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Formulae are derived for the number of cyclic binary strings of length n in which no single 1
occurs between two zeros and no single 0 occurs between two ones, and for the number of
cyclic binary strings without substrings of the form 000 and 111. This problem is motivated by a
problem of genetic information processing.

1. The combinatorial problem

We consider the following model of information processing: at the beginning
(level 0). a binary string A, of n bits is given. This string is transformed according
to a certain rule ./, producing a new string A, = .{{(A,) at level 1. and the process
1s repeated a sufficient number of times. i.e. 4, = .l(A,.,) for i = 1. One possible
choice for .i is the so-called majoriry rule, where each bit in level i is determined
by its three closest neighbors in level i —1 by a simple majority vote, more
precisely, if A=aq...a,., and B=by...b,_, and B=_.U(A) then b;=
majority(a;_y, a;, a;..,) for 0 <j <n, where addition and subtraction on indices are
modulo n, and for every triplet of bits (x, y, z), the function majority is defined
by

majority(x, ¥y, 2)={(x Ay)v(x Az) v (y A 2).

We thus consider the strings as being cyclic, so that the first and last bits are
neighbors. The following example, where n =11, should clanfy the above
definitions:

level 0 Ag 01010011011
level 1 Ay 10100011111
level 2 A, 11000011111

We are interested in the number of possible strings of length n after a
sufficiently large number of levels, in other words in the number of fixed points of
the function .f{. Note that if n is even, the two strings C =1010...10 and
D =0101...01 are such that C =.4(D) and D = .#4(C), so starting with one of
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them, the sequence oscillates with period 2. It is easy to see that for every other
string Ao, there exists a string A and an integer iy < in such that

A.=MA;) and M(A.)=A..

The single oscillation of period 2 and fixed points otherwise, are consistent with
Goles and Olivos [6, 7].

Let 9, = {A : A has n bits and #(A) = A} be the set of fixed points of 4. We
evaluate the number of elements of &, using the following lemma, the proof of
which is immediate.

Lemma. A cyclic binary string is invariant under M if and only if it contains no
“widowed” bits, i.e., no single 0 between two 1's and no single 1 between two 0's.

Theorem. The number f(n) of elements of @, for n =3, is'

Flw) = 9+ ¢+ (-1t (2 | LI ),

where ¢ =3(1 + \/3) is the golden ratio and p=1-0o.

This means that asymptoticaily f(n) behaves like ", since |¢| <1 so that ¢"
tends rapidly to zero, and the last term is a small correction: adding or subtracting
1or2.

Proof. For a given bit-string x =x,...x,_;, let S(x) denote the bit-string of
length n obtained by cyclically shifting the bits of x one to the right. i.e.
S(x)=x,_1Xy...X,-2, and let T (x) be defined by

T(x)=x XOR S§(x).

For example, J(00011) = 10010 and J(10111)=01100. In other words. when
passing cyclically over the string x from left to right. the changes in its bits are
recorded by the 1-bits of J(x). Hence x and its binary complement £ will have
the same image, J(x)= J(f), and so J is not one-to-one. Not every binary
string of length n is in the range of J since when passing cyclically over a string x,
the number of changes is even. The function G(xgx, ... x,_) =X, ... X,-; iS5 a
bijection between the set of n-bit strings with an even number of 1’s and the one
with an odd number of 1’s, thus each of these sets has 2"7' elements. We
therefore restrict the domain of 7 to the 2"~! n-bit strings with leading zero, and
the range to the 2"~! n-bit strings with an even number of 1's. Then 7 is
one-to-one and onto.

It is easy to see that x has no widowed 0’s or 1's if and only if J(x), considered
as a cyclic string, has no adjacent 1's. We thus look for the number g(n) of cyclic

'We use the conventional symbols [x] and [x] to denote resp. the largest integer <x and the
smallest integer = x, and n mod & to denote the remainder of the division of n by k, i.e. n = k|n/k].
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n-bit strings with an even number of 1's and without adjacent 1’s. from which we
obtain, using the lemma, the solution to our problem, namely

f(n)=2g(n). (2)

Let us first ignore the cyclicity constraint and evaluate the number A(n) of
(linear) n-bit strings with an even number of 1's and no adjacent 1's. From the set
of these strings, we shall then have to discard all those starting and ending with a
1-bit. That 1s, for n =4, the strings to be excluded must be of the form
10x, ... x,-501, where the substring x, ... x,_; contains an even number of 1’s
and no adjacent 1’s. Thus there are exactly 4(n —4) elements to be discarded,
which yields

g(n)y=h(n)—h(n—4) for n =4. (3)

Let #(n) denote the set of n-bit strings satisfying the required constraints. The
null-string belongs to (0), so A(0) = 1. (1) ={0}, #(2)={00} and #(3)=
{000, 101}, hence A(l)y=h(2)=1 and A(3)=2. Generally, for n=2, let us
partition the h(n) elements of (n) into #,(n), the set of those ending with zero,
and ¥(n), the set of those ending with 1. If a string ends with zero. the
constraints on its 7 — | leftmost bits are: no adjacent 1's and even number of 1's,
so there are A(n — 1) such strings. If a string ends with 1. the next to last bit must
be zero and the constraints on the n — 2 leftmost bits are: no adjacent 1's and odd
number of 1s.

We therefore consider the set #(n) of n-bit strings with no adjacent 1's. but
without condition on the parity of the number of 1's. Then ¥,(n) is the
complement of X(n —2) in F(n —2), where to each string the suffix 01 has been
appended. thus

h(ny=h(n-1)+|F(n-2)|-h(n-2) forn=z=2.

The set F(n) is related to the binary Fibonacci numeraton system (see
Fraenkel [4] or Knuth [10. Exercise 1.2.8-34]). Let F(n) be the Fibonacci
sequence defined by F(0)=0, F(1)=1, F(n)=F(n—-1)+ F(n-2) for n=2.
Every integer K in the range 0 =< K < F(n + 2) has a unique binary representation
of precisely n bits. K = k,k,_, ... k, such that K =Y, k,F(i + 1) and such that
there are no adjacent 1’s in this representation of K (n=1). Thus |F(n)| =
F(n +2) and we get the following recurrence for h(n):

A(ny—h(n=1)+h(n—=2)=F(n) forn=2.
The solution of this recurrence relation is
h(n)=Aa” +Ba” +1F(n+2) forn=0,

where a, =(1 +iV§)/2 and a_ =11 —i\/—3_) are the roots of the characteristic
equation &” — @ + 1 =0, and where the coefficients A and B are constants fixed
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by the boundary conditions 4(0) = A(1) = 1:

3+iV3 3-iV3
0 and B= o

Returning now to Equation (3), we get for n =4:

gn)=A(at - Dai*+B(at — Do+ {F(n+2)-F(n-=2)), (4
but

at—1=-6A and 6A°=iac, (5)
and similarly

at—1=—-6B and 6B*=ia_. (6)

It is well-known that F(n) = (1/\/5)((1)" — @) so the last term on the right hand
side of (4) becomes

1 2 4 1 in=2¢ 14
VA A Ry LA Cat (7)
but
-1, ' -1 -
¢v3 =’ and T_(P —= - (8)

so we get from (2) and (4)-(8)
fln)y=¢"+¢" - — o’ forn=4. (9)

Incidentally, this formula holds also for n = 3. One can obtain a more compact
form of the solution by noting that a, and a_ are primitive 6th roots of unity:
a, =e™ and a_ = e~ Therefore

(s, &%, 0, at, .. )=(a,, —a_, =1, —a,,a_, 1, a,,...)

(a_,a, &, at,. . )=(a_, —a,, -1, —a_,a., l,a_,...),

x

‘thus {& + .}, is the periodic sequence (2,1,-1,-2.-1.1,2,1,-1,...).
The period is of length 6, the first two and last elements of each period being
positive, the other three negative; |, + «_| =2 if j is a multiple of 3. and for the
other values of i, |a’, + &,| = 1. This suggests the representation

jmod3

oo +al = (- 1)“"*”’31<2 - [ D fori =0, (10)

from which (1) follows by a2 =a’ = -1. O

Using the same technique. we can also evaluate the number of cyclic strings of
length n having no consecutive sequence of three 0's or three 1's.
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Corollary. The number f'(n), for n=3, of binary strings x,. .. x,_, such that
XXig1Xig2 000 and xx;g1xi92 % 111 for 0<i<n, where @ denotes addition
modulo n is

f’(n) —_ ¢ﬂ + é‘)n + ( _ 1)f(nmod3)le (2 _ [

n mod 3}) (11)
Proof. We define J(x) as the complement of J(x)=x XOR S(x), i.e. when
passing cyclically over the string x from left to right, the changes are now
recorded as zeros. Again the number of changes is even for every x, so that J(x)
has an even number of zeros. A cyclic string x contains no 000 or 111 substring if
and only if there are no adjacent 1’s in the cyclic string J(x). We thus define
g'(n) as the number of cyclic binary strings of length n with no adjacent 1’s and
having an even number of zeros. Then we have as before.

f(n)=2g'(n). (12)

For n even, a string has an even number of zeros if and only if it has an even
number of 1's. Thus

g'(n)=g(n) for n even. (13)

For n odd, we again consider the set ¥(n) of F(n + 2) strings of length n with no
adjacent 1’s (ignoring the cyclicity constraint). We first discard all the strings
starting and ending with 1, their number being F(n —2). From the remaining
strings, g(n) have an even number of 1’s, so the number of strings with an even
number of zeros is

gn)=Fn+2)—F(n—-2)—g(n) fornodd. (14)

From (7) and (8) we already know that F(n +2) — F(n —2) = ¢" + ¢", thus we
get from (9) and (12)-(14) (using again a7 = a2 = — 1)

flin)=9"+¢"+(-1)"(at + o) forn=3.
Now {(—1)(a’ + &)}~ is the periodic sequence (2, -1, -1,2, -1, -1,2,...),
the period being of length 3. This suggests the representation
jmod3
2

(—1Y(ed + @) = (~1)[Gmes 2] (2 - ]) for =0,

from which (11) follows. O

For even n, there is a simple direct way to see that f'(n) =f(n), considering
the function 2 on the set of n-bit strings defined by
%(xoxlxlxl [ xn—lxn—l) =x0f1x2f3 e xn-an—U

i.e. R complements the bit in odd-indexed positions. Clearly % is a bijection
and a cyclic string x contains no widowed 0’s or 1's if and only if the cyclic string
R(x) contains neither 000 nor 111 as substring.
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Table 1

n 3 4 5 6 7 8 9 10 11 12 13 14 15
f(n) 2 6 12 20 30 46 74 122 200 324 522 842 1362
f'n) 6 6 10 20 28 46 78 122 198 324 520 842 1366

Table 1 gives the first few values of f(n) and f'(n).

The techniques of this note can be generalized to evaluate the number of cyclic
or non-cyclic strings with forbidden substrings of the form 1010. .. and 0101 .. .,
or0...0and 1...1. After applying 7 or ¥, one of the constraints becomes that
no m consecutive 1's appear in the string, for some m =2. These strings are
related to the mth order Fibonacci numeration system which is based on
generalized Fibonacci numbers satisfying the recurrence

F™(n)=F™(n-1)+ F"(n=2)+ - - + F™(n = m)

(see [4] or Knuth [11, Exercise 5.4.2-10]).

2. Background and biological motivation

The majority rule considered above is a special case of discrete iteration models
studied in Robert {13], which includes an extensive literature on the subject.
Robert considers various transition functions .# applied to general graphs and
parallel as well as serial modes of operation. The question of the number of fixed
points in these more general models is left open. OQur model corresponds to a
simple closed path of n vertices. where at each step, the rule is applied
simultaneously on all the vertices. A serial mode of operation would mean
applying the transition rule consecutively on the vertices, following some
predetermined ordering. Our result on the number of fixed points holds also for
serial application of the majority rule, if a linear order of scanning is chosen.
What changes is the rate of convergence for a given configuration to its fixed
point, and the fact that now also the above mentioned strings C and D converge.
More properties of the majority rule can be found in Poljak and Sura [12] and
Goles [5].

A major problem in biology is the potential number of forms, or phenotypes, of
a given system. For example. our immune response depends to a great extent on
the number of different antibody forms that our body can produce. Each antibody
is the result of a multi-level processing of a DNA sequence, that is, a
concatenation of several basic gene segments. Since this processing is highly
nonlinear, no simple relation exists normally between the number of basic genes
and the resulting set of phenotypes. say the antibodies.

“Genetic nets” of the above form have been studied by Kauffman (e.g. [8, 9]).



Number of fixed points of the majority rule 301

Each element in Kauffman’s network receives & inputs and is assigned a Boolean
rule at random out of the 2% possible rules. These networks are difficult to
analyse and their study proceeds by simulations. In another model, the regulation
of biological systems is described as asynchronous Boolean networks whose
elements affect the rate of operation of each other; see Thomas [14]. Conditions
for the existence of fixed points and stable cycles are derived. However, this
model appears to be intractable for formal analysis for any reasonably large
number of elements; see Weisbuch [15].

The majority rule considered in Section 1 constitutes a simplified model of
information processing, in which the initial binary string A, corresponds to the
initial DNA sequence and A, = .#"(A) is a phenotype. This model of biological
processing of genetic information has been initiated in Agur and Kerszberg (2]
and is further applied in Agur [1]. Although the majority rule is a relatively
simple rule, it incorporates the most fundamental properties of biological
information handling, namely an error-damping property and a many/one and
one/many type of hierarchy (for further details see {1, 2]).

From the above theorem it follows that for the simplified model the ratio
between the size of the set of basic DNA sequences of length n to that of the set
of resuiting phenotypes is asymptotically (2/¢)". In fact this ratio is (2/¢)" +
O(c™") for a constant ¢ > 1.

For more complicated transformation rules. even the form of A. may be very
hard to predict. A case in point is Conway’s ‘“‘game” of life. with its
two-dimensional transformation rule, for which this prediction is as hard as some
of the hardest problems in mathematics [3, Ch. 25].
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