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Abstract. Signal processing in the immune system is studied in a
theorctical multilayered network. The clements in the network have
regular connectivities, with the level of connectivity reflecting the level
of signal (cytokine) multifunctionality. Each element operates by the
same nonlinear majority rule. An exact formula for the number of
fixed points is derived as a function of the network’s size n (n odd)
and connectivity r, as well as a general upper-bound estimate for the
number of fixed points for all n and r. Results show that increas-
ing connectivity enhances resilience by strengthening the ghobal error
damping capacity of the system. Its cost is diminished general memory
storage space, reflecting diminished phenotypic plasticity. Laboratory
experiments are suggested for verifying the implications of the results
for pathogenesis and immunosuppression.

The duration and amplitude of the immune response is regulated by a
group of peptides called cytokines that bind to the cell surface and ultimately
lead to a change in its phenotypic state, that is. its proliferative or functional
behavior. In the past, each step in the immunec process was thought to be
controlled by a unique single-purpose molecule. Today it is realized that
cytokine activity is characterized by pleiotropism and redundancy: individ-
ual cytokines are pleiotropic in having multiple overlapping cell regulatory
actions (denoted a one/many property), while different cytokines can have
a similar action (many/one property). Morcover, the ultimate response of a
cell usually depends on two or more different messages received concurrently
at the cell surface; these are selected from a larger repertoire of cytokines
[1-3]. It thus appears that the processing rules in this system, whose state
transitions are determined by a combination of elements each of which is
insufficient and unnecessary on its own, are of the majority vote type.
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Given our current knowledge. it is difficult to understand the complexity
of the cytokine network, and the question “Why so many cytokines with so
many activities?” is reiterated in the literature [1 3]. It has been suggested
that individual cytokines arc the equivalent of characters in a language al-
phabet: the use of combinations of a large number of signaling molecules
increases the amount of information that can be transmitted [1]. However.
language is positionally structured, every word being determined by the order
of its characters. In contrast, a state transition of an immune system cell
is an outcome of the composition of signals present at its surface in a given
moment. This network is therefore compositionally. rather than positionally.
structured, so that the above mentioned analogy cannot hold. and the of-
fect of cytokine multifunctionality on the system’s efficiency still remains to
be verified. It seems. however. that this collective behavior is too complex
to be captured merely by a phenomenological description of cyvtokine activ-
ity, whereas a formal analysis, by voluntarily neglecting the details and by
abstracting and generalizing, may provide insight to its essential features.

This work investigates the effect of signal multifunctionality on informa-
tion storage capacity and response precision in a network whose properties
are those characterizing the cytokine network. The model is minimalistic in
structure, so as to be analytically tractable and. hence. general and robust in
its predictions. By verifying our predictions in laboratory experiments. their
relevance to the cytokine network will hopefully be established.

Our minimalistic description of the information processing in the immune
system incorporates the general information content of the system at any spe-
cific moment and the rule by which this information is processesed (see [5. 6]
for a general discussion of this model of biological information processing).
This rule is taken to be analogous to stimmulation of the cytokines. In most
cases the information processing leads to a fired point a new state of the
system (described by its information content) that remains invariant under
further processing of the same type. The number of fixed points reflects the
general memory storage capacity of the system. A system with many fixed
points can store a large amount of information. or. in biological terms. has
a large phenotypic repertoire. Our aim in this work is to examine how the
level of cooperativity, or connectivity, in the system affects the number of
fixed points.

Let the information content of the system at the initiation of the process-
ing (level 0) be represented by a binary string of n-bits. 4. To avoid the need
for the definition of boundary conditions we consider the strings as cyelic, so
that the first and last bits are neighbors. This string is processed according
to a certain rule ®, producing a new string of n-bits. A; = ®(4,). which
describe the first transient state of the system during the processing. The
process is repeated a sufficient number of times, that is, 4, = ®(A,,_;) for
m > 1, for a fixed point to be reached. The system operates by the majority
rule, so the state of an element in level m in the processing is determined by
its closest 2r + 1 neighbors in level m — 1. by a simple majority vote. Thus.
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if
A, = ag...an
A,7,+1 = bO- ..[),,,1
and
14771,+l = CDAm
then

1if > ae> (2r+1)/2,
Z:77'

by = . (1)
0 if Y ae<2r+1)/2. 0<i<n.

f=—r

Here. all additions and subtractions on indices are carried out modulo n. The
parameter r measures the connectivity of the system: a larger r means that
a larger number of inputs from the previous level cooperate in determining
the present state of each element, and that cach output affects the state of a
larger number of elements in the subsequent level.

Consider a binary string of size n. 4, = (ag.a;.....a,-1). and define a
run as a maximal substring of consecutive like bits in the string. Let & be the
number of runs in A,,, and let their sizes be ¢, 1o, ..., t; (where Zf;l t;=n).

Note that. since the strings are cyclic. the origin may be chosen such that k
is odd. in which case ag = a,_; (except for the two strings 1010...10 and
0101...01). Every string Ag. varying under @, leads cither to a cycle of
period 2, or to a fired point, namely a string A, and an integer mg < %n
such that [4.7]

Ae = 070(4g) and D(Ax) = An. (2)

We derive the exact formula for the number of fixed points f(n.7) in net-
works operating under (1) for n odd. When n is even additional fixed points
exist. but we show that these fixed points are highly unstable in the sense
that any single-bit perturbation in them will drive the system. under fur-
ther operation of the majority rule. to one of the stable fixed points, whose
number is calculated below. Being susceptible to any level of noise in the
system the unstable fixed points seem to be of no biological relevance. For
this reason they are excluded from the calculation.

Let D, ., = {A: A has n bits and ®A4 = A} be the set of fixed points of
®. where @ is defined in (1). We evaluate the number of elements in D,
using the following properties of the majority-rule fixed point.

Lemma 1. If A, is invariant under ® and contains a run u such that

t,>2r+ 1
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then, if k is even, A, maintains
t.>r+1, 1=1,... k.
Otherwise

t;,>r+1,1=2,....k—=1 and t,+t,>r+1.

Lemma 2. If A,, contains a run u such that t, = r, then A,, Iis not a fixed
point under ®.

The proofs of Lemmas 1 and 2 are straightforward.

Conjecture. If A, is invariant under ¢, and A, contains a run u such that
t, <,

then A, is even and contains an equal number of 0s and 1s.

Theorem 1. If A is invariant under ®, and A, contains a run u such that
t, <r,

then any string A,, that differs from A, in one bit will have a fixed point
Al # A, AL being a homogenous string of only Os or only 1s.

Proof. Consider any run transition in A, ..., €;, fit+1,. .., with e represent-
ing the 0 bits and f representing the 1 bits, or vice versa. From Lemma 1
and Lemma 2 it follows that A, must maintain t; < r, i = 1,..., k. Thus

each run transition in A, is the center of a substring of size 2r + 2, whose
form is

(6j—r s fj—:c?‘ Cj—z+1 - €, fj+1 v f]+y- €ity+l - fj+1+r) (3)
(z.y <7),
with exactly 7+ 1 esand 7 + 1 fs.

Now consider another string A,,. differing from A. in one bit so that.
without loss of generality, we may consider A,, as having the form (4):

s €jp e f]',z, €jQz+1 PN 6]‘7 fj+l PN €j+z e fj+y7
ity Fiatgre .o (4)
The sequences of size 2r + 1 in A, that are symmetric around f;4; and

around f;;, have a majority of es. Thus, under ®, we get the following
transformations in (4):

fiv1 — €541, 5
: : (5)
fivy = €ty

It is easy to show by induction that these transformations will be followed,
under further operation of ®. by successive transformations of all f bits in
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(4), located at the runs extrema, until the string becomes a homogencous
string of es.

The instability of the fixed points containing runs ¢; < r to any single-bit
perturbation renders them meaningless as a model for the information con-
tent of the biological network. Moreover, Moran [8] proves that the fraction
of initial string configurations that maps on the unstable fixed points and on
the period 2 strings measures less than n~'/2, This fraction is negligible for
n being large enough. For these reasons we omit the unstable fixed points as
well as the period 2 strings in the evaluation of the number of fixed points in
our model for biological information processing, as described hereafter. Note
however that by adding this fraction to the formula (7) below, we obtain
a general upper-bound estimate for the number of fixed points under the
majority rule for all n and r. |

Corollary. A cyclic binary string of size n (n odd) is invariant under @ if
and only if the following holds:
if k is even then
t,>r+1, i1=1,...k,
otherwise (6)

t,>r+1,i=2,....,k—1 and ¢t +t,>r+1.

Theorem 2. The number f(n,r) of elements of D,,, forn > 5 (n odd and
r<(n-1)/2)is

Proof. Let s; be the number of “excess” bits in an invariant string satisfying
{6). in the sense that

t,—(r+1—1t) ift; <r+1,7=kand k is odd,

_Jo ift; <r+1,7=1andk is odd, (8)
5= t, ift; >r+1,i=kand k is odd,
ti—(r+1) otherwise.

Taking k = 2¢ + 1, (8) is equivalent to
Yosi=n—(k—1)(r+1).
and the number of different arrangements of }_ s; bits is

T s; +k—2 n—20r—1
Z(Z k9 ):T( 9f — 1 ) fort; <r+1 (9)

t1=1
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and

s+ k-1 n— 2r
( 1 ):( 0p ) fort, >r+1 (10)

Note that (10) also counts the invariant strings with an even number of runs
Introducing the following constraint on #,

n

— > > 1.
20r+1) = —

and adding (10) to (9) we get

n

L?J . I?—Qfl'—l + 11—2/7' _ Lz('il)j n [1—2(;"
=1 20 -1 2¢ a2 \n-2er\ 2t '

By adding 1 for & = 1. and multiplving by 2 for symmetry. we obtain equation

(7). 1

Note that the combinatorial analysis that appears in [7] is a special case
of Theorem 2. for » = 1. From Theorem 2 we conclude that f(n.r) decreases
nonlinearly with r. In general. the number of stable fired points (maintaining
(6)), and hence the global memory storage capacity of a system operating
under the majority rule, decreases with increasing connectivity. Larger con-
nectivity vields larger average differences between the fixed points. so that
starting from rather similar initial configurations the system may cnd up in
very different final configurations. Thus a network that a priori seems fuzzy,
due to largely overlapping signal functions. is in fact a powerful mechanism
for generating very distinct final states. The system’s resilience. defined as
the probability that the fixed poiuts are unaltered by input perturbations at
the different processing levels. can be estimated by relating the number of
fixed points of ® to the size of the set of Ay [5]:

R(n.r)=1— f(n.r)/2". (11)

This measure is comparable with the results of computer simulations, show-
ing that the probability of a fixed point remaining unchanged by a single-bit
lmversion at any processing laver increases with increasing connectivity.

The model analyzed in this work makes minimal assumptions about the
network's properties. so that its conclusions should be applicable to many
different natural and artificial systems with similar properties. Note, how-
ever. that it still remains to be shown that the results presented here for
one-dimensional information processing can be generalized to networks with
a more complex architecture. By the same token, it still remains to be shown
that the model’s conclusions are applicable to the real-life cytokine network,
whose richness is not vet fully unraveled. But if the main properties of this
network are indeed those suggested above: namely many/one and one/many.
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crror damping, and information processing—our results should throw some
light on the role of cytokine multifunctionality in the immune response.
These results can be interpreted as suggesting that increasing connectivity
in the immune system. by increasing cooperation among hmmunoregulators.
improves the error-damping capacity and the response precision. The cost is
diminished phenotypic plasticity. Based on these results it may be speculated
that blockage of a given cytokine, whose activity is essentially cooperative,
should increase the repertoire of the immune responses. Since the pool of
immune cells is limited. increasing diversity of response may hamper its ef-
ficiency. This speculation may bear upon the general “confusion™ of the
immune response associated with African sleeping sickness (trypanosomia-
sis). This disease is characterized by inununosuppression, as well as by the
production of a wide spectrum of autoimmune antibodies and by poly-clonal
immune cell (B-cell) activation [9]. Based on the conclusions of the present
analysis. it seems interesting to check the possibility that the above phe-
nomena may be due to the suppression of cytokine activity: suppression of
cytokine (IL-2) production has been observed during murine trypanosome
(T. cruzi) infection [9].
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