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Abstract Cancer chemotherapy is much influenced by the “dose dense” paradigm,
advocating maximally possible-dose density early in treatment. This paradigm is
based on a controversial mathematical model, assuming Gompertz tumor growth
law. Alternatively, it has beensuggested that for maximizing efficacy/toxicity ratio
in cancer chemotherapy, the inter-dosing intervals should be determined according
to the Resonance theory. This theory asserts that cell growth is maximal when the
periodicity of drug administration is an integer or fractional multiple of the character-
istic periodicity of the cell population. Model analysis and in vitro and in vivo exper-
iments, suggest that differences in cell-cycle distributions of host and cancer cells
can be taken advantage of in chemotherapy by cell-cycle phase-specific drugs which
use Resonance or Anti-Resonance (stochastic) drug pulsing. Mathematical proofs
showing long-term prediction accuracy of cell‘)population growth models under cell-
cycle phase-specific drugs, enabled developing a-heuristic optimization method for
drug scheduling. Using this method in conjunction with personalized models of vas-
cular tumor growth under chemotherapy by docetaxel and bevacizumab, an opti-
mal combination regimen was tailored to a particular mesenchymal chondrosarcoma
patient. The personalized regimen was prospectively validated;leading to increased
longevity and quality of life of the patient. This patient’s model was further simu-
lated, suggesting that the relative advantage of “Dose Dense” drug therapy depends
on personal cytokinetic and angiogenic parameters.
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1 Introduction

Efficacy of cancer therapy is often unpredictable and significantly different among
patients, as a result of differences in age, gender, diet, organ function, and genetic
variability [13, 29]. Yet, under the current paradigm of clinical trials, new drug can-
didates are approved if they show statistically significant advantage, when applied
by precisely the same protocol to a large patient population. Due to the high cost of
such large-scale population trials, only a few protocols are tested, inevitably impli-
cating suboptimal treatment for the patient.

In trying to identify an efficacious general chemotherapy policy, Larry Norton and
Richard Simon-constructed a simple mathematical model for relating the efficacy of
cytotoxics to the growth dynamics of the tumor. Mathematically, the Norton-Simon
model can be written N’(t) = f{N(t))(1-d(t)), where N(t) denotes the number of tumor
cells at time 7, N’(t) is the growth rate of the tumor at time 7, d(t) reflects the rate of
removal of cells as a result of treatment, and f is a function which describes the
growth dynamics of the unperturbed tumor. Norton and Simon assumed that this
growth function obeys Gompertz law, and that the rate of tumor regression induced
by chemotherapy is proportional to the rate of unperturbed growth of tumor of that
size. Consequently, they argued, to be more efficient, the dose rate of chemotherapy
should be increased, for example by applying the maximum tolerated dose (MTD)
and decreasing the inter-dosing intervals [18, 19].

The Norton—Simon hypothesis has been influential in oncology and much inspired
the clinical investigation. It served as a basis and justification for the “dose-dense”
approach to breast cancer chemotherapy, shown in many studies to achieve drops in
cancer recurrence and death, as the model predicts [11].

The rationale of the “dose-dense” paradigm is rooted in the nature of the under-
lying Gompertz model. However, Norton and Simonmnever checked if the Gompertz
model is valid, or if the paradigm is valid also foralternative models of tumor growth
(see, for example [15, 20, 21, 28]. Can their model be validated? Can it be gener-
alized, for example, to all vascular cancers, or all chemotherapeutic drugs? In this
work we will sketch some prerequisites for the use of mathematical models of cell
population dynamics for chemotherapy optimization. It will-be shown, both theo-
retically and experimentally, that the relative advantage in dose dense therapy may
depend on cytokinetic parameters of drug-susceptible host and cancer cells, and on
the level of tumor angiogenesis.

We will summarize theoretical research, which shows that periodically applied
chemotherapy creates a resonance effect by which cell population growth can be
maximized or minimized, depending on the periodicity of the drug pulsing. Exper-
iments supporting the validity of this Resonance phenomenon in real-life will be
summarized and it will be shown that models of cell populations which are treated
by schedules of cell cycle phase-specific (CCPS) drugs, yield reliable long range pre-
dictions. This opens the way to chemotherapy optimization by use of mathematical
models of cancer progression, and, further, to the development of an optimization
method by which the inter-dosing interval is timed, essentially, to minimize the tox-
icity/efficacy ratio of the drug.
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Finally, we will briefly report a particular application of the optimization method
for treatment personalization. In this case, chemotherapy of a cancer patient was
successfully optimized using a personalized mathematical model of tumor growth.
The combined method was prospectively validated and it was suggested that the
relative advantage of dose-dense periodic chemotherapy mainly depends on personal
angiogenic and cytokinetic parameters.

2 Universal Resonance Phenomenon Suggests a New Method for
Cancer Chemotherapy

Models of population dynamics, under various distributions of environmentally-
inflicted loss processes, suggest that population persistence depends on the level of
synchronization of the environmental and population processes. Population growth
is maximized when the periodicity of environmental disturbances is an integer or
fractional multiple of the characteristic periodicity of the population. This Resonance
Phenomenon is observed in as.diverse models as those of mussel growth under harsh
weather regimes in the intertidal zone of the sea, or in models of measles epidemics in
human populations under vaccination. The internal periodicity caused by some pop-
ulation characteristics and the external periodicity inflicted by environmental forces
may be unique to each case, but the resonances created by these relationships are a
universal phenomenon [1, 2, 6, 25].

The universality of the Resonance Phenomenon offers an attractive possibility
for the control of the cancer disease. Thus, it was shown, both theoretically and
experimentally, that the period of drug dosing can be determined so as to create
resonances which maximize the growth of host'drug-susceptible cells and, at the
same time, minimize the growth of the malignant cells.

First, the generality of the Resonance Phenomenon for different host cell pop-
ulations was investigated in a much simplified model of a cancer patient. The
patient’s model assumed that both tumor and target host tissues are collections of
cells that vary only in cell-cycle parameters; the spatial arrangement of these cells
was ignored. In this way, the complex physiological and pathological dynamics of
an oncology patient under chemotherapy was reduced into one essential variable,
namely, the ratio between tumor growth and that of the host target tissues under
different chemotherapy regimens of CCPS drugs.

Two types of treatments were considered : (i) drug efficacy is stepwise “infinite,”
i.e. all cells in the vulnerable cycle-phases are instantly eliminated during the fixed
period in which the drug is effective, while no cells are affected during the drug-free
interval [5]; (ii) drug efficacy is “finite” and drug decay kinetics is considered [10].
The previous case, a limit of the latter one, can be considered as a reasonable approxi-
mation to reality. Assuming stochastic inter-dosing intervals, this model successfully
shows a clear advantage for population growth when the period of the loss process
coincides with an inherent population reproduction period.

In [10], the resonance effect was examined under improved realism of the drug’s
pharmacokinetics (PK). A probabilistic model was constructed, which assumes (i) a
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constant cell-cycle duration, (ii) a constant drug-sensitive cycle-phase, (iii) S-phase
drug susceptibility and (iv) negative exponential drug elimination. This is a major
departure from the previous model, where a dichotomous, “all or none” drug effect
was assumed. Analysis of this model provides explicit formulae for the growth or
decay of the tumor cell population. Notably, it is shown that the resonance phe-
nomenon is preserved even when model complexity is increased.

In the cases discussed above the models are probabilistic. In contrast, in [12], a
systems of ‘deterministic differential equations is used to analyze similar dynamics.
The authors show that when the mean cell-cycle times of normal and tumor cells
differ considerably, optimal drug schedules can significantly improve therapeutic
efficacy, when-drug periodicity is close to the mean cell-cycle time of the normal
population and is practically independent of the tumor cell-cycle parameters. In this
case, optimal treatment regimen heavily depends on precise estimation of the mean
cell cycle duration‘of both cancer and host cells.

In [30], chronotherapy is discussed in structured models of tumor cell popula-
tion growth, where drug treatment corresponds to a loss of cells in a periodic on-off
schedule. Treatment is specific'to the structure variable, so that only cells in a cer-
tain range of this variable are eliminated. The author demonstrates that resonances
occur at a treatment period, p; being at, or near, integral or fractional multiples of
the median age of cell division.

A rigorous mathematical analysis of the Resonance Phenomenon in periodic
chemotherapy scheduling is presented in [31]. Here, realism is traded-off by rigor,
and for model simplification it is assumed that cell cycle has a constant length and
that treatment eliminates cells only at the time of cell division (to distinguish from
the S-Phase killing, as in the model described in [5]. Moreover, differential equations
model is used rather than probabilistic approach-in [10].

2.1 Laboratory Experiments Verifying the Resonance Phenomenon

A series of laboratory experiments was conducted for testing the clinical validity of
the Resonance phenomenon. To this end, the effect of drug pulsing rhythm on cell
proliferation was examined both in vitro, in vivo and ex vivo. The in vitro experi-
ments tested the dependence of cell population growth on the inter-dosing interval
per se. Thus, short pulses of Cytosine Arabinoside (ara-C) —an S-Phase-specific
cancer drug, were applied to several sets of cells. Experimental results show that,
regardless of the total drug dose or the experimental procedures, drug schedules
whose periodicity was an integer multiple of the average population cell-cycle time
showed significantly higher growth rate, as evaluated by rates of DNA synthesis [5].
In the in vivo murine experiments ara-C was applied to lymphoma-bearing mice,
treated by short drug pulses of different distributions of the inter-dosing intervals;
including stochastically determined periodicity; the total dose and total treatment
duration were kept constant. Toxicity was evaluated by spleen weight, by peripheral
blood measurements and by the proportion of bone-marrow cells in the S-Phase gate
of the DNA content distributions. Results support theory in showing that an Anti-
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Resonance regimen, namely random duration of the inter-dosing intervals, inflicts
higher cytotoxicity than a regimen of constant inter-dosing intervals. The results
also show that minimal myelotoxicity is exerted when the inter-dosing interval is
a'multiple of the inter-mitotic time of bone-marrow stem and progenitor cells, thus
supporting model predictions [4]. To verify that this approach is feasible using meth-
ods that are available in clinical practice, Ubezio and colleagues [27] determined the
optimal intervals between treatments, by measuring the effects of single-dose ara-C
on proliferation kinetics of murine bone-marrow cells. Results showed that ara-C
is toxic to S-Phase cells, causing an arrest at the G1/S boundary of the cell-cycle
for about 4 — 6hr, following which cells transit through the S-Phase in a nearly
synchronized manner. Further results suggest that an optimal window for a sec-
ond ara-C dose, designed to preserve the bone-marrow proliferating pool, would
be optimally administered at 14—16Ar (for Smg/kg) and 12—14hr (for 1mg/kg) fol-
lowing the first ara-C dosing. This is so because in these time windows most of the
surviving cells are found in the less susceptible cycle phases (G1 and G2/M). In
contrast, a time periods of 7—11Ar is expected to impose maximal toxicity to the
bone-marrow, since at that time surviving cells will be transiting into the suscepti-
ble S-Phase of the cell-cycle [27].In order to verify that, indeed, the optimal dosing
period in murine chemotherapy is 144r, it was first shown in bone-marrow aspirates
of ara-C-injected mice, that cell kinetics following 2 or 3 ara-C dosings remained
similar to that observed after a single dosing. It was further shown that, as predicted,
cell-cycle kinetics was less affected when using the optimal dosing period. Indeed,
when a second dose was administered after 7hAr or 14hr period much less toxicity
was inflicted than after a 10Ar period, and a third dose of 14Ar period had a consid-
erable smaller effect on the percent of proliferating cells in the bone-marrow than
any of the second dosings. Subsequently, toxicity to healthy mice by different ara-
C protocols was evaluated by measuring mice survival. Thus, 4/5 mice died as a
result of treatment with 4 ara-C doses given at 10Ar intervals. Reducing the number
of doses to 3 did not decrease mortality. In contrast, increasing dosing intervals to
14hr dramatically improved survival since 5/5 mice survived 3 ara-C doses, given
at 14hr intervals. The next step was to examine the above scheme in tumor bearing
mice. Mice were inoculated with 38C—13B lymphoma cells and treatment was initi-
ated 3 days later. Results show that a regimen of 4 x 14hr applications was not only
less toxic, but it also delayed tumor progression, nearly doubling survival time, as
compared to the untreated control. The protocol of 16Ar dosinginterval had similar
results to the 14Ar protocol, defining thus the width of the bone-marrow preserving
time-window. In contrast, all untreated mice in the control group died within 14 days
due to tumor progression, whereas the treatment with random drug application was
highly toxic causing 100% death within 7 days [27].
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2.2 Long-Range Predictability in Models of Cell Populations
Subjected to Cell Cycle Phase-Specific Drugs

Canone a priori use mathematical modelling to predict whether a given cell popu-
lation of distributed cell-cycle duration will be effectively eliminated by prescribed
chemotherapy schedules administered according to the the suggested method? In
this section we show analytically that the answer is positive, thus paving the way
for the development of heuristic optimization methods for chemotherapeutic drugs,
which may be applicable for prolonged treatments.

In [16], numerical procedures are developed and estimated, for determining the
growth rate of a‘cell population having distributed cell cycles under a prescribed
chemotherapy protocol. It was shown that the cumulative error in estimating cells
proliferation rate stays bounded and does not accumulate with time, if the considered
treatment regimen isperiodic. It was also proved that this rate is almost independent
(with unity probability)from initial distribution of the ages in the cell population.

Let n(a, r) denote the cell age density, a denote a cell age and 7 denote a time. It
will be shown that the behavior of r(tf) = n(0,t) determines the behavior of N(7),
that is, the number of cells at time 7, as ¢ tends to infinity.

The model equations, describing cell age distribution dynamics are

ny(a,t) + ny(a,t) = —(B(a) + n(a,t))n(a, ), a>0,1>0, (1)
n(0,1) = 2 / "8 @yn(a, t)da. >0, ?)
n(a,0) = no(a), a>0, 3)

where n, and n, denote partial derivatives dn/da and dn/dt, respectively [12, 17,
26, 30, 31]. The age-specific division rate of cells’is 5 (a), the age-specific mortality
rate (due to natural causes or to a treatment) of cells is 7(a, ), and the initial age
distribution of cells is ny(a). The function B(a) satisfies f(a) = f(a)/w(a), where
fa“lz f(a)da is the probability that a cell divides between ages a; and a; and «(a) =
/. 100 f(a)da (the function «(a) gives the fraction of cells undivided by age a). In our
case the support of f (the set of all of points on which 8 has nonzero values) is a
subset of [1p, T,

In this model it was assumed that the division and mortality rates of the popula-
tion are independent of the population density. Note, however, that in other cases,
the division rate of cell population may depend on the total cell number.This can
be so in noncancerous cells populations, where B and 1 depend also on the total
number of the cells, N(¢) is given by integrating n(a, t) from 0 to infinity. In such
cases, being out of the scope of the present article, S(N,a) is a decreasing and
n(N,a,t) is an increasing functions of N (negative feedback regulation of overall
cells number).
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The differential equation (1) is integrated, and the following formula for r(r) =
n(0, 1) is obtained:

(o) =2 / " fla) 1t — a) O(a, 1) da. )

Here, O(a,t) = e~ Jo'n(er—a)de gands for treatment activity, where7(a, t) = n(a, t+
a). For a very aggressive treatment ©(a, t) tends to 0, and in the absence of the drug
and in the absence of a natural loss we have ©(a, ) = 1.f(a) is a probability density
function of cell division at the age a with support [z}, 73], 7 > 0.

It is shown in [16] that in the generic case, the growth rate of the total cell popu-
lation, N(¢), is similar to r(z), for ¢ large enough.

Let r,(s) = r(s + n7p) for s € (0,1,) and n € Z. The fact that t, > 0 converts
(4) to recursive formula:

M (g, M
10 =Y [FEaw) a0 de= Y Tanao )
=0 70 =0

where M = [T’"T—_b”’] +1, E,0,5) =2f(v+s+ju)OW+s+jw,s +n1) and

Ting(s) = fofh Ej,(u,s)g(ty — u)du for any g € L%o,r,,]'

(5) define recursively
{ra()}52,, provided that r_y(?), . . ., ro(f) are known.

The integration kernel Ej , (1, s) has been approximated in [16] by step functions,
E/,(u,s) and Ej’,n(u, s) bounding it from above (superscript “u”) and from below
(superscript “1”), defining {r,(#)*} and {r,(£)!} as the upper and lower approxima-
tions for {r,(1)}.

Let H be a set (L%o,zb])M *2 with a following innerproduct: < v, w >= Z]Aflﬂ <
v;, w; >, where < v;, w; > is an inner product in L2 Tt is clear that H with this inner
product constitutes Hilbert space. Thus Eq. (5) can be re-written in the following

form:

r,,_M_l(t) 0 Id 0 c. 0 r,,_M_2(t)
rn—M(t) _ .. rn—M—l(t)
10 ... 0 ... 1d ’ ©)
rn(t) 0 TM,n TM—I,n e TO,n rn—l(t)
Let us denote
0 Id 0 ... 0
L=1o ... o .. wu| &
0 TM,n TM—I,n o TO,n

Clearly {7,,}°2, is a sequence of compact operators from H to H. In the case of cyclic
treatment there is a minimal p > 0, such that ®(a, t) = ©(a, 1+ p) forany a > Oand
any t > fy. It was easily shown in [16] that ©(a, ) = O(a,t + Ptp) for any a > 0,
t > to and P is the minimal natural number with this property. From this it easily
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follows that {7},}2, is a periodic sequence of operators with the minimal period
P. Then T = T\T,...Tp is a compact operator on H and for every initial vector

vo € H we have P sequences {T" vo} o, {T"T1 vo}orgs --» {T"To ... Tp—1 vo} oy
and obtain sequence of vectors of functions {(r,,(¢), ry41(2), . . ., ra+m (1)) }°2, in the

following way: for any natural n r,(t) = T"Ty...T;vo, where n = mP + 1,0 <
i < P+This means that behavior of () in infinity is determined by {7"}52, and in

1 . ™ . .
particular by lim,— oo SUp,ey % = lim,—c0 ||7"]|. From elementary course in

Banach spaces [22] follows that lim, .« +/||T"|| = p(T), p(T) is a spectral radius
of T. Thus the problem is reduced to the evaluation of p(T).

If {T,,}°2 , has-aperiod P, then given N and equal partition of [0, 7], {7%}° ; and
{T}, have<also period P. Let T! = T!T,... T, and T" = TVT¥...T%. These are
obviously finite rank operators. Thus the behavior of 7(¢) and 7(¢) is determined
by p(T') and p(T") respectively. p(T') and p(T*) can be readily calculated. This is
because these operators areof finite rank and can be identified with finite dimensional
matrices by means of isometry of C" with the space of step functions with equal
partition of [0, 7] to N equal subintervals, as described earlier.

The following propositions have been established:

Proposition 1. If p(T) < 1 then lim ||T" v|| = 0.
n—>oQ
If p(T) > 1 then lim ||T"v|| = o, VveH.
n—oo

Proposition 2. For any nonnegative compact operator K on H, the spectral radius
p(K) is an eigenvalue of K with at least one eigenfunction x > Q.

Proposition 3. For any nonnegative compact operator K on H and for almost every
v € Hy, lim ||[K"v||» = p(K).
n—>oo

where H denotes the subspace of H, containing vectors with nonnegative elements.

We summarize the results as follows: The value of the spectral radius p(7) fully
characterizes population growth or decay. The population exponentially grows if
p(T) > 1 and decays if p(T) < 1. These rates are bounded by. p(7') and tend to it
for almost all initial conditions (which are represented by nonnegative functions).

The following proposition states that order is preserved by a map, which is defined
on the set of all bounded nonnegative operators on H, and assigns'its spectral radius
for any such operator. This means that if Ay < T < A,, where A, A, and T are
bounded operators on H, and if p(A1), p(A,) are known, then p(T) € [p(A}), p(A32)].
This fact in conjunction with results of Proposition 5 below gives a quantitative
estimation of p(7') through p(A;) and p(A,), in the case that p(T) is compact and
p(Ay) with p(A,) are operators of finite rank.

Proposition 4. Given Sy, S, being any bounded nonnegative operators on H, such
that S1 > S,, their spectral radiuses satisfy similar inequality: p(S1) > p(S2).

The following proposition is significant as it directly estimates the radius of any
given compact operator through the spectral radius of finite rank operator close to it.
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Proposition 5. Assume that K is a compact operator on separable Hilbert space H,
p(K) > 0 and A is a finite rank operator, such that ||K — Al|| < € in operator norm
for some ¢ > 0. If ¢ < p(K), then

1K1 )
< — .
) < p(a) + & (3+ 100 ®

From Proposition 1 follows a property, which is associated with fully periodic
treatments. When subjected to fully periodic drug treatments, the behavior of a cell
population at large ¢ is determined by the spectral radius of some operator 7. This
means that the inexactness in the evaluation of cell population dynamics is equal
to the inexactness of the population growth rate estimation at any time. Thus, the
error in the initial data will lead to a bounded error in the evaluation of the popu-
lation growth rate. From Propositions 1, 4, 5 and from the approximation of com-
pact operator by finite rank operators developed above, it follows that the spectral
radius is a continuous function on the set of operators, whose spectrum is nontriv-
ial. This guarantees the stability of the population growth rate under fully periodic
treatment.

One of the problems any predictive mathematical model has to cope with is the
inexactness of the biological data. In the present model, if we know f up to some
accuracy, the following question arises: given a cyclic drug treatment, is the inex-
actness in the biological input data crucial for our prediction ability of population
growth or extinction?

Let fi(a) < f(a) < fa(a) for any a~€ [tp, T,y]. Let 1T and ,T be the respective
operators on H. Then by Proposition 5 it follows.that p(,17) < p(T) < p(;T). Given
any ¢ > 0, we can evaluate p(;7') and p(,T)with accuracy less than ¢. In the generic
case p(1T) # 1 and p(,T) # 1. Thus, for sufficiently small ¢ we will know wether
both p(;T) and p(;T) are larger or less than 1, ot p(;7) < 1 < p(;T). In the first
case the population increases, in the second it decreases and in the third case the
provided data for f are not sufficient.

3 Optimizing Chemotherapy Regimens

3.1 Simple Optimization Methods for Minimizing Toxicity/Efficacy
Ratio in Chemotherapy

Having guaranteed the long range predictability of models with periodic drug dos-
ing, one could develop methods for predicting the optimality of prescribed sched-
ules, when both efficacy to the cancer and toxicity to the patient are concurrently
considered [5].

First, a simple optimization problem was defined, as follows: minimize the ratio
between the average elimination time of the malignant population and that of the
limiting host population, employing a newly defined efficacy coefficient, Z, such that

Z=1—Ty/Ty,
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where T); and Ty denote the mean elimination time of the malignant and the host
cells, respectively. The efficacy coefficient, Z tends to unity for treatments that
rapidly eliminate the cancer and bear little toxicity for host cells, it will be close
to zero for indiscriminating treatments, and will be less than zero for treatments that
cause severe damage to the host but have little effect on the cancer. The efficacy
coefficient, Z was calculated over large schedule and parameter spaces,for a differ-
ent formalism of the optimization problem.

In [7],-the mathematical properties of the suggested method are analyzed by
applying {¢n} series, where 0 < ¢ < 1 and {¢n} is the fraction part of ¢n. Using
continued fractions a fast algorithm is put forward for computing the required treat-
ment duration and the desired number of drug applications for eliminating the tumor
under the suggested method. Note that this algorithm relies on a model that assumes
deterministic temporal-cell-cycle parameters and a “bang-bang” (all or none) drug
effect.

3.1.1 A Heuristic Method for Personalizing Clinical Cancer Therapy —
an Independent Support for the Resonance Phenomenon

For complying with the many constraints of modern clinical oncology strategies, a
heuristic method for personalizing drug schedules was developed [8]. The method is
based on simulations of the patient’s pharmacodynamics (PD) in models for cancer
and host cell dynamics, so that the number of cells that are susceptible to drug at
every moment of therapy is calculated. Local search heuristics are then employed
for finding the optimal solution, as clinically prescribed.The suggested method does
not depend on the exact assumptions of the model, thus enabling its use in complex
mathematical descriptions of the biomedical scenario.

The main constituents of the method are two procedures that simulate the growth
of cells during treatment and when no treatment is.given. For simplicity, logistic
growth is assumed for the host cells, while the growth of the cancer cells is taken as
exponential.

This model has been employed for examining how to.improve regimens of high-
dose chemotherapy (HDC), currently believed to be one of the most effective strate-
gies for obtaining higher anti-tumor efficacy for breast cancer. In particular, a high-
dose (210mg/m?) 3hr infusion of Paclitaxel (half-life: 10— 12hr) isroutinely used in
the adjuvant setting for high-risk patients after mastectomy. Under these regimens
dose-limiting myelosuppression is common [23] so that autologous bone-marrow
transplantation becomes mandatory.

Using the mathematical algorithms in [8], the killing effect on cancer cells and
on host bone-marrow cells was calculated for several treatment schedules of a
Paclitaxel-like HDC by a CCPS drug. Subsequently, a comparison has been made
between schedules of a single dosing of the drug, and those of a fractionated dos=
ing with the same or a smaller total drug dose. In these calculations it was assumed
that cells in the G1 and G2/M phases of the cell-cycle are more susceptible to the
drug than S-phase cells [24], and that breast cancer cell cycle lasts 40hr, while that of
bone-marrow cells is roughly 24Ar. The computations show that by splitting the dose
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Fig. 1. Optimal treatment regimen for five patients, having different putative cancer indications,
P1-P5. The patients are assumed to be similar in all; cell cycle and susceptible phase duration of
the drug susceptible host cells being 24/r and 10Ar, respectively. The patients vary with respect to
the cancer cell cycle parameters:-cell cycle duration (16hr (P1, P3), 28hr (P2, P4), 20hr (P5), and
duration of the drug susceptible phase (104r (P1, P2), 6hr (P3, P4), 14hr(P5)

in a specific manner some advantages are possible for increasing the survival/killing
ratio of the host and breast cancer cells. It was shown that a HDC treatment reg-
imen, in which a Paclitaxel-like drug exerts a very high cell kill (50%/hr) during
10Ar, reduces tumor size to 0.148 of its initial Size. However, this treatment causes
more damage than cure, as the bone-marrow cell population is reduced even more
significantly, to 0.137 of its initial size. This drug effect is reversed when the dos-
ing is fractionated, so as to resonate with the susceptible bone marrow cell-cycle.
Under these circumstances toxicity to normal cells. is reduced while cancer cell kill
is maintained, as expected by the Resonance Theory.

It is important to note that the heuristic optimization method put forward in [8]
does not demand any a priori treatment periodicity. Nevertheless, its results show
that, theoretically, a periodic treatment is optimal over a large range of biologically
realistic system parameters. More specifically, two general classes of optimal cancer
drug schedules are identified, depending on the temporal cycle parameters of the
host and cancer cells. One class comprises one-time intensive treatments, while the
other comprises treatments characterized by series of quasi-periodic non-intensive
pulsing. We see, then, the Resonance Phenomenon emerging again in anindependent
model, this time under a more complex optimization method (Fig. 1).

4 From Theory to the Clinic

Mesenchymal Chondrosarcoma (MCS) is a rare malignant disease. One MCS patient
was diagnosed with mediastinal located MCS at age 45. Shortly after the resec-
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tion of the primary tumor, multiple bilateral pulmonary nodules were discovered.
The patient underwent aggressive chemotherapy, but disease progression was not
arrested, and additional liver and bone metastases appeared. The patient also devel-
oped severe myelosuppression with pancytopenia due to toxic side-effects of the
prolonged chemotherapy.

4.1 Integrating in Silico and in Vivo Models for Treatment
Personalization

To determine the best possible treatment for the MCS patient, tumor fragments, taken
from his lung'metastases, were implanted in mice (denoted tumorgrafts), and differ-
ent pharmacotherapy regimens were applied to the animals.

A general mathematical model for angiogenesis-dependent solid tumor growth
was used for model simulations, replicating the experiments performed in the tumor-
grafts, for predicting the. MCS dynamics in the control and treated animals [9].
PK/pharmacodynamics (PD) models of potential drugs were constructed, using pub-
licly available data. In addition, qualitative chemosensitivity tests of several cyto-
toxic drugs were performed on-tumor cells from the patient’s biopsy. Incorporating
the data of these chemosensitivity tests into the calculations allowed a certain level
of personalization of the general PK/PD models.

The mathematical model of the MCS-tumorgrafts was successfully validated in
mice with the average accuracy of 87%. Subsequently, gene expression analysis of
key proteins in the grafted tumors and in the MCS patient was performed in order
to adjust the model to describe the tumor dynamics in the patient. The resulting
personalized model of the patient’s disease was then used to perform patient-specific
predictions of various anti-cancer treatments.

Guided by the results of the personalized in silico/in vivo combined model, the
clinicians administered the MCS patient once-weekly regimen of docetaxel (DOC).
Previously, this regimen was found least toxic to hematopoiesis, e.g., [3]. Eventu-
ally, the patient had a dramatic response to therapy with an immediate substantial
recovery of all 3 blood elements (hemoglobin, white blood cells and platelet count).
Soft tissue disease in the lungs and liver remained stable and the patient enjoyed a
period of good quality of life, ending only after pulmonary progression of his disease
to which he finally succumbed [14].

4.2 The Rate of Angiogenesis Determines the Optimal Inter-Dose
Interval of Chemotherapy

The simulations of the human MCS model for DOC delivery every 7, 14, 21 or
28 days (keeping the same average weekly dose), showed that once weekly regimen
is more efficacious than all other tested alternatives. However, suggesting this DOC
administration regimen may be problematic in some patients. Therefore, it would
be useful to identify the patients that are more likely to benefit from the weekly
chemotherapy schedules.
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Cytotoxic agents, such as DOC, disturb the dynamic equilibrium between the
growing tumor mass and the vessel bed that supports it, by direct killing of tumor
cells. The mathematical model for angiogenesis-dependent tumor growth takes
account of the cascade of compensating events which is triggered as a consequence
of chemotherapy administration.

Torassess tumor recovery from the cytotoxic drug shock, let us define tumor
growth inhibition (TGI) in terms of the tumor volume before and after the treat-
ment: TGl'has a value of zero if the volume of the treated tumor equals to that in the
control, untreated, tumor at the given time point. Larger TGI values indicate bigger
inhibition, while negative TGI values indicate the situation where the treated tumor
is bigger (in terms of living cells volume) than the untreated one: in other words,
negative TGI values mean that the treatment was harmful, rather than beneficial.

In the human MCS model simulations [14], TGI values 7 days after a single DOC
administration was'46%. As time goes on, this residual cytotoxic effect decreases to
the value of 10% at day 21 - a difference of 36%. Thus, if the second DOC dose is
delivered on day 21, after a substantial tumor recovery, the overall efficacy of the
treatment would be small, compared to once-weekly regimens.

Moreover, if the human MCS model is simulated with VEGF secretion rate
reduced by a factor of two, compared to its original value, the predicted decrease
in TGI from day 7 to day 21 is only 29% (39% and 10%, respectively), indicat-
ing slower recovery from drug-induced tumor inhibition. In contrast, if the rate of
new vessel formation is doubled, as compared to that calculated for the real MCS
patient, the difference in the extent of tumor inhibition by DOC dose, between day 7
and day 21, increases to 92%; 69% TGl in day 7 versus —22% in day 21. This growth
is made possible due to the extensive formation of blood vessels, triggered by the
chemotherapy [14].

These results imply that for patients having less intensive angiogenesis, the less
dense (for example tri-weekly) regimens wouldbe approximately as efficacious as
the weekly one, thus providing the clinicians more treatment alternatives [14].

5 Conclusion

The work reviewed in this chapter shows both theoretically andexperimentally, that
the advantage of dose-dense chemotherapy is not universal, but rather, depends on
the patient’s cytokinetic and angiogenic parameters and the length of theinter-dosing
interval itself.

We believe that the above-reported treatment personalization study marksa tran-
sition point in the status of mathematical modelling in biomedicine. This is one of
the first times that a mathematical model generates quantitative predictions that are
prospectively validated in the clinic.

In general, the modelling procedures reviewed here and their experimental ver-
ification provide solid grounds for the use of rigorous biomathematical models in
drug development and in the clinic. Clearly, this is an uphill struggle, which requires
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patience and endurance. However, we believe that in the long run decision-making
in medicine will be primarily based on biomathematical modelling.
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