that results from perturbations 

around the fixed point (data not shown) supported this finding. 

 

The existence of a fixed point and its stability in such a system can have significant 

consequences for drug development, by supporting the “go-no go” decision in the 

 27



To be published by, John Wiley and Sons, USA. 
 

early stages of target validation and drug discovery. For example, such an analysis 

can reveal if targeting certain system components is likely to have clinically desired 

outcomes. It can also help identify those variables that are robust to perturbations. 

Moreover, one can analyze combinations of several drugs that have different 

mechanisms of actions in order to assess their stabilizing potentials. This analysis will 

help in comparing between drugs with different mechanism of actions and in 

predicting their degree of synergy. 
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4.  Use of angiogenesis models in theranostics 

 
Theranostics is a collection of diagnostic techniques that guide the choice of individually 

tuned therapy with the aim of finding the best possible treatment for a given patient. The 

human genome project (Venter et al., 2001) , Protein Structure Initiative  (Matthews, 

2007)  and recent identification of many molecular pathways have resulted in the 

discovery of novel targets for treating inflammatory, infectious, neurological and 

oncological diseases  

 

The relevance of theranostic approaches is higher in multifactor conditions that are 

characterized by a high inter-patient variability. In these cases the amount of biological 

knowledge and clinical experience does not allow for efficient rationalization of 

treatment selection and requires a systematic and rational approach. In the context of 

cancer, theranostic approaches include imaging techniques (for example, 

Radioimaging/MRI etc., (Chao, 2007; Kimura et al., 2008; Wieder et al., 2007)) and 

biomarker identification in the blood or at the cellular levels (for example, (Iwao-

Koizumi et al., 2005; Karam et al., 2008; McLeod, 2002; Salter et al., 2008)). 
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4.1. Integrating in silico and in vivo models for treatment 

personalization 
Mesenchymal Chondrosarcoma (MCS) is a rare malignant disease, with as few as 100 

new diagnosed patients each year in the U.S. One such patient was diagnosed with 

mediastinal located MCS at age 45. Shortly after the resection of the primary tumor, 

multiple bilateral pulmonary nodules were discovered. The patient underwent aggressive 

chemotherapy that included ifosphamide, cisplatin, etopisde, vincristine, doxorubicin, 

cyclophosphamide, and dactinomycin and sunitinib. Despite the chemotherapy, 

additional liver and bone metastases appeared. In addition, the patient developed severe 

myelosuppression with pancytopenia. 

 
In order to determine the best possible treatment for this MCS patient, tumor fragments 

were taken from his lung metastases and implanted in mice. This xenograft model was 

established and amplified until a sufficient tumor was available to implant in a control 

and several treatment groups of mice. These animals were then used to compare the 

different pharmacotherapy regimens. We refer to this model, in which the cells are taken 

from the patient and never propagated as a cell line as "tumor graft" to distinguish it from 

the cell line xenograft models. 

 

A general mathematical model for angiogenesis-dependant solid tumor, which was 

described earlier in this chapter, was utilized to perform in silico experiments, identical to 

those performed in the tumor graft model, for predicting the MCS dynamics in the 

control and treated animals. Pharmacokinetics (PK)/ pharmacodynamics (PD) models of 

the relevant drugs were constructed using publicly available data. In addition, qualitative 

chemosensitivity tests of several cytotoxic drugs were performed on tumor cells from the 

patient's biopsy. Incorporating the data of these chemosensitivity tests into the 

calculations allowed a certain level of personalization of otherwise general PK/PD 

models. 

 

The mathematical model of the MCS tumor grafts was successfully validated with an 

average accuracy of 81.6% (Ziv et al., 2006) and was later fine-tuned to provide 87.2% 
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accuracy (Gorelik et al., 2008a). After the validation of the mathematical model, gene 

expression analysis of key proteins in the grafted tumors and in the MCS patient was 

performed in order to adjust the model to describe the tumor dynamics in the human. The 

resulting mathematical model of the human disease was used to perform patient-specific 

predictions of various anti-cancer treatments. 

 

Guided by the results of the personalized in silico/in vivo combined model, clinicians 

administered the MCS patient once-weekly regimen of Docetaxel (DOC) – a cytotoxic 

agent that is routinely given every three weeks.  Eventually, the patient had a dramatic 

response to therapy with a marked decrease in serum alkaline phosphatase from bone and 

an immediate substantial recovery of all 3 blood elements (hemoglobin, white blood cells 

and platelet count). Soft tissue disease in the lungs and liver remained stable and the 

patient enjoyed a 6 month period of good quality of life, ending only after pulmonary 

progression of his disease to which he finally succumbed (Gorelik et al., 2008a). 

 

4.2. In-silico model suggests angiogenesis rate determines the optimal 

inter-dose interval of cytotoxic therapy 
 
According to the simulations with the human MCS computer model that compared the 

efficacy of DOC delivery every 7, 14, 21 or 28 days (keeping the same average weekly 

dose), once weekly regimen was found to be more efficacious than the alternatives (Fig. 

2). This finding is of interest due to the controversial clinical evidence regarding the 

relative efficacy of once- vs. tri-weekly DOC regimens. Moreover, once weekly 

administration of DOC is problematic due to increased adverse effects and reduced 

compliance (Chen et al., 2008; Warm et al., 2007). Thus one would like to identify 

patients that are more likely to benefit from weekly chemotherapy schedules, compared 

to less frequent regimens. 
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Figure 2 Effects of DOC inter-dosing interval on tumor dynamics as predicted by 
simulations of the in vivo MCS patient's model under sixteen BEV and 
DOC combinations. Schedules include BEV 15mg/kg given every 21 days, combined 
with DOC, 1 hour IV infusion of 45 mg/m2, 60 mg/m2, 75mg/m2 and 90mg/m2; four 
DOC administration schedules are presented: every 7, 14, 21 and 28 days (Q7D, 
Q14D, Q21D and Q28D, respectively). 
 

4.3. Factors that determine the optimal inter-dosing interval 
 
Maximum tumor growth rate occurs when cellular proliferation and angiogenesis work in 

unison (Agur, 1986, 1998; Agur et al., 2004; Agur et al., 1988, 1992). Cytotoxic agents 

such as, but not limited to, DOC disturb the dynamic equilibrium between the growing 

tumor mass and the vessel bed that support it by direct killing of tumor cells. As a 

consequence, a cascade of compensating events is triggered.  

 

Tumor recovery time is a crucial factor in determining the inter-dosing interval. To 

illustrate this concept, consider a tumor that is exposed to a dose of a cytotoxic 
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compound. If the time period before the administration of the subsequent dose is not big 

enough for the tumor to recover to its pre-treatment size, then the net result will be tumor 

shrinkage. If, however, the second dose is delivered after recovery occurs, the therapy 

will result in a steady growth of the tumor. 

 

To assess tumor recovery from the cytotoxic shock, let us define tumor growth inhibition 

(TGI) factor, TGIL, in terms of the volume of the living cells in the tumor model before 

and after the treatment: 

⎟
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where TL,0, CL,0 are initial volumes of the living cells in the treated and the control tumor, 

respectively; TL,t and CL,t are, respectively, the simulated volumes of the living cells in 

treated or control tumors at time t. TGIL has a value of zero if the simulated volume of 

the living cells in the treated tumor equals to that in the control, untreated, tumor at the 

given time point. Larger TGIL values indicate greater tumor inhibition, while negative 

TGIL values indicate the situation where the simulated treated tumor is bigger (in terms 

of living cells volume) than the untreated one. In the clinical context, negative TGIL 

values mean that the treatment was harmful rather than beneficial. 

 

In the human MCS model simulations, the TGIL value 7 days after a single DOC 

administration was 46%. As time goes on, this cytotoxic effect decreases to the value of 

10% at day 21 – a difference of 36% (Fig. 3). Thus, if the second DOC dose is delivered 

on day 21, after substantial tumor recovery, the overall efficacy of the treatment would be 

smaller than the once-weekly regimens.  
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Figure 3. Model simulations of tumor dynamics in a patient after a single DOC dose 
(75 mg/m2, 1 hour IV infusion). A, Smoothed estimated TGIL after a single DOC 
dosing for tumors with different levels of angiogenesis intensity. Angiogenesis 
intensity is determined by scaling the model parameter, which combines VEGF 
secretion and activity rates. Simulations using two scaling factors (SF's), are 
compared to those with estimated angiogenesis intensity of the MCS patient (=1) and 
in combination with BEV (15mg/kg IV) are presented. Tumor dynamics were 
smoothed using a moving average algorithm with a span of 9 days. B, Predicted 
decrease in TGIL from day 7 to day 21 following DOC administration, as a function 
of angiogenesis intensity, relative to efficacy at 7 day intervals. 
 

 

As mentioned above, a cytotoxic agent triggers a cascade of tumor recovery events. One 

would expect that tumor vascularization plays an important role in these processes. Our 

hypothesis was that increased effective vessel density correlates with faster recovery of 

the tumor from the chemotherapy induced damage (Gorelik et al., 2008a). Out of the 

many parameters that govern angiogenesis in the in silico model, the one that is 

responsible for vessel endothelial growth factor (VEGF) (Benjamin et al., 1999; Dor et 

al., 2001; Feng et al., 2007; Shweiki et al., 1992) secretion was chosen for the subsequent 

screening.  The role of this growth factor in angiogenesis processes and its representation 

inside the computational model were discussed earlier in this chapter. 

 

If the human MCS model is simulated with the VEGF secretion rate reduced by the factor 

of two compared to its original value, the predicted decrease in TGIL from day 7 to day 

21 is only 29% (39% and 10%, respectively), indicating slower recovery from drug-

induced tumor inhibition. In contrast, if the rate of new vessel formation is doubled 

compared to that calculated for the real MCS patient, the difference in the extent of tumor 

inhibition by DOC dose between day 7 and day 21 increases to 92%: 69% at day 7 vs. a 

negative value of –22% in day 21 (Fig. 3). This predicted growth of the tumor beyond 

that predicted for the untreated model is due to the extensive and rapid formation of 

blood vessels triggered by the chemotherapy. The impact of inter-dosing interval on the 

treatment efficacy is further amplified by the addition of bevacizumab (BEV) – an anti-

angiogenic drug that binds the VEGF receptor, thus inhibiting its activity. The 

simulations of DOC/BEV administration to the original MCS model shows that initially 
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the tumor recovery is slow, with a predicted TGIL value of 76% at day 7 compared to 

45% without BEV. As time goes on, BEV is eliminated, which allows rapid angiogenesis 

and tumor recovery resulting in 10% TGIL on day 21 (a difference of 66%).  

 

These results suggest that if the MCS patient had less intensive angiogenesis, less 

frequent (for example tri-weekly) regimens would have been approximately as 

efficacious as once weekly, thus providing the clinicians more treatment alternatives. On 

the other hand, had the patient exhibited more intensive angiogenesis, the weekly DOC 

schedules would have been the only option to control the tumor growth, even at the cost 

of intolerable toxicity. Note, though, that our previous results in myelotoxicity modeling 

show that weekly DOC regimens are generally less toxic than the three-weekly ones 

[Vainas et al., 2008]. Fig. 3 demonstrates that the dependence of tumor recovery rate on 

the rate of angiogenesis is almost monotonic over a wide range of kinetic rates, which 

supports the generality of the above conclusions. 

 

4.4. Clinical relevance of the in-silico predictions 
 
The in-silico model presented here is composed of a large set of relatively simple 

mathematical equations that result in a highly complex predictive tool. The model 

parameters were estimated by comparison to a single patient suffering from a rare 

malignant condition – MCS.  The impact of one angiogenesis-related model parameter 

(VEGF secretion rate) out of the many alternatives was tested, as explained in section 4.3 

above. Nevertheless, the general principle of selecting inter-dose interval based on the 

angiogenesis status stems out of the mechanisms underlying the tumor dynamics. Thus, 

this hypothesis is not limited to any specific case, but is also expected for other cytotoxic 

agents and other solid tumors. Once this hypothesis is further validated, clinicians can use 

the angiogenesis status of their oncologic patients as an aid in personalization of 

cytotoxic treatment. 
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5. Use of angiogenesis models in drug salvage: the Virtual 

Patient technology 

 
Drug development is a challenging, costly and time consuming process.  Drugs that fail 

in clinical trials often due to low efficacy and/or high toxicity levels are shelved or 

altogether discontinued (Lievre et al., 2001b). Since the pipelines of new compounds 

seem to be increasingly exhausted it becomes mandatory for pharmaceutical companies 

to revisit their decision-making process at all stages of drug development. 

 

A new method is proposed here for salvaging prematurely shelved, or discontinued, 

compounds,  whereby virtual clinical trials can be efficiently, accurately and rapidly 

carried out to test alternative treatment schedules or alternative patient populations for the 

discontinued drug. This can be done by computer simulations of synthetic patient 

populations, which allow for the drug-patient dynamic interactions and the characteristic 

distribution of numerous biological and drug response parameters in the real-life 

population. To illustrate this approach, we briefly discuss below a case study of a 

licensed drug, Sunitinib Malate (Sutent®, Pfizer Inc), in combination with a discontinued 

drug, ISIS-5132 (ISIS pharmaceuticals Inc), for the treatment of prostate cancer. Results 

based on the Virtual Patient technology suggest that a new combination treatment is 

predicted to result in more patients reaching a Progression Free Survival (PFS) at 5 years 

than with either Sunitinib Malate or ISIS-5132 monotherapy. 

 

Each Virtual Patient in the synthetic population is constructed using a new bio-simulation 

technology developed to predict drug-patient dynamic interactions. It is based on the 

integration of the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug or 

drugs in question with the bio-mathematical models of  the pathological and the related 

physiological processes into one general framework (Arakelyan et al., 2005; Arakelyan et 

al., 2002). This method allows the prediction, not only of the short-term efficacy and 

toxicity effects of drugs, as conventional PK/PD models do, but also their long-term 

effects.  
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5.1. Constructing the disease model 
 
The angiogenesis-dependant tumor model represents tumor growth and vessel dynamics 

(formation and maturation). The virtual tumor dynamics are affected by the values of its 

biological characteristics specified as model parameters. Since measurements of 

untreated cancer patients are not available, synthetic curves, mimicking the growth of 

untreated tumors may be constructed. These curves are based on initial tumor size 

measurements and doubling times of untreated cancer patients found in the literature 

(Feng et al., 2007; Lievre et al., 2001a; Usuda et al., 1994). Accordingly the size of the 

untreated tumor at a given moment can then be calculated using the exponential growth 

model as described by Usuda et al (Usuda et al., 1994).  

 

Briefly, the following formula calculates the size of an untreated tumor on day t:  

VDTt
t VV 20 ∗=  

where t represents the time of measurement (in days), V0 represents the initial tumor size 

(in number of cells) and VDT represents the tumor volume doubling time. The synthetic 

curves that are generated by this process serve as an input for estimating the virtual 

cancer patients’ average vascular tumor parameters ( aveP ). 

 

5.2. Constructing Synthetic Human Populations 
 
In order to predict the effect of a treatment on a population, a virtual patient population 

must be generated. For each virtual patient the values of the model parameters are set. 

The individuals belonging to this population share most of the model parameters. 

However, several parameters are individually selected from a predefined distribution. The 

parameters and their values are selected based on studies indicating that they may have a 

prognostic value, and given that most of them are readily measured in the lab (Assikis et 

al., 2004; Caine et al., 2007; Maruyama et al., 2006). 
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5.3. Pharmacokinetics and Pharmacodynamics 
 
For the drugs analyzed here, PK profiles were modeled based on the literature 

information, suggesting a linear compartmental model based on the concentrations of the 

drugs in the plasma (Bello et al., 2006; Britten et al., 2008; O'Farrell et al., 2003; 

Stevenson et al., 1999; Tolcher et al., 2002). In addition, PD models for both drugs were 

estimated based on in-vitro and in-vivo data (Geiger et al., 1997; Mendel et al., 2003; 

Monia et al., 1996a; Monia et al., 1996b). The PK/PD effects were then allometrically 

scaled to human PK/PD (Administration, 2005; Contrera et al., 2004; FDA, 2005). A 

combined PK/PD model was created assuming an additive PD relationship with no PK 

interaction between the two drugs.  

 

5.4. Drug salvage case study – combining chemotherapeutic and 

antiangiogenic drugs  
 
The compound ISIS-5132 (ISIS Pharmaceuticals, Inc.) is an antisense oligonucleotide 

targeted against the c-raf-1 kinase oncogene (Monia et al., 1996b; Monteith et al., 1998). 

The c-raf-1 kinase is the direct downstream mediator of the Ras protein whose oncogene 

version is associated with more than 30% of human solid tumor types including lung, 

colon, and pancreas cancers (Bos, 1989). ISIS-5132 has been tested in phase I trials in 

melanoma, pancreas, colorectal, breast, brain, small cell lung and non-small cell lung 

cancers (Cunningham et al., 2000; Rudin et al., 2001). Phase II studies were conducted in 

ovarian, prostate small cell lung and non-small cell lung cancers (Coudert et al., 2001; 

Cripps et al., 2002; Oza et al., 2003; Tolcher et al., 2002). However, these phase II trials 

failed to show significant antitumor activity. The compound has also been preclinically 

tested in xenograft models of breast, small cell lung, non-small cell lung, prostate, and 

colorectal cancer (Geiger et al., 1997). Prostate cancer was selected for this investigation 

given the availability of pre-clinical pharmacological data. We then ran virtual clinical 

trials for the ISIS-5132 compound as briefly described below.  

The aim of this in silico study was to salvage ISIS-5132 for the treatment of prostate 

cancer by selecting a suitable drug on the market to use in combination with the ISIS 
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drug. This was done by performing virtual “Phase II” clinical trials in a synthetic prostate 

cancer patient population. In the first stage of this study many drug candidates were 

screened and analyzed (results not shown). Here we present the virtual clinical trial 

results of the combination of ISIS-5132 and Sunitinib Malate.  Sunitinib Malate is a drug 

approved by the U.S. Food and Drug Administration (FDA) for advanced renal cell 

carcinoma (RCC) and gastrointestinal stromal cancer (GIST). 

 

Model parameter, including drug PK and PD parameters, were based on experimental 

data reported in the literature. This parameter estimation process was performed 

separately for each of the drugs alone, and for the combination of the drugs. A 

concentration-effect function was created to assess the effect of ISIS-5132 on tumor cell 

proliferation. Similarly the effects of Sunitinib Malate on tumor cell proliferation on the 

number of pericytes and on the formation of new vessels were estimated based on the 

known drug mechanisms of action.  

 

A synthetic human population was created and simulated under numerous possible 

regimens of Sunitinib/ISIS-5132 combinations (Table 1). Each of these simulated 

regimens was evaluated in terms of progression-free survival (PFS). Since the doubling 

time for untreated prostate cancer is one year and above(Egawa et al., 1997), we 

examined the efficacy of the studied drug combinations two and five years post treatment 

initiation. 

 

Table 1:  Regimens simulated for ISIS-5132 and Sunitinib Malate  

Drug name 
Route of 

administration 
Dose* Regimen** 

1 week on 1 week off 
Sunitinib malate 

P.O. 

Every day (QD) 
25/37.5/ 50mg

4 weeks on 2 weeks off 

ISIS-5132 
2 hours IV infusion 

Every 3 days (Q3D) 
2-10 mg/kg Every 3 days (Q3D) 
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* All combinations were administered both simultaneously and intermittently (Sunitinib 

Malate administered 1 week before ISIS-5132 and ISIS-5132 administered 1 week before 

Sunitinib Malate) 

** The duration of treatments was ca. 6 months 

 

The results are presented using Kaplan Meier Curve (KMC) survival analysis, which 

describes the probability of PFS at a given moment post- treatment (Fig. 4). For the 

purpose of this study, tumor progression is defined as an increase by a factor of 1.75 from 

the baseline tumor volume. 

 

The simulations (Figs. 4, 5) predict more than 70% PFS of 5 years under the best selected 

regimen, under the accepted DLT, for the patient population, as compared to 40% in 

patients treated with Sunitinib Malate alone, and to 25% in ISIS-5132. The most effective 

regimen is ISIS-5132 6mg/kg Q3D + Sunitinib Malate 50mg, 4 weeks on – 2 weeks off. 

Note that the putative toxic effects of the studied combination were neglected in the 

current study for simplifying the demonstration. Exclusion of toxic effects may explain 

the visibly overestimated PFS. However, even if slightly over-estimated, these results 

clearly demonstrate the relative improvement of the ISIS-5132/Sunitinib Malate 

combination, thus providing an opportunity to salvage ISIS-5132 when administered in 

combination with Sunitinib Malate to prostate cancer patients. 
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Figure 4: Simulation results of Progression Free Survival in a Synthetic Prostate Cancer 
Population under ISIS-5132 monotherapy, Sunitinib Malate monotherapy, and their 
combination (ISIS-5132 6mg/kg Q3D + Sunitinib Malate 50mg, 4 weeks on – 2 weeks 
off). Simulation results for an untreated Synthetic Prostate Cancer Populations are 
provided for comparison.  
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Figure 5: Simulation results of Progression Free Survival in a Synthetic Prostate Cancer 
Populations under different schedules of ISIS-5132 and Sunitinib Malate combination 
therapy. 
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6. Summary and Conclusions 
In this chapter we have illustrated how to construct mathematical models for 

angiogenesis at different levels of biological detail and at different levels of system 

complexity. We have shown that a more accurate, detailed and practical description 

of system dynamics can be obtained with a more complex model which accounts for 

more relevant components and processes. Even more importantly, mathematical 

modeling allows one to determine the minimal necessary components required to 

reproduce the observed phenomena and to understand how complex behavior 

emerges from basic system properties. Uncovered by rigorous mathematical analysis, 

fixed points and their stability can aid drug development, for example by supporting 

“go-no go” decisions in the early stages of target validation and drug discovery.  

 

We described a new method for personalization of solid cancer pharmacotherapy. The 

method is based on mathematical models for angiogenesis embedded in the in silico 

Virtual Patient technology used in conjunction with data from tumor xenografts. We 

described a test case using this technology to suggest an improved treatment schedule 

for a particular MCS patient.  An average accuracy of 87.1% was obtained when 

comparing in silico model predictions to the observed tumor growth inhibition in the 

xenografted animals. Model predictions suggested that a regimen containing 

Bevacizumab applied intravenously in combination with once-weekly Docetaxel is 

more efficacious in the MCS patient compared to other simulated schedules. Weekly 

Docetaxel in the patient resulted in stable metastatic disease and relief of 

pancytopenia due to tumor infiltration. Based on numerical investigation of the 

model, we suggest that the advantage of weekly Docetaxel versus the tri-weekly 

regimen is directly related to the tumor's angiogenesis intensity. 

 

Finally, we described a new method for salvaging prematurely shelved, or discontinued, 

drugs. Virtual clinical trials were efficiently, accurately and rapidly simulated to test 

alternative treatment schedules, for the discontinued drug. We illustrated this approach by 

discussing a case study of a licensed drug, Sunitinib Malate (Sutent®, Pfizer Inc), in 
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combination with a discontinued drug, ISIS-5132 (ISIS pharmaceuticals Inc), for the 

treatment of prostate cancer. Results based on the Virtual Patient technology suggest that 

a novel combination treatment is predicted to result in more patients reaching Progression 

Free Survival (PFS) at 5 years compared to either Sunitinib Malate or ISIS-5132 

monotherapy. 
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