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A model is proposed for stadying the influence of the duration of a
nonreproducing life stage on the dynamics of marine intertida! populations.
Analysis of the model shows that this system, in which the time delay (the
nonreproducing stage) is in a density independent term, has two solutions, When
the nonzero solution exists it is a stable point. A randomly occurring environmental
disturbance, to which only the nonreproducing stage is resistant, is superimposed
on the basic deterministic equation. Average extinction time, estimated by
simulation, appears as a a nonmonotonic function of the duration of disturbance.
The graph of extinction time has multiple extrema with minima occuring where the
ratio between the duration of the resistant stage and the duration of disturbance is
an integer. This phenomenon is more sharply manifested when the intrinsic growth
rate and frequency of disturbance are relatively iarge and when the variance in the
duration of disturbance and the duration of the resistant stage is not too large.
Increasing patchiness of the habitat has a minor effect on the pattern of dependence
of the extinction time on the ratio between the juvenile and environmental periods.
The suitability of the model for describing the marine intertidal system of the
northern Red Sea is discussed, and it is suggested that the duration of the larval
stage can determine adult population dynamics.  © 1985 Academic Press, Inc.

1. INTRODUCTION

Many organisms have a nonreproducing life history stage which is
resistant to external disturbances inflicted on the reproducing forms. Seeds of
plants are relatively immune to extreme aridity. Eggs of various insects are
less affected than other life stages by weather vagaries, parasites, etc. We
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suggest that planktotrophic larvae of marine benthic invertebrates are
another example of such an escape. Diffusing in the sea, these larvae are not
susceptible to catastrophic wave action, which by tearing sessile adults from
their beds or by covering inhabited patches with sand, can bring local adult
populations on the shore to extinction.

The termination of the seed stage of annual plants and of the hibernating
egg stage of some insects follows the end of their respective unfavorable
seasons. In many other systems, the transition from a juvenile to an adult
form is not determined by known periodic climatic signals. For pelagic
larvae it was suggested that their longevity is determined by factors such as
mixing in the onshore—offshore direction, length of the larval development
period and mortality in the plankton (Jackson and Strathmann, 1981),
maximization of recruitment per unit of reproductive effort (Vance, 1973;
Palmer and Strathmann, 1981), individual selection for spreading siblings
(Strathmann, 1974), habitat selection (Doyle, 1975), and maintenance of
genetic  continuity between distant populations (Scheltema, 1971).
Mileikovsky, (1971) suggests that a longer mobile prereproductive stage
increases dispersal and enables fast recuperation from critical reduction in
population size.

Todd and Doyle (1981) propose the settlement-timing hypothesis
according to which the duration of the pelagic stage may be determined so as
to bridge the period between the optimal time to spawn and to settle. While
stressing the significance for some species of the actual settling date, the
same authors also note that other species have unpredictable timing of
settlement, presumably due to stochastic environmental changes.

Stochastic environmental regimes greatly affect the dynamics of
populations in general (Scheffer, 1951; Mech, 1966; Itd, 1980) and those of
the marine intertidal populations in particular (Ayal and Safriel, 1982a,b;
Paine, 1979). Under such conditions the existence in some species of an
immune life stage is a bonus. However, this obvious benefit is traded off by a
time delay in reproductive activity which causes an overall reduction in the
intrinsic growth rate. Results of Parnas and Cohen (1976) imply that even
for low frequency of disturbance the optimal duration of the resistant stage
should be larger than the duration of an individual disturbance.

The relation between random environmental disturbances and the duration
of the juvenile life stage is studied in the present article. Our approach is new
in considering environmental stochasticity in the form of alternating periods
of harsh and favourable conditions whose time scale may equal the
biological time scale. By choosing this non-Markovian representation of the
environment we deliberately sacrifice mathematical tractability for the sake
of a more realistic description of many natural environments, whose
variation can be approximated neither by deterministic models nor by
stochastic white noise models.
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The model attempts to give a specific description of the population
dynamics of some marine intertidal molluscs in the northern Red Sea. We do
not suggest that its precise form is a good description of all intertidal
populations, or exclusively of intertidal populations. The main results
reported here seem counterintuitive. In another work (Agur, in press) they
are explored in a more general framework. The latter work shows that results
presented hereafter are independent of the exact details of the deterministic
equation, whereas the distribution of intervals between disturbances appears
to determine the general pattern of extinction. For this reason the concepts
presented here should be also appropriate for various other populations that
live in regimes of random, relatively long, environmental disturbances to
which only their nonreproducing life stage is invulnerable.

The article is organized in the following fashion. The deterministic model
and its stochastic variant are outlined in the second section and the
simulation results are presented in the third section. The motivation for
making the various assumptions and the suitability of the model for
describing marine intertidal dynamics are taken up in the discussion.

2. THE Basic MODEL

2.1. Population Growth in a Constant Homogeneous Environment

The continuous growth of a single population with overlapping
generations in a restricted environment is approximated by the well-known
logistic equation

dx/dt = rx(1 — x/K). (1)

The systems analyzed in the present work have the following 3 main charac-
teristics:

(1) A birth process with two stages: birth of juveniles—the planktonic
larvae, and recruitment of juveniles to the adult population.

(2) Recruitment is assumed to be the only density dependent element.

(3) The juvenile stage provides a time-lag r between birth and
maturation.

Under these assumptions the increment to the adult population at time ¢
will depend on 3 factors:

(i) the birth of juveniles at time ¢ — 7, proportional to the number of
adults at time ¢ — 1,

(i) the chances that juveniles born at time ¢ — 7, will survive to time
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(iii) the free resources available for adults which will determine the
fraction of juveniles that will actually mature.

If J(¢ — 1) denotes a cohort of juveniles born at time ¢ — 7, during one time
interval, then J(t — 7) = Ax(¢t — t), where A is the birth rate and x(¢ — 7) is the
number of adults at time ¢ — 7. The dynamics of this cohort is given by

dijdt=—u'J,

where u' stands for the mortality rate of juveniles.

If 7 is the duration of the juvenile stage then J(t) = Ax(t — 7) exp(—u'7) will
be the number of juveniles born at time ¢ — 7 that are ready to be recruited at
time ¢ According to assumption (2) above the number of recruited
individuals at time ¢ will be

Ax(t — 1) exp(—u't)(1 — x(1)/E),

where E is the environmental limiting factor. Adding now the deterministic
term of adult mortality 4, and putting x' =x/E and 4’ =4 exp(—u’'r) we
obtain

dx'/dt=A'x"(t —1)(1 — x'(t)) — ux'(¢). (2)

Note that whereas in the logistic model (Eq. (1)), equilibrium population size
will be x* =K, in Eq. (2) it will be x* = E(l —u/1"). Having a different
role, the environmental limiting factor was denoted E in Eq. (2) instead of
the conventional X of the logistic equation. Figure I shows some charac-
teristic time behaviour of Eq. (2) for different values of the parameters g, A’,
7. Equation (2) has one or two stationary states, x’ =0, x'=1—u/A’,
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FiG. 1. Time evolution of x', obtained by numerical simulation of Eq. (2). The parameter
values are: 4' = 1, 4=05,1=0for (1);4' =1, u=051=2for ;' =1, u=051=3
for (3); A’ =6., u=3., =3 for (4).
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depending on the values of its parameters. Analysis of the linear stability of
(2) around the stationary states is given in the Appendix, whereas numerical
simulations of Eq. (2) are shown in Fig. 1.

2.2. Multipatch Environments

Equation (2) considers a single patch environment which is homogenously
affected by each disturbance. Hence, although its actual physical dimensions
are not explicit in the present model, they must be considered small enough
to justify the assumption of spatial homogeneity.

In Eq. (3) we extend the model to include multipatch environments that
vary in the number of patches N and in their density.

N
dejfdt=Y" A'x}(t—1)g(s;, 01 —x})—px;, i=1toN. (3)
i=1

In Eq. (3), g(s;;» 7) is the probability of a juvenile with longevity 7 that was
hatched on patch j to arrive at patch i. Assuming Fick’s law, g(s;;, 7)ds =
1/\/4ndt exp(—(s;; — ct)’/2 dr) ds, where d is the diffusion coefficient, ¢ is
the drift coefficient, s, is the distance between patch j and patch i, and ds is
the patch size. Equation (3) considers 1-dimensional diffusion between many
small patches in a linear, relatively large, habitat (e.g., along the coasts of an
ocean). We ignore diffusion-in the perpendicular axis, assuming that its main
effect is taken account of in the larvae mortality term. The values of the
diffusion and drift coefficients in the mobility function g(s;, ) were chosen
such that the contribution of adults to subsequent recruitments in their own
site is considerably large. This assumption is justified in areas such as the
Gulf of FEilat in the Red Sea, where available patches are very distant from
each other and are often located in the inner part of lagoons with narrow
openings into the sea (Ayal and Safriel, 1982b). Obviously the exact form of
g(s;, 7) can be adjusted to other modes of dispersal, but this function is
expected to be of secondary importance in the model. It should be noted that
Eq. (2) is a special case of Eq. (3) for N= 1, and g(s;,7) = L.

2.3, Stochastic Environment

Disturbances are assumed to cause an instantaneous death of a fraction 4
of the adult population, where 0 < 4 1. Their duration is constant or
normally distributed, with an average value 4. The times between the end of
one disturbance and the beginning of the next one are independent exponen-
tially distributed random variables with a mean 1/¢p (stochasticity of this
kind is conventionally called “telegraphic noise”). It should be noted that the
assumption of random occurrence of disturbances is a basic property of the
model. This is demonstrated elsewhere (Agur, in press), where simulation
experiments in an environment with a periodic distribution of intervals show



80 AGUR AND DENEUBOURG

different results than those in an environment with exponentially distributed
intervals.

In the computer simulation the stochastic process was coupled with the
deterministic population growth using the following procedure. In each
simulation experiment Eq. (2) or Eq. (3) was integrated by the Euler method.
At the same time a stochastic generator was activated for each patch
independently in order to determine the times of the initiation of the distur-
bances. The time unit of integration was of the order of magnitude of /100,
and the population was defined as extinct when its numbers remained
negligibly small (less than 1 X 10~7 of the initial population size) for a
period equal to 7. Each simulation experiment was iterated 100 times and the
average time to extinction was estimated for that population-environment set
(for the use of the average time to extinction as a measure of success, see
e.g., Ludwig, 1978; Hanson and Tuckwell, 1981).
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Fic. 2. Average extinction time of the population, T, is plotted as a function of /6 for
different values of disturbance frequency. 4 =1, A =0.05, g’ =0.0}, 4 =001, =90,
d=18-90, /=50, E=100, N=1.,, ¢ = 0.22 — 0.4. Each point in the graph is an average of
100 simulations of Eq. (2) with the telegraphic noise superimposed.
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3. RESULTS

Figures 2—6 show simulation results of population dynamics in a single
homogeneous patch whose initial population size is I and its environmental
limiting factor is E (Eq. 2) (I and E were kept constant in all simulations; &
and t were kept constant in all simulations except when stated otherwise).

Figure 2 and Figure 3 show how the time to extinction of the population is
affected by the duration of disturbance d, its frequency ¢ and its magnitude
A. We expected the extinction time to be some decreasing function of 4, since
a larger 8, for fixed ¢ and 1, corresponds to a higher proportion of time
under unhospitable conditions. Contrary to our expectations, however, when
4 =1, simulation results consistently show a minimum in the average
extinction time for 7/6 =2. Additional minima occur for 1/6=3,4,5,...,
when the frequency of disturbance ¢ is not too small. Decreasing magnitude
of the disturbance increases the average extinction time for all values of /4.
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Fic. 3. As in Fig. 2, but 4=03.



82 . AGUR AND DENEUBOURG

@

IR

il
it

8531

0 fF
W I/I/I
il

jati) il

FiG.4. The influence of the juvenile mortality rate on the extinction time of the
population. Average extinction time T is plotted as a function of 7/d for different values of 4'.
A =1, ¢ = 0.05. Other parameters as in Fig. 2.

Still, the general nonmonotonic pattern is preserved when A4 varies
between 1.0 and 0.3, with additional less significant maxima emerging with
decreasing 4 (Fig. 3). Having the same “macro” effect, with a slightly less
complex general behaviour, we kept 4=1 in all simulation experiments
whose description follows hereafter.

In Figure 4 we varied juvenile mortality 4’ while keeping the frequency of
disturbance constant. The nonmonotonic dependence of the average
extinction time on the relation 7/ appears to be independent of the juvenile
mortality rate. However the maxima are much less pronounced when juvenile
mortality is large. Variation in A (not shown here) has a similar effect: the
general pattern of the extinction time curve is preserved but the
nonmonotonic behaviour is less significant when 1 is small. Variation in
adult mortality u has practically no effect on the general pattern.

Figure 5 shows simulation results with a Gaussian variance about d. In
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Fic. 5. Gaussian variance about 4 is introduced in the simulations. The pattern of change
in extinction time as a function of 4 is influenced by variance about § when o is relatively

large. A = 1. ¢ = 0.1. Other parameters as in Fig. 2.
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Fig. 6, & is again constant while a Gaussian variance is introduced now
about 7. Simulations show that when variance about J or 7 is not too large
(@ <9d/7 or 0 <1/7), the system still has a clear minimum in the average
time to extinction for 7/d = 2, and a clear maximum for 7/d - 1. The minima
in the average extinction time for 7/6 = 3, 4, 5,..., are slightly less prominent
when o is relatively large and when o > 8/4 or ¢ > 1/5, average extinction
time is low over the whole range of /4, with no distinguishable extrema.

In order to study the effect of spatial heterogeneity of the habitat on the
persistence of the population, the original habitat is divided into N patches
with various distances between them. The initial population size and the
environmental limiting factor for each individual patch are now I/N and
E/N, and as was mentioned above, disturbance occur independently in each
patch. Simulation results, (Fig. 7) show a large increase in extinction time
with increasing number of patches for all values of r/d. However the general
pattern of a nonmonotonic dependence of the extinction time on t/d is
preserved when increasing the number of patches. Simulation results for
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FiG. 7. Simulation results of Eq. (3) with the telegraphic noise showing the effect of
habitat patchiness on the extinction time of the population. Total carrying capacity, E = 100,
and the total initial population size, /=50, are equally divided between patches. 4 = 2.
¢ = 0.05, habitats length =N X 5. Fick’s law is assumed for g(s, ), with d=0.1, ds = 1,
c=0.
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various values of the drift coefficient (not presented here) show that strong
drift reduces the average extinction time in general but has no qualitative
effect on the pattern of its dependence on the relation 7/4.

4. DISCUSSION

Analysis of the basic deterministic model (Eq.2) shows that the
conditions for existence and stability of the two stationary states are not
qualitatively different from those of the simple logistic equation. The only
difference between the original logistic equation and its present time delay
version, is that in the latter, damped oscillations are superimposed on the
normal logistic growth (Fig.1). In contrast to models in which the time
delay appears in the density dependent term (Hutchinson, 1948; May 1974),

| the system presented here is intrinsically stable.

" Environmental uncertainty in the form of a multiplicative telegraphic noise
was superimposed on the basic deterministic equations. From the simulation
results it appears that the time to extinction is not a monotonically
decreasing function of the duration of disturbance. Rather, there appears to
be a resonance effect, by which when the frequency of disturbance is large,
the chances of persistence are minimized for tr/0=n (n=1,2,3,..,) and
maximized for 7/d - n.

This phenomenon, studied in detail elsewhere (Agur, in press) can be
briefly explained as follows: when 1 < /0 < 2, and 4 = 1, juveniles born in a
given interval can be recruited to the adult population in the following
interval only. Consequently for the population to become extinct it suffices
that one episode of recruitment is fully overlapped by a disturbance. As the
probability of initiation of a new disturbance is constant over time, the
chances that such an overlap will occur increase with increasing
“wasted time” between the end of one disturbance and the beginning of the
following recruitment episode. In the region 1 < 1/6 <2, the fraction of
“wasted time” is maximized for 7/ = 2. It follows that extinction probability
in this region is maximized, and the average extinction time is minimized, for
1/ =2. In the same spirit one can show that when the frequency of distur-
bance is large, extinction chances in the region 2 < 7/6 < 3 are maximized
for 1/6 = 3, etc.

Extinction for 4 <1 is realized through multiple repetitions of the
sequence which causes extinction for 4 = 1. Hence, although extinction time
increases with decreasing 4, the value of 4 has no effect on the probability of
occurrence of this sequence. It should be mentioned that we have no analytic
explanation for the additional maxima which appear in the region
1<t/dg2ford< 1.

It is suggested here that the time to extinction of a single isolated patch,
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-subjected to environmental variation is mostly influenced by the ratio 7/4. In
an archipelago local extinction is only one of two distinguishable processes
that determine the time to extinction of the whole population. The other
process is recolonization by juveniles arriving from adjacent sites.
Recolonization ability should depend on the flow in the system, and on the
coincidence of a favourable period in an empty site, with the availability of
juveniles produced in another site 7 time units earlier. The chances of this
coincidence should be positively related to 7/d. For this reason increased
patchiness has little effect on the extinction time when 7/4 is relatively small.
-~Qur results indicate that for disturbance magnitude not smaller than 0.3,

{ when the variance about é and 7 is not toglarge, and when the intrinsic
- growth rate and the frequency of disturbance are large, it is the degree of
adaptation of the biological parameter—the duration of the resistant
stage—to the environmental parameter—the duration of disturbance—which
principally determines the extinction time. That variance in the duration of
the larval stage can be very large is indicated by Jackson and
Strathmann (1981), but a good fit between the brooding and the settlement

| seasons, found for two intertidal barnacles (Hines, 1981), does not exclude

i the possibility that at least some species have little variance in 7. The rate of

i recruitment, determined principally by 4 and u’, plays an important role

\here; it has to be relatively large for the wavelike pattern in the average
extinction time curve to be strongly manifested. The direct measurements of
larval mortality rates are notoriously difficult, but daily estimates cited by
Jackson and Strathmann (1981) range from 0.018 for Panulirus interruptus
to 0.33 for Balanus balanoides. According to a general estimate of these
writers, mortality rates of invertebrates with a precompetent period of several
weeks or more correspond to those appearing in the central part of the
juvenile mortality range presented in Fig. 4. In the Gulf of Suez in the Red
Sea larvae of sibling species largely vary in their life span, inspite of their
similar sizes and overlapping period in the plankton (Ayal and

.~ Safriel, 1982a). One may infer then that in many natural systems juvenile
( mortality is not expected to damp too severely the nonmonotonic
phenomenon observed theoretically, and that mortality in the plankton,
whether stochastic or deterministic is\not a dominant factor in determining
' the duration of the larval stage. 3Havmg shown theoretically that persistence
{ depends on the relation between' the juvenile stage longevity and the duration
of disturbance inflicted on adults, we suggest that persistence of intertidal
\ populations is affected by the relation between the larval period and the
period of disturbance for the benthic forms. It may be inferred, then, that
stochasticities in the environment of the benthic forms may have an
important role in determining the duration of the larval period.
Environmental uncertainty is well reflected in the high temporal fluc-
tuations in the adult population size of intertidal species in the Red Sea
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(Ayal and Safriel, 1982a,b). Exposure to waves, sand suffocation or
isolation, and drainage of tidal pools from the sea may cause a massive local
population destruction. The stochastic mortality factors can be of variable
magnitude at different times and in adjacent patches. In the Gulf of Eilat in
the Red Sea, storms that last on the average 2 days tear benthic molluscs
from their base, and cover individual patches of populated intertidal rock
with sand that usually remains up to 4 months. This sand brings about
suffocation of most of the adults and prevents settlement of larvae (A. Genin,
personal communication).

Populations of planktonic larvae tend to fluctuate following changes in
temperature or in food supply (It6, 1980). In the Red Sea settlement is
affected by hazardous water currents (Ayal and Safriel, 1982a,b). However,
the sources of fluctuations in the larval and adult media are not usually
assumed to be related. In places where recruitment is strictly limited by
shortage of settling area, stochasticity in the pelagic stage is expected to have
a negligible effect on population dynamics. We believe that the effects on the
optimal duration of the larval stage of stochasticity in the planktonic and in
the benthic periods are nonexclusive, although, in some cases they may be
contradictory. We support this idea by an example from the Red Sea, where
longer planktotrophic period is associated with a higher abundance and a
higher stability of the benthic population.

The two sympatric sibling cerithiid gastropods, Cerithium scabridum and
Cerithium caeruleum show a marked difference in the duration of the periods
which their larvae spend in the plankton (45-60 days for C. scabridum vs
90-120 days for C. caeruleum). Ayal and Safriel (1981, 1982a,b) studied the
dynamics of these species in the Gulf of Suez and the Guif of Eilat in the
Red Sea. In the Gulf of Suez, C. caeruleum has a relatively stable population
while C. scabridum shows high fluctuations in its sessile population size. The
latter species is almost totally excluded from the Gulf of Eilat habitat which,
although similarly unpredictable locally, is characterized by a higher
isolation of individual patches. C. caeruleum has a patchy, single age group,
distribution in the Gulf of Eilat. It seems plausible then that the higher
variation in yearly recruitment of C. scabridum in the Gulf of Suez and its
almost total exclusion from the Gulf of Eilat is due to its larval stage being
too short to bridge over 4 months long disturbances that are typical to this
gulf.

Palmer and Strathmann (1981) suggest that increased scale of dispersal
renders little benefit to long-lived larvae and thus cannot explain the
advantage of planktotrophy (longer period in the plankton) over
lecithotrophy. Strathmann (1980) suggests that larvae serve for damping
spatial and temporal variations in favourability of adults sites. The same
view is expressed in the present work: we conjecture that the longevity of the
larval life, in regimes of harsh and frequent disturbances, is mainly deter-
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mined by the duration of disturbance in the location of recruitment. Hence
increased dispersal of larvae, bearing no advantage of its own, may
sometimes be a side effect of adaption that enables larvae to buffer local
extinction of the benthic animals, caused by disturbances that prevent
recruitment during a relatively long period.

5. CONCLUSIONS

Our model is characterized by the description of the population dynamics
in a harshly varying environment as being an outcome of two processes: the
population process determined by the resistant stage, and the environmental
process determined by the durations of alternating harsh and favourable
episodes. The special synchronization phenomenon that appears in the
results is expected to be manifested when variance in /4 is relatively small
and when the intrinsic growth rate and the frequency of disturbance are
relatively large. The counterintuitive character of our theoretical results may
render them able to explain some as yet mysterious life history strategies.
Thus it seems worthwhile to examine such strategies on the background of a
quantified environmental pattern.

6. APPENDIX: STABILITY ANALYSIS OF EQUATION (2)

In the stability analysis of Eq. (2) we show that the first stationary state
x’ =0 is unstable and that the other one x’ = 1 —u/1’, is locally stable. The
latter has a biological significance only if A’ > u. The linearized equation
around x’' =0 is

dé x'[dt = A'éx’(t — 1) — udx’. (A1)

The characteristic equation for the eigenvalues w = w, + iw; of (Al) is

w, = A" exp(—w, ) cos(w;T) = u
(A2)
w; = —A" exp(—w, 1) sin ;.

It is easy to see that for the choice w, = O there exists a solution of (A2) with
w, > 0, hence instability of x’ = 0. Note that this particular solution of (A2),
has no oscillations near the stationary state and represents the fastest growth
rate (see also Fig. 1).

The linearized equation around x' =1 — /A’ is

dox'/dt = udx'(t — 1) — A'dx’. (A3)
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The characteristic equation is then

w, = u exp(—w, 7) cos(w;7) — A’
. (A4)
w; = —u exp(—w, 1) sin(w; 7).

Employing the condition A’ > u one sees immediately from the first equation
in (A4) that every solution of (A4) satisfies w, < 0, hence local stability of
x'=1—u/l.
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