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abstract. An algorithm is presented for calculating the number of drug
dosings required for climinating a ncoplasia with minimal damage to the
patient. The proof of the algorithm is based on knowledge about the {¢n}
series. This algorithm relies on a model that assumes deterministic temporal
cell-cvcle parameters and a “bang-bang” drug effect. As such, the model can
only serve for obtaining a rough estimate of prospective treatment efficacy,
and further work should be invested in increasing its realism.

Introduction. Drug toxicity to the host and drug resistance in the neo-
plasia are still the major impediments to the success of cancer chemotherapy.
A challenge for mathematical biomedicine will be to develop exact methods
for predicting treatment efficacy in the individual patient. The present work
is part of the effort to this end. We present a fast algorithm for estimating the
duration of drug trcatment required for eliminating the tumor with minimum
damage to the host. Our algorithm is specific to a large class of chemothera-
peutic agents, which includes the anti-11TV drug zidovudine (AZT) and many
anti-cancer drugs, such as cytosine arahinoside (ara-C’). These drugs, called
cell-cycle-phase-specific-drugs, are detrimental to cells during a specific phase
in the cell-cycle, usually the DNA synthesis phasc (S-phase), while having
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little effect on cells that are in other cell-cycle phases. The cffect of such
drugs on host proliferating cells can bring about hone-marrow depression
and other cytotoxic side effects that are detrimental to the patient.

Emploving a theory of population dynamics in perturbed environments
was suggested that toxicity of cell-cvcle phase-specific drugs is highly depen-
dent on the relation between the frequency of cell-division, the inter-mitotic
interval, and the frequency of drug administrations—the dosing interval [1-2].
On the basis of these results a new method has been suggested for increasing
selectivity of cell-cycle-phase-specific drugs (The Z-Method; [3]). According
to this method drug selectivity can be increased by manipulating the dosing
interval so that a “resonance” effect is created for the host cells, minimizing
their mortality, and a lack of “resonance” for the cancer cells, whose fre-
quency of replication differs from that of the host cells. This effect can be
achieved by interval drug dosing, i.e., protocols with strictly positive drug-
free intervals. the dosing interval being an integer multiple of the average
drug-induced inter-mitotic interval of the susceptible host cells. Based on
these results a more comprehensive model has been recently provided, tak-
ing account of the detailed pharmacokinetics and pharmacodynamics of the
drug, as well as of the exact distribution of cell division times. Analysis of
this model yields the explicit conditions for the elimination of a given cell or
viral population [4]. [However, this analysis is based on the assumption that
treatment duration can be unlimited, while in reality it is limited by clinical
and economical constraints.

In the present work we suggest a method for estimating the optimal du-
ration of chemotherapy treatment. Our model assumes that the temporal
parameters are deterministic and that the drug dose is high enough to elim-
inate all cells that are exposed to the drug during their susceptible cell-cycle
phase. These assnumptions are made as a first approximation approach to
the problem at hand. urther work is warranted for considering stochastic
temporal parameters and varying drug doses.

The analysis is carried out by applying {¢n} series, where 0 < ¢ < 1 and
{#n} is the fraction part of ¢n. Using continued fractions we show a fast
method for computing the treatment duration and the required number of
drug dosings. Results on the sequence {¢n} and on continued fraction can
be found in Swierckowski [8], Halton [6], Slater [7], van Ravenstein [9].

The model. Two types of cells are considered in our model: the lim-
iting host population, i.e., normal cells of the host that are susceptible to
the drug and whose extinction we wish to minimize (to be denoted the host
cells), and the neoplastic cells, which we wish to eliminate by the use of the



USE OF KNOWLEDGE ON {¢n} SERIES 281

drug (to be denoted the abnormal cells). The cell-cycle of both the host and
the neoplastic cells can be divided into four principal phases: (71, S, G5 and
M [5]. G and G, are delay periods, S is the DNA synthesis period, and the
M phase is the period during which the cell divides into two daughter cells.
With respect to drug treatment the cell life-cycle can be divided into the
susceptible phase and the resistant phase. Since for many drugs the cells are
most susceptible during the S phase, we will assume here that all cells that
are in their S-phase during the drug episode are killed, whereas all cells that
are in their (7). GGy.or their M phase are completely immune to the drug (i.e.,
we consider a high dose drug treatment). Let us denote the durations of the
different cell-cycle phases as Ty((y), Ty (.S) and so on for the host cells and
Ta(G) and so on for the abnormal cells. 77 will be the duration of the host
cell cvele so that

= Tu(G1) + Tu(S) + Ty(Ga) + Tu(M) (1)

and a similar equation holds for the cell-cycle duration of the abnormal cells,
Ta. In the subsequent analysis the notation A or the H will be ommitted in
expressions that are true both for abnormal and normal cells.

Let | be the period in which the drug is given and é be the duration of the
episode in which the drug is effective, so that the duration of the drug-free
interval 1s [ — 6.

{én} series. Let ty be the time of treatment initiation, and let ¢, be
the time of birth of cell x. Let us define A, such that A; = (L — tg)mod 7.
The interval [c,e + 7], for 0 < ¢ < 7 will denote a cyclic interval, i. e. if
c+r <7, then Agefc,e+r], if e <A, <c+r. f7 <c+r < c+ 7 then
Agelec,e+r],iff c< Ay <7or0< A, <c+r—7. Otherwise if c+r > 7 +¢
then A,e[e,c+ 7], for all A,. Let n be the number of drug applications, so
that the time of initiation of each drug episode is ¢/ + g, for some 0 < ¢ < n,
and the time of termination of cach drug episode is ¢/ + to + §. Any cell that
enters the S-phase during in the interval {y + ol — 1'(S), to + 2/ + ¢ is killed
by the drug. Thus, if we define

r=T(S)+o, (2)

then, clearly, a cell x is killed by the drug iff

Axrﬁ[ciwci + Zr']rw (3)
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for
¢; = (il = T(G1) = T(S))mod 7. (4)

Now we can derive Agur’s conclusion [1-3] that, for a given $ < 7, minimum

damage is caused to the normal cells for
[ = n7,n integer. (3)

[t is clear from (4) that in such a case all ¢;’s are equal. so that the cell x is

killed by the drug iff

A eleo, co + 7], (6)

Thus for I satisfying (5) only the fraction of the population satisfying (6)
is killed by the drug, whereas when | does not satisfy (5), the ¢;’s are not
equal so that additional fractions of the population arc killed as well.

To simplify (4) let us define B, by a T((7)) + T'(S) shift of 4,:

B, = (A, + T(Gy)+ 1T(5))mod . (7)

With this notation x is killed iff

Byde, ¢+l (8)
fori,0 <i < n and
¢ = (il)mod 7. (9)

Let us assume that 1 1s a multiplication of 7 as a constraint. Then for a
given [ one can compute n. the number of drug applications required for the
eliminating all abnormal cells. We normalize the series ¢} to be a series {i¢},
where ¢ = &, by dividing (6) by 74, so that the interval [0, 74] becomes an

interval [0, lr]l‘. The sequence {i¢} divides the segment [0, 1] into parts. When
all parts arc less than ¢ = 7. all the abnormal cells are eliminated.

Now our problem can be restated as follows: for a given sequence {iqﬁ}, ?
integer, ¢ positive, and for a given e, what is n such that the parts resulting
from the division of the segment [0,1] by {i¢}, 0 <7 < n , are all less than «.

We do not have a solution to this problem, but we can derive a fast
algorithm to compute such n. In order to do so let us first look at the
“Steinhaus’s conjecture”, or “the three steps theorem”.

Let P. = {i6}. 0 <i < N -1, then 0 < P, < 1. We say that P 1. p.
P, (P, immediately preceeds Py) if P, < Py and there are no FP; in-between
themn. Let the interval [0,1] be cyclic (i.e. identify 0 with 1) and let Py be the
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closest. point to 1 so that P, i. p. Fy; let 3 be the length of the step between
P, and 1. Take a such that Py i. p. P, and let « be the length of the step
Letween Py and P,. The following theorem with a proof appears in Slater [7]

theorem 1

(i) 0<s<N—a; P p Pyyo; N —astepslength o,
(ii) N—a<i<b; Pi p Pyay; a+b— N steps a+ f3, (10)
(i) b<u<N; Pui. p. Pu_y;, N — b steps 3.

This means that a step between two succeeding points can have one of three
typical lengths, o, 3 and a+ . If now we add one more point to the sequence,
it will affect the step lengths o, § and « + 3 in one of the following ways:

I.a+b—1> N and N > max(a.b). From (7) we see that adding one
point Py does not change a or 3 and there still exists at least one step
with the length o+ 3 .

2. N =a+b— 1, adding one point Py leaves al least one step of length
« and a step of length 4, but no step of length o+ 3 .

3. N=a+band o > 3. Adding one point Py we will calculate the
new step lengths by using the fact that the step length between P
and P, must he the same as the step length between P, and P,.
This is so because the difference between the indexes is also the same.
Now. as a > 3. Pn_,y4s lies between Fy and FP,, creating a new «,
newa = olda — old . Note that steps of length olda still exist so that
the maximum length of & has not changed.

4. N =a+ b, 3> «. This case is similar to the previous one: we create
a new 4, new = old — oldee . Here too, steps of length 3 still exist
so that the maximum length of 4 has not changed.

5 N =a+band o = 8. Here N¢ = 0 and Py falls on Py. In such a
case ¢ is rational and if & > ¢ our demand will never be satisfied. For
the chemotherapy problem this means that the treatment will never
eliminate the abnormal cells.

There are three cases in which. by adding one point Py, maximal step length
changes: in case(2), in case(3) for b=1 and in case(1) for a=1. As these are
the only cases in which the maximum step length changes. our interest is
confined only to this case (for investigating this case see van Ravenstein at

al.(1990)). Let N; be a sequence of such N in upgrading order. Let ¢; and f;
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be sequences such that {e;, f;} = {a, 4}, where o and /3 have been computed
for N = N;. Now, using cases 3,4 and 5 we can define:

eir1 = min(e;, fi) (11)

fix1 = lei = fil. (12)

We continue until for some 5. ¢; <¢e ,f; <e.
There is a faster way one can derive ¢; and f;. Take ¢co =1, ¢; = ¢ and
while ¢; > ¢ then
Ck+1 = Ck—1 — MpCk, (13)

where my, is the largest integer such that c;_; > myer . Stop calculations for
k = t such that ¢; <e. If ¢, = 0 there is no solution. If ¢; # 0 (¢; < ¢€), then
compute ¢pq with (13) and assign {e;, f;} = {ct, ci1 }-

From here we can go farther: (13) implies

C 1

—_—= . 14
I (S (14)
We can use this recursive equation to get
1
¢= 1 : (15)
L3 W e ——
L,

1
Cit1
my_1+ =

This form is called "continued fraction’ and it is extensively used in [6-9] to
derive results about the series {26} .
For some N, ¢; and ¢;41 are equal to « and to #, with no importance

which is which. Our next purpose is to change ¢ to ¢ such that ¢ = ¢
m; =} and ¢, = ¢,,; . To make this change we take

B —a

= 1
¢ =+ —" e (16)
Note that the number of points is not altered by this change. Thus we can
write: |
¢ = ——F— 17
m1+-—m2+1 1 (17)

g1

Now we can compute p, q, positive mtegers such that ¢ = 73 This can be
computed by setting p = ¢’ and ¢ = myq¢’ + p’ for
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/
1
E= (18)
1 t, + .

and so on. By induction one can see that p and ¢ are relatively prime .
qo = p. and the interval {0. 1] is divided into ¢ equal parts by {i¢}. n = ¢ is
the number of points such that « and 3 are less then ¢ and this n is what
we actually are looking for.

The algorithm. Hereafter we present the algorithm for calculating the

number of drug applications required for eliminating the abnormal cells. This
algorithm summarizes the method described in this work.

8) if ¢;11 = 0 then stop @ no solntion exists.

t— 2+ 1

q — m;

peq

1)
)
12)
13)
1)
15)7  i+1
16)
17)
18)
19)

Y(|x] denotes the integer part of x)
2([r] denotes the rainimal integer larger than, or equal to. x).
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