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Why has there been so little progress in the war 
against cancer? In spite of substantial research 
achievements over the last two decades, an 
annual cancer death toll of 562,640 was still 
expected in 2009 in the USA alone [101]. This 
gap between research progress and clinical 
results can be accounted for by investigators’ 
reliance on animal models, which are poor at 
predicting treatment success. Another reason is 
the excessive focus on the study of intracellular 
drug interactions, altogether ignoring the effects 
on the patient as a whole [1]. How can this gap 
be bridged? Which scientific methods enable 
accurate prediction of drug–patient interactions?

There is a consensus in the biomedical com­
munity that cancer progresses haphazardly and, 
hence, does not yield to prediction at any level of 
accuracy. Nevertheless, an oncologist prescrib­
ing a treatment must trust his/her own medical 
education, intuition, experience and the drug 
developers for predicting how the prescribed 
treatment will affect disease progression in the 
patient. However, the human mind is too frail to 
combine disparate pharmacological and medical 
information with the dynamic understanding of 
the multiscale processes taking place in a cancer 
patient undergoing drug therapy. Oncologists 
should be aided by tools for integrating vast and 
diverse biomedical information into a dynamic 
model that can forecast the patient’s response.

Biomathematics is a science that studies bio­
medical systems by mathematically analyzing 
their most crucial relationships. Incorporating 
biological, pharmacological and medical data 
within mathematical models of complex physio­
logical and pathological processes, the model can 
coherently interpret large amounts of diverse 
information in terms of its clinical consequences.

Just as medical books are useful for oncolo­
gists, there is a clear advantage in using biomath­
ematical models as a tool for guiding decision-
making in oncology. Nevertheless, a declarable 
mistrust still exists among physicians and can­
cer researchers in the power of biomathematics 
to aid their daily work.   The aim of this article 
is to illuminate the influence of mathematical 
models on medicine, and to show that models 
can help the oncologist by suggesting improved 
treatments for individual patients and for 
patient populations. 

Biomathematics in medicine: 
a retrospective view

Luria and Delbruck developed a simple mathe­
matical model, which deciphered the emergence 
of toxin resistance in bacteria.

When a population of bacteria is plated onto a 
substrate containing phages, almost all the bac­
teria are lysed by the viral toxin except for a few 
survivors, which give rise to new toxin-resistant 
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colonies. Luria and Delbruck used simple math­
ematical models to decipher the mechanism that 
enables these bacteria to develop resistance  [2]. 
They considered two alternative explanations for 
the acquisition of toxin-immunity in bacteria: 
resistance is an adaptive mechanism induced 
by the virus and passed on to the offspring 
(Lamarckian theory), or, resistance is due to 
a random mutation, occurring in the bacte­
ria independently of the presence of the virus 

(Darwinian theory).
Making a few simplifying assumptions, Luria 

and Delbruck constructed two mathematical 
models for the distribution of toxin-resistant 
mutants in bacteria colonies. One of the models 
embedded the resistance mechanism, satisfying 
Lamarck’s theory, and the other embedded the 
resistance mechanism that satisfies Darwin’s 
theory. By meticulous laboratory experiments 
they validated the predictions of one of the 
models, confirming that bacteria genetics obeys 
Darwin’s theory, and establishing the basis for 
understanding the evolution of drug resistance.

Norton–Simon hypothesis raises 
awareness to dose density
Chemotherapy is used for treating cancer with 
variable success. The number of possible chemo­
therapy schedules is exceedingly large, and trial-
and-error clinical testing cannot be exhaustive. In 
trying to identify efficacious chemotherapy treat­
ments, Larry Norton and Richard Simon con­
structed a simple mathematical model for relating 
the efficacy of cytotoxics to the growth dynamics 
of a tumor. Mathematically, the Norton–Simon 
model can be written N´(t)  =  f(N(t))(1-d(t)), 
where N(t) denotes the number of tumor cells 
at time t, N´(t) is the growth rate of the tumor 
at time t, d(t) reflects the rate of removal of cells 
as a result of treatment and f is a function that 
describes the growth dynamics of the unperturbed 
tumor. Norton and Simon assumed that this 
growth function obeys Gompertz law, and that 
the rate of tumor regression induced by chemo­
therapy is proportional to the rate of unperturbed 
growth of a tumor of that size. Consequently, 
they argued, to be more efficient, the dose rate of 
chemotherapy should be increased, for example 
by decreasing the inter-dosing intervals [3–5]. 

The Norton–Simon hypothesis has been 
influential in oncology and has inspired a great 
deal of clinical investigation. It led to the ‘dose-
dense’ approach to breast cancer chemotherapy, 
demonstrated in multiple studies to achieve 
drops in cancer recurrence and death, as the 
model predicts [6]. 

Unlike Luria and Delbruck, Norton and 
Simon did not challenge their initial model 
predictions by an alternative model of tumor 
growth, or of drug effect. Can their model be 
validated? Can it be generalized, for example, 
to all vascular cancers, or all chemotherapeu­
tic drugs? In the following sections it will be 
demonstrated that the advantage of dose-dense 
therapy may depend on the level of tumor angio­
genesis and on the kinetic parameters of the 
chemotherapy-susceptible cancer and host cells.

Make everything as simple as possible, 
but not simpler

Can the model of Luria and Delbruck be used 
to predict whether or not a specific pathogen 
will become resistant to an antibiotic drug, 
applied, for example, once daily for 1 week in 
a 4-month cycle? Will the Norton and Simon 
model be able to predict under which docetaxel 
regimen a metastatic disease will be stabilized? 
Certainly not. These models were not designed 
to solve such quantitative problems and, hence, 
are too simplistic to predict the effect of specific 
drug regimens on gene frequency or on vascular 
tumor progression.

However, any retrievable information yields 
to mathematical description. Therefore, one 
can envisage improved drug schedules being 
provided by mathematical models that are 
designed for this purpose. For constructing 
such models the major forces affecting tumor 
growth dynamics, notably angiogenesis, should 
be carefully verbalized and translated into math­
ematical formulae. The ‘naked’ mathematical 
model will then be ‘dressed up’ with parameters, 
characterizing the case study at hand, and will 
be numerically calculated in conjunction with 
the pharmacokinetics and pharmacodynamics 
(PK/PD) of the particular drug(s). Following 
model validation, it can be simulated to predict 
which new drug regimens will yield improved 
results in a patient or a patient population.

Mathematical models of cancer growth 
& treatment

Cancer growth and its treatment with chemo­
therapy have been mathematically modeled since 
the 1960s. An elaborate and didactic review of the 
different modeling approaches can be found in a 
book chapter by Swan [7].

Following Folkman’s paradigm concerning the 
critical role of vascularization in cancer develop­
ment [8], angiogenesis was incorporated into cancer 
modeling. The first models of tumor angiogenesis 
appeared as early as the mid-1970s. These works, 
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driven by experimental data on cancer progression 
in animals, accounted for growth and movement 
of tumor cells and tumor-supporting blood vessels, 
and their mutual influence [9–11]. A vast body of 
theoretical work has been developed by different 
researchers since the early 1990s, along with signif­
icant advances in the understanding and detailed 
characterization of biological processes involved in 
tumor and blood vessel dynamics. Naturally, these 
models vary significantly, both in their formula­
tion and in the biological phenomena they repre­
sent. In the following sections, we describe one of 
these mathematical models, which accounts for 
tumor growth and a detailed angiogenesis proc­
ess. This model can be singled out from all ang­
iogenesis models by its preclinically and clinically 
proven accuracy.

The notion that specific cancer therapy regi­
mens that maximize drug efficacy and minimize 
its toxicity can be suggested a priori was intro­
duced by Agur in the 1980s. Agur developed a 
new treatment optimization method using heuris­
tic optimization of mathematical models for both 
cancer growth and hematopoietic toxicity [12,13]. 
This concept is briefly discussed later.

In the 1970s and 1980s, bone marrow hemato­
poiesis was mainly modeled by relatively simple 
mathematical models, pioneered by Wichman 
et al., and Steinbach et al. [14,15]. In the 1980s 
and 1990s, Mackey and others developed simple 
models of erythropoiesis [16,17], granulopoiesis [18] 
and thrombopoiesis [19]. Mackey’s models were 
sufficiently simple to be tractable to analysis and 
therefore could serve for addressing interesting 
questions about the origin and the dynamics of 
hematopoietic diseases, such as periodic neutro­
penia. However, the models were too simple to 
generate testable quantitative predictions of the 
effect of different drugs on blood cell counts. 
The mathematical model for granulopoiesis 
reviewed here [20] can accurately predict the effect 
of chemotherapy on individual patients’ safety, 
as validated in metastatic breast cancer patients 
undergoing docetaxel chemotherapy (see later).

Drug efficacy & toxicity are accurately 
predicted by multiscale 
mathematical models 

A detailed vascular tumor model can repro­
duce the clinical scenario and suggest more 
efficacious regimens.

For identifying improved regimens for cyto­
toxic and cytostatic cancer drugs, Arakelyan and 
colleagues studied the impact of angiogenesis 
on cancer progression, and developed a detailed 
model of vascular tumor growth. The model takes 

account of the molecular-, cellular- and organ-
level interactions in cancer cell replication, angio­
genesis and vessel maturation. The ‘verbal model’, 
namely the algorithm showing the critical forces 
and effects and their inter-relationships (sketched 
in a simplified form in Figure 1) was translated into 
mathematical equations, which were, in turn, 
translated into a computer model. Subsequently, 
parameter values were estimated and input into 
the computer model, upon which the model was 
numerically simulated. In this way the effects of 
drugs on the growth and decay of both the tumor 
and the immature and mature blood vessels, and 
their effect on the induction of an array of rel­
evant growth factors, such as angiopoietin-1, -2, 
VEGF and PDGF, could be evaluated. The full 
algorithm is given in Arakelyan et al. [21] and in a 
simplified form in Figure 1 and in Agur et al. [22]. 
How the model’s equations were derived and how 
the model parameters were calculated is described 
in Arakelyan et al. [23].

Tumor
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Death

Replication Replication

Replication

Ang2 VEGF Ang1 PDGF

Free
endothelial
cells DeathDeath
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Figure 1. Vascular tumor growth dynamics. A schematic description of the 
multiscale mathematical model as described in [7]. Tissue (yellow), cells (pink) and 
molecules (purple) interact as marked by the arrows. VEGF and PDGF are secreted 
by the tumor cells. VEGF binds to endothelial cells and PDGF to pericytes, to 
generate new and mature blood vessels, respectively, and the ratio of Ang1 and 
Ang2, secreted both by the tumor and by endothelial cells, affects the stability of 
the mature vessels. 
Ang: Angiopoietin.
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Mathematical analysis and numerical simula­
tions of the model by Arakelyan et al. shed impor­
tant light on vascular tumor dynamics. Analysis 
suggests that there should be circumstances in 
which small tumors oscillate in size instead of 
growing steadily. If such circumstances can be 
medically replicated then this may be a powerful 
way of controlling cancer growth [22,24]. Notably, 
it was suggested that monotherapy by anti-angio­
genic drugs alone can slow tumor growth, but 
cannot altogether eliminate it, and that anti-
angiogenesis drugs combined with drugs that 
target mature vessels may be superior to anti-
angiogenic monotherapy [21,25]. These conclusions 
were later corroborated experimentally [26].

In order to check whether or not the model is a 
high-fidelity portrayal of vascular tumor growth, 

its predictions were experimentally validated [27]. 
Thus, tumor growth, neovascular maturation 
and functionality were studied noninvasively 
by MRI in human epithelial ovarian carcinoma 
spheroids, xenografted in mice. Individual tumor 
growth curves were inputted into the model for 
evaluating the tumor-specific parameters, and 
predictions of vascular dynamics were compared 
with the MRI readings. The accuracy of model 
predictions is demonstrated by the example in 
Figure 2. The model predicts complete maturation 
of all neovasculatures in a particular tumor within 
approximately 1 month (Figure 2A). Indeed, the 
experimental results support model predictions 
quite remarkably and further explain the model-
predicted and clinically observed short-term 
effects of anti-VEGF therapy (Figure 2B).
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Figure 2. Prediction accuracy of the vascular tumor growth model. In vivo validation in 
xenografted human ovary carcinoma spheroids. (A) Model predictions of neovascular and mature 
vessel dynamics in a single tumor. (B) Experimental results of neovascular maturation and 
functionality in the same tumor, measured noninvasively by MRI. 
Data from [12]. 
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It is often argued that cancer progression in 
the preclinical setting is a poor indicator of 
the clinical scenario. Will the mathematical 
model, which was demonstrated to reflect the 
tumor dynamics in xenografts, also demon­
strate accuracy in modeling clinical results? To 
answer this question, the accuracy of the math­
ematical model of vascular tumor dynamics 
was validated by comparing its predictions to 
the clinical response of metastatic breast cancer 
(MBC) patients to docetaxel [Yosef-Hemo et al., 

Unpublished Data]. 
Clinical and histopathological information 

was collected from MBC patients treated with 
tri-weekly docetaxel monotherapy. The patients 
were randomly divided into a training set, for 
adjusting patient-specific tumor growth and 
pharmacodynamic parameters, and a valida­
tion set, for validating model predictions of 
disease progression under individually assigned 
docetaxel regimens. 

The correlation between the predicted and the 
measured tumor sizes, over the entire treatment, 
was good (R2 = 0.7; p < 0.001), and the predicted 
accuracy of objective tumor response, assessed by 
Response Evaluation Criteria In Solid Tumors 
(RECIST) criteria, was even better (85.7%; 
p < 0.001). For all patients in the trial, the effi­
cacy of the once-weekly schedule was better or 
equal to that of the bi-weekly or tri-weekly regi­
mens. For 60% of patients it was superior over 
the three-weekly schedule. For all patients, the 
bi-weekly regimen was at least as good as the tri-
weekly regimen, and in 44% of patients it was 
superior to it [Yosef-Hemo et al. Unpublished Data]. 
It appears, then, that the mathematical model, 
combined with patient-specific information, 
accurately predicts response in docetaxel-treated 
MBC patients. As such, the model can now 
be used for planning improved treatments for 
patients whose response to the originally planned 
treatment is insufficient. 

What about toxicity?
By the same procedure used for testing the effi­
cacy of drug schedules, one can also test their 
toxic effects. The benefit of mathematical mod­
els for the routine work of the oncologist – hav­
ing to tailor therapy without compromising the 
patients’ quality of life – is demonstrated in the 
neutropenia example below. 

Neutropenia is a dose-limiting toxicity of 
many chemotherapeutic drugs, which exert their 
killing effect on replicating granulocytes in a 
cell-cycle phase-specific manner. Granulopoiesis 
models, including an explicit description of the 

cell-cycle phase transition in mitotic cells, can 
be employed for accurately evaluating the risk of 
chemotherapy-induced neutropenia. The granu­
lopoiesis model, developed by Vainstein et al., 
has this property and therefore, can faithfully 
replicate the myelotoxicity of cell-cycle phase-
specific drugs, such as docetaxel. A schematic 
description of this model is found in Figure 3 and 
all model equations in Vainstein et al. [20].

The model of Vainstein et al. has been validated 
by Vainas et al. in MBC patients treated with 
docetaxel monotherapy [Vainas et al., Manuscript 

Submitted]. As above, the patient population was 
divided into a training set, for model calibra­
tion to the specific patient-population, and a 
validation set. The population-adjusted model 
was simulated in conjunction with the docetaxel 
PK/PD model, with baseline neutrophil counts 
and docetaxel schedules of each patient in the val­
idation set serving as inputs for model validation. 
The model accurately predicted nadir (r = 0.99), 
grade 3/4 neutropenia (86% success) and neutro­
phil profiles (r = 0.63) of individual patients in 
the validation set (see example in Figure 4). 

The validated model was then used to identify 
safe docetaxel and granulocyte colony-stimulat­
ing factor (G-CSF) regimens. Weekly docetaxel 
was found to exert smaller toxicity than the bi-
weekly and the tri-weekly regimens, and G-CSF 
support was found to be optimal if applied 
6–7 days post bi- and tri-weekly docetaxel, and 
4 days post-weekly high-dose docetaxel. This 
model can be     employed in the clinic. By plug­
ging-in the patient’s baseline neutrophil count, 
the doctor can forecast the day of nadir and the 
grade of neutropenia and, if required, suggest a 
safer chemotherapy and G-CSF treatment. 

A method for improving cancer 
treatment by increasing drug efficacy 
while reducing its toxicity

There is a need to develop ways to give a patient 
the most efficacious treatment with a reason­
able quality of life. We can now determine drug 
schedules that satisfy this requirement a priori. 
Employing mathematical modeling and opera­
tion research methodologies, a method was 
developed for identifying patient-specific drug 
schedules that meet specified clinical require­
ments. The method uses efficacy and toxicity 
models for calculation of cell death throughout 
therapy under a large number of potential drug 
regimens. Search algorithms efficiently identify 
treatment schedules that represent the optimal 
treatment, as defined by the efficacy, toxicity and 
cost criteria, determined by the clinician [13]. 

Role of mathematical models in oncology Special Report



Future Oncol. (2010) 6(6)922 future science group

Using this method two general categories of 
optimal chemotherapy regimens were identified, 
depending on the cell-cycle parameters of the 
chemotherapy-susceptible host and cancer cells, 
an intensive short treatment, or a series of non­
intensive treatments at intervals set by the kinetic 
parameters of the drug-susceptible cells (dose-
dense). It appears, then, that improved chemo­
therapy schedules can be calculated a priori by 
the use of mathematical models, maximizing 
drug efficacy while minimizing its toxicity. 

Treatment personalization
Equipped with the above described treatment 
optimization method, a new procedure has been 
developed [28], blending mathematical models 
and in vitro and in vivo experiments for person­
alizing the treatment of cancer patients with 
combinations of chemotherapy and angiogenesis 

inhibitors. The validated method was successfully 
used to suggest an improved treatment schedule 
for a mesenchymal chondrosarcoma patient. 

The method is schematically described in 
Figure 5. Essentially, it involves the construc­
tion of personalized disease progression and 
PK/PD models based on previously published 
literature and gene-expression analysis of both 
the patient and the xenografted patient’s biop­
sies. In the first modeling stage, a mathemati­
cal model of the xenografted patient biopsies 
was created. Combined with the PK/PD 
models, it was tested under a large number of 
treatment options.

Model predictions were compared with the 
observed tumor growth inhibition of the xeno­
grafted patient’s biopsies, which were treated 
with monotherapy or combination therapies of 
docetaxel, irinotecan, gemcitabine, doxorubicin, 
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Figure 3. Granulopoiesis model. A schematic description of the multiscale mathematical model for granulopoiesis developed and fully 
described mathematically in [14]. Granulopoiesis is described as a pipeline initiated by stem cells inflowing to the myeloblast 
compartment, then, sequentially, differentiating into promyelocytes, myelocytes and post-mitotic bone marrow cells, and finally released 
into the blood as mature neutrophils. G-CSF accelerates proliferation, transition through the mitotic compartment and the release of 
post-mitotic cells into the blood and their apoptosis.  
G-CSF: Granulocyte colony-stimulating factor.
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bevacizumab and sorafenib. Results demon­
strated the high precision of the models 
predictions (87.1% accuracy) [28]. 

Using gene-expression analysis the xenograft 
model was then scaled up to represent the mes­
enchymal chondrosarcoma patient. The results 
of the patient-personalized model suggest that 
a regimen containing bevacizumab applied 
intravenously in combination with once-weekly 
docetaxel would be more efficacious than the 
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Figure 4. Validation of the granulopoiesis/docetaxel model in metastatic breast cancer 
patients. Examples of model-predicted neutrophil counts over time (solid lines) compared with the 
observed neutrophil counts (diamonds) of two metastatic breast cancer patients treated with 
different docetaxel schedules: (A) 25–35 mg/m2 once weekly, (B) 100–75 mg/m2 tri-weekly. 
Data from [15].

other modeled regimes. The proposed docetaxel 
regimen was applied to the patient, resulting 
in temporary tumor stabilization, substantial 
recovery of blood counts and, for almost 1 year, 
improved quality of life. The model further sug­
gests that the advantage of weekly docetaxel in 
the tri-weekly regimen is directly related to the 
tumor’s angiogenesis rate. Further validation of 
this conclusion may facilitate personalization of 
solid cancer pharmacotherapy [28].
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Virtual clinical trials for streamlining 
drug development

Despite the growing investment by pharma­
ceutical companies in medical research, the 
number of new drugs brought into the mar­
ket has dropped significantly. If the pharma­
ceutical industry is to remain at the forefront 
of medical research and continue helping 
patients, it must become more innovative in 
reducing the development time and costs of 
new therapies.

One strategy is to use ‘virtual R&D,’ that 
is, R&D aided by mathematical models of the 
human body, such as those described above. 
The use of populations of such ‘virtual patients’ 
can dramatically shorten the period of develop­
ment of new drugs, and substantially reduce 
the chance of clinical failure, thus saving on the 
excessive cost of clinical development. 

A virtual patient is a collection of mathemati­
cal models characterizing the patient’s pathol­
ogy and physiology, and a set of patient-specific 

model parameters. When an individual patient 
has to be virtualized, as in the case described 
in the previous section, his/her parameters are 
evaluated using biopsies, blood counts and other 
tests. In drug development, virtual patients are 
used to identify potentially successful treatment 
regimens, which are then introduced. In such 
cases, a synthetic patient population is created, 
which is a collection of virtual patients, each 
characterized by a set of parameters drawn from 
the distributions of these parameters in the real 
patient population. 

Once a synthetic population of virtual 
patients is established it can undergo clinical 
trials much in the same way as the drug treat­
ments were tested in the virtual mesenchymal 
chondrosarcoma patient (see earlier). The main 
difference between the two cases lies in the 
end points of the trial (those employed in the 
pharmaceutical industry) such as progression-
free survival (PFS), objective response rate 
(ORR) amongst others.
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Figure 5. Workflow of the combined treatment personalization method. Growth curves and 
gene-expression analysis of xenografts, derived from a patient’s lung metastasis, served as the basis 
for creating a mathematical model of mesenchymal chondrosarcoma xenograft progression. The 
pharmacokinetics and pharmacodynamics of several chemotherapeutic and antiangiogenic drugs 
were modeled, the model parameters being adjusted by patient-specific chemosensitivity tests. The 
xenografted animals were treated with various monotherapy and combination schedules, and the 
mesenchymal chondrosarcoma-xenograft model was computer-simulated under the same treatment 
scenarios. Observed and predicted TGI results were compared (prospective validation). The 
mathematical model for xenograft growth was then scaled up to simulate the patient’s tumor 
progression under different treatment schedules. Scaling up was carried out using gene-expression 
analysis of several key proteins, such as angiopoietin-1, -2, VEGF and others in the patient biopsied 
lung metastasis. Model predictions were compared with the clinical outcomes (prospective 
validation). See [17] for further details.
PD: Pharmacodynamics; PK: Pharmacokinetics; TGI: Tumor growth inhibition.
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Executive summary

Bench-to-bedside gap in oncology 
n	Despite substantial achievements in cancer research the death toll owing to the disease is still increasing. This gap must be bridged by 

scientific methods that enable accurate prediction of drug–patient interactions.

Drug–patient interactions can be predicted
n	Drug–patient interactions can be predicted by incorporating biological, pharmacological and medical data within mathematical models 

of complex physiological and pathological processes. 
n	Physicians and drug developers still tend to mistrust the ability of biomathematics to aid their daily work, despite the success of 

concepts developed by simple mathematical models, such as ‘dose-dense therapy’. 

Mathematical models predicting efficacy & toxicity have been validated 
n	Validation of a mathematical model of vascular tumor growth under chemotherapeutic and antiangiogenic drug treatment has 

demonstrated high prediction accuracy, both in xenograft experiments (87.2%) and in metastatic breast cancer patients (85.7%).
n	Validation of a mathematical granulopoiesis model demonstrates good precision in predicting which patients will develop grade III/IV 

neutropenia under docetaxel chemotherapy (86%), including prediction of the day and level of nadir (r = 0.99). This model suggests 
safe chemotherapy and granulocyte colony stimulating factor (G-CSF) treatment schedules for individual patients.

n	The metastatic breast cancer models suggest that the once-weekly docetaxel regimen is superior to other regimens, both in efficacy 
and in preventing neutropenic toxicity.

The virtual patient concept
n	Employing mathematical modeling and operation research, an optimization method has been developed for identifying patient-specific 

drug schedules that meet both efficacy and safety requirements. 
n	Equipped with this optimization method, the virtual patient concept has been developed, by which the mathematical models are 

adjusted to reflect individual patients, and an improved treatment is then tailored a priori.

Treatment personalization in monotherapy & combination drug therapy & in immunotherapy
n	This concept has been successfully employed in a treatment personalization case study of a metastatic chondrosarcoma patient. The 

model predicts tumor shrinkage of xenografted patient’s biopsies under a large array of combinations of antiangiogenic and 
chemotherapeutic drugs. Administration of the model-recommended treatment to the patient resulted in stable metastatic disease and 
relief of pancytopenia.

n	Preclinically validated mathematical models for cytokine immunotherapy with IL-21 suggest improved regimens of this drug, and models 
of cellular immunotherapy of malignant glioma and prostate cancer show potential in personalized cellular immunotherapy and suggest 
a new concept of in-trial personalization.

Virtual clinical trials
n	Virtual clinical trials, including populations of virtual patients, have been simulated to test alternative treatment schedules, both for 

drugs in development and for discontinued drugs. 
n	Virtual clinical trials of a licensed drug, sunitinib malate, in combination with a discontinued drug, ISIS-5132, suggest a new 

combination treatment for prostate cancer, resulting in more patients reaching progression-free survival at 5 years, as compared with 
either sunitinib malate or ISIS-5132 monotherapy.

Future perspective
n	The virtual patient concept has already begun to be employed by oncologists for aiding their prognostic decision-making, and by drug 

developers conducting virtual clinical trials to focus their clinical studies on the most promising candidates, patient populations and 
treatment schedules. 

n	To increase the applicability and precision of treatment personalization methods, systems biology-processed information should be 
integrated with mathematical models of the complex biological and pathological processes involved. In this way diverse patient data, 
extracted from genetic, gene expression and other levels of biological organization, will be coherently embedded in terms of their 
effects on the clinical scenario.

n	Patients’ survival, considered the most reliable cancer end point, cannot be mathematically modeled, owing to lack of knowledge about 
a definitive underlying survival mechanism. Deciphering the major determinants of survival will allow the development of mathematical 
models for predicting patients’ survival under specific drug regimens. This will aid focusing on drug regimens predicted to increase 
patients’ survival and thus contribute to improving the rate of drug approval by regulatory authorities.

The virtual clinical trial method has been 
used by Kleiman et al. for checking how pre­
maturely shelved, or discontinued, drugs can 
be rescued. In a theoretical case study of a dis­
continued drug, ISIS-5132, the virtual clini­
cal trial has demonstrated that by combining 
ISIS-5132 with a licensed drug, sunitinib 
malate (Sutent®, Pfizer Inc., NY, USA), the 
treatment of prostate cancer can be improved, 

with more patients reaching PFS at 5 years, as 
compared with either ISIS-5132 or sunitinib 
malate monotherapy [29].

Future perspective
The virtual patient concept does not only apply 
to cytotoxic and cytostatic monotherapy or 
combination therapies, but also to immuno­
therapy, which offers great promise as a new 
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dimension in cancer treatment. Mathematical 
models can aid in selecting the most appropriate 
patients and in optimizing immunotherapeutic 
regimens for individual patients. For example, 
preclinically validated mathematical models for 
cytokine immunotherapy with IL-21 suggest 
improved regimens of this drug, in particu­
lar, dose fractionation  [30–32], and models for 
cellular immunotherapy of malignant glioma 
demonstrate the potential for personalized 
cellular immunotherapy and the power of 
mathematical models in tailoring individual 
immunotherapy schedules [33,34]. A model for 
prostate cancer cellular immunotherapy, vali­
dated by Phase IIa clinical trial results, suggests 
a new methodology for in-trial immunotherapy 
personalization [35].

Oncologists have already begun to employ 
virtual patients to aid their prognostic decision-
making and drug developers already perform 
virtual clinical trials for focusing clinical studies 
on the most promising candidates, patient popu­
lations and treatment schedules. The transition 
to using virtual patients in the healthcare indus­
try is imminent, but not easy. New approaches 
will have to be adopted, integrating deep medi­
cal understanding with tools for processing com­
plex biological dynamics. We are entering the 
golden age of interdisciplinary science.

Major modelling challenges still remain. To 
increase the applicability and precision of the 
available treatment personalization methods, 
multilevel genetic network maps and experimen­
tal and clinical information should be integrated 

with mathematical models of the complex bio­
logical and pathological processes involved in 
cancer growth and therapy. This integration 
is necessary for coherently embedding large 
amounts of diverse data, extracted from different 
levels of biological organization.

Patient survival is considered the most reli­
able cancer end point, and when studies can 
be conducted to adequately assess survival, it is 
usually the preferred end point. However, there 
are difficulties inherent in survival studies, such 
as long follow-up periods, or subsequent cancer 
therapies, potentially confounding the survival 
analysis. Survival is believed to be affected by 
immunological and neuroendocrine factors, 
or some health-related behavior. However, no 
knowledge exists about a definitive critical 
underlying survival mechanism. Such knowl­
edge is indispensable for constructing a math­
ematical model to predict the relative contribu­
tion of specific drug regimens to patient survival. 
This will be instrumental in improving the drug 
approval rate.
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