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a b s t r a c t 

Immune checkpoint inhibitors (ICI) are becoming widely used in the treatment of metastatic melanoma. 

However, the ability to predict the patient’s benefit from these therapeutics remains an unmet clin- 

ical need. Mathematical models that predict melanoma patients’ response to ICI can contribute to 

better informed clinical decisions. Here, we developed a simple mathematical population model for 

pembrolizumab-treated advanced melanoma patients, and analyzed the local and global dynamics of the 

system. Our results show that zero, one, or two steady states of the mathematical system exist in the 

phase plane, depending on the parameter values of individual patients. Without treatment, the simulated 

tumors grew uncontrollably. At increased efficacy of the immune system, e.g., due to immunotherapy, 

two steady states were found, one leading to uncontrollable tumor growth, and the other resulting in tu- 

mor size stabilization. Model analysis indicates that a sufficient increase in the activation of CD8 + T cells 

results in stable disease, whereas a significant reduction in T-cell exhaustion, another process contribut- 

ing CD8 + T cell activity, temporarily reduces the tumor mass, but fails to control disease progression in 

the long run. Importantly, the initial tumor burden influences the response to treatment: small tumors 

respond better to treatment than larger tumors. In conclusion, our model suggests that disease progres- 

sion and response to ICI depend on the ratio between activation and exhaustion rates of CD8 + T cells. 

The analysis of the model provides a foundation for the use of computational methods to personalize 

immunotherapy. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Advanced melanoma is the most deadly skin cancer. In 2015,

51,880 new cases were diagnosed worldwide, and 59,782 deaths

ere reported ( Karimkhani et al., 2017 ). For 2018, a total of 91,279

ew cases, and 9,320 deaths are expected in the United States

 Siegel et al., 2018 ). Most early-detected melanomas are curable

y resection ( Terushkin and Halpern, 2009 ), whereas metastatic

isease requires systemic treatment. Melanoma cells can stimu-

ate host immunity by their high mutation burden, enabling recog-

ition as non-self-antigens and activation of antigen presenting

ells (APCs). The latter stimulate CD8 + T cells to differentiate

nto memory and cytotoxic effector CD8 + T cells ( Dustin, 2014 ;

attinoni et al., 2012 ). Melanoma can also suppress host immunity
∗ Corresponding author. 
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y expressing ligands which bind to regulatory receptors on acti-

ated immune cells - cytotoxic T lymphocyte-associated protein 4

CTLA-4) and programmed cell death 1 (PD-1) - and inhibit im-

une activity ( Butte et al., 2007 ; Chapon et al., 2011 ; Walker and

ansom, 2011 ). 

Treatment of melanoma has been revolutionized with the ap-

roval of ICIs. For example, treatments based on pembrolizumab

nd nivolumab, inhibitors of the immune checkpoint receptor,

rogrammed cell death 1 (PD-1), greatly improved prognosis in

etastatic disease ( Robert et al., 2015 ). However, even though ICIs

an induce durable response in some patients ( Ott et al., 2013 ;

rieto et al., 2012 ), the overall response rate to these drugs is

till modest ( Hamid et al., 2013 ; Hodi et al., 2010 ) and reliable

arkers to predict treatment efficacy are still under development

 Wang et al., 2012 ; Weide et al., 2016 ) 

The complex interplay of cancer cells and the host immune sys-

em, as affected by immunotherapy, renders the reasoning of treat-

ent causality difficult. Having the capacity to succinctly integrate

https://doi.org/10.1016/j.jtbi.2019.110033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.110033&domain=pdf
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this interplay in one coherent framework, and enable its analy-

sis, mathematical models may become instrumental in predicting

the interactive dynamics of host immunity, cancer progression and

immunotherapy, thereby providing a new powerful tool for treat-

ment personalization. Mathematical models have been previously

employed for studying the interactions of cancer with the immune

system, for investigating the response to different immunothera-

pies, and for patient-specific regimen personalization ( Adam and

Bellomo, 2012 ; Agur et al., 2016 ; d’Onofrio, 2005 ; d’Onofrio, 2008 ;

Eftimie et al., 2016 ; Eladdadi and Radunskaya, 2014 ; Fory ́s et al.,

2016 ; Kogan et al., 2012 ; Kronik et al., 2010 ). While suited to their

specific aims, none of these models included cellular immunity in

a way that enables analysis of treatment by ICI. In particular, pre-

vious models did not address the recently discovered effects of Ef-

fector T cell exhaustion on the treatment. The elucidation of these

effects are crucial for evaluating the efficacy of ICI and, therefore,

are introduced into the mathematical model developed and ana-

lyzed in this work. 

In this study, we developed a mathematical mechanistic model

for the interactions of melanoma cells with the host immune sys-

tem, and analyzed the effects ICIs have on this interplay. Our study

indicates that different potential immunotherapy strategies, which

are expected to enhance the efficacy of CD8 + T cells, result in dis-

tinct tumor dynamics and disease fates. 

2. Methods 

2.1. Mathematical model 

Our mathematical model simplifies the overall system to its

main driving forces, namely, melanoma cells, antigen-presenting

cells (APCs), and effector CD8 + T cells. It takes into account the

following assumptions about the involved dynamics: 

1. Mutated tumor cells express non-self-antigens and acti-

vate APCs. The number of activated functional APCs, de-

noted A , depends on the tumor immunogenicity ( Chen et al.,

1994 ; Rizvi et al., 2015 ; Schumacher and Schreiber, 2015 ;

Snyder et al., 2014 ), which is reflected in the activation rate

of APCs, ( αA ). The activation of APCs increases with tumor

load, towards saturation. The number of tumor cells required

to reach half of the maximal activation rate of APCs is de-

noted by the coefficient b . 

2. Functional APCs die with a rate μA . 

3. Functional APCs activate effector antigen-specific CD8 + T

cells ( T ) ( Dustin, 2014 ; Ott et al., 2013 ; Dustin, 2002 ), at a

rate αe . 

4. Effector CD8 + T cells eliminate tumor cells ( Ott et al., 2013 ;

Cipponi et al., 2011 ). 

5. Effector CD8 + T cells are eliminated at a rate, μe . This term

accounts for the cell death and exhaustion due to the en-

counter with tumor cells and regulatory cells. For simplicity,

we assume that this rate does not depend on the tumor size.

6. The number of tumor cells at any moment, M , is determined

by their net growth rate ( γ mel ) and the rate of elimination

by effector CD8 + tumor lymphocytes ( T ), denoted νmel . Their

death rate due to the immune system is assumed to reach

saturation in M , depending on the coefficient g . 

7. Administration of ICI treatment increases the activation rate

of CD8 + T cells αe , and reduces the elimination rate of

CD8 + T cells, μe . 

A graphical presentation of the modelled components and their

interactions is given in Fig. 1 . 
Based on the above assumptions, we formulated the following

DE model: 

a) 
dA 

dt 
= αA ·

M 

M + b 
− μA · A, 

b) 
dT 

dt 
= αe · A − μe · T , 

) 
dM 

dt 
= γmel · M − υmel ·

T · M 

M + g 
. (1)

Eq. (1a) describes the dynamics of APCs in the system, where

he first term on the right-hand side (r.h.s) stands for the activa-

ion of APCs by cancer cells, and the second term stands for their

eath. Eq. (1b) describes the dynamics of effector CD8 + T cells in

he system. The first term on the r.h.s. corresponds to activation of

ffector CD8 + T cells by APCs, and the second term denotes the

eath of effector cells. Eq. (1c) describes tumor growth, with the

rst term on the r.h.s. standing for the tumor growth rate, and the

econd term denoted destruction of tumor cells by effector CD8 +
 cells. 

.2. Parameter definition and estimation 

Realistic parameter ranges for model simulations were esti-

ated from published experimental and clinical data, as summa-

ized in Table 1 . 

The following paragraphs describe the parameter estimation

ethods in more detail. 

.2.1. αA and b: activation of antigen presenting cells (APCs) by 

umor cells 

These two parameters are related to activation of APCs by tu-

or cells. For their estimation we considered dendritic cells (DCs)

olely, since they constitute the majority of APCs and play the main

ole in CD8 + T cells activation. Activation rate of functional DCs

epends on the immunogenicity of the tumor, in terms of anti-

en availability, as well as DCs maturation, determined here by

igration rate DCs into the Lymph Nodes (LNs). The level of anti-

en, which varies among patients, is proportional to the number of

ntigen-expressing melanoma cells. 

Both αA and b were estimated from co-culture experiments of

Cs with irradiated melanoma cells ( Barrio et al., 2012 ; Von Euw

t al., 2007 ). The relation of these parameters to DCs activation is

erived from Eq. (1a): 

dA 

dt 
≈ % phago · % migration · A 0 

�t 
≈ αA ·

M 0 

M o + b 
. (2)

The variables A 0 and M 0 denote the number of co-cultured

PCs and melanoma cells, respectively. The variable M 0 is the

umber of melanoma cells, which is held constant for simplicity,

 phago denotes the calculated rate of melanoma cells phagocyto-

is by APCs, % migration is migration rate of APCs from the skin to

Ns, which is assumed as an indicator of APCs maturation, and es-

imated around 2% ( de Vries et al., 2003 ; de Vries et al., 2005 ).

astly, �t is the duration of the co-culture experiment. 

The co-culture results of human melanoma cell lines with APCs

rom healthy donors are summarized in Table 2 . 

Substitution of the data in into Eq. (2) yields 

A = 1 . 161 · 10 

3 − 2 · 986 · 10 

3 

[
cel l s 

d 

]
, 

b = 3 . 704 · 10 

4 − 1 · 476 · 10 

5 [ cel l s ] . (3)

For the model analysis we used the average value of b , which is

.233 × 10 4 cells. 
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Table 1 

Estimated parameter values. 

Model parameter Definition Estimated value/range Units Source 

αA Activation rate of APCs 1.161 × 10 3 –2.986 × 10 3 cells/d ( Barrio et al., 2012 ; 

Von Euw et al., 2007 ) 

b Number of tumor cells, required for reaching half of the maximal APC 

activation rate 

3.704 × 10 4 –1.476 × 10 5 Cells ( Barrio et al., 2012 ; 

Von Euw et al., 2007 ; 

Lee et al., 2007 ) 

μA Death rate of APCs 0.2310 d −1 ( Kamath et al., 2000 ) 

αe Activation rate of naïve antigen-specific CD8 + T cells 0.8318 d −1 ( Bossi et al., 2013 ) 

μe Death rate of Effector CD8 + T cells 0.1777 d −1 ( Taylor et al., 1999 ) 

γ mel Net growth rate of tumor cells 0.003269–0.08664 d −1 ( Carlson, 2003 ) 

υmel Innate death rate of tumor cells by effector CD8 + T cells 0.1245 d −1 ( Kuznetsov, 1990 ; 

Kuznetsov et al., 1992 ; 

Kuznetsov et al., 1994 ) 

g Number of tumor cells, at which the elimination rate reaches half of its 

maximal value 

2.019 × 10 7 –1 •10 8 cells ( Kronik et al., 2010 ; 

Kuznetsov et al., 1994 ) 

Table 2 

Experimental results of human APCs and melanoma cells co-culture. The parameters are defined 

under Eq. (2) . (a) Estimated number of cells. (b) The experiment was performed in wells, con- 

taining 3 × 10 5 /ml DCs. The volume of each well was 3.5 ml. (c) Mostly MART-1 + melanoma 

cells. 

A 0 : M 0 ratio A 0 [ cells ] M 0 [ cells ] % phago �t [ d ] Reference 

3:1 1 × 10 5 (a) 3.33 × 10 4 55 2 ( Von Euw et al., 2007 ) 

3:1 1.05 × 10 6 (b) 3.5 × 10 5 (c) 10–20 2 ( Barrio et al., 2012 ) 
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.2.2. μA : death rate of APCs 

The death rate of DCs was estimated from the half-life time of

plenic murine DCs, which is three days ( Kamath et al., 20 0 0 ). Ac-

ordingly, μA = 

ln (2) 
3 = 0 . 2310 d −1 . 

.2.3. αe : activation rate of antigen-specific CD8 + T cells 

According to ( Bossi et al., 2013 ), the half-life of binding between

 T cell and its conjugant epitope on an APC is 20 h. This corre-

ponds to an activation rate αe = 

ln (2) 
20 
24 

= 0 . 8318 d 

−1 . 

.2.4. μe : exhaustion rate of effector CD8 + T cells 

We calculated the exhaustion rate of effector CD8 + T cells from

heir half-life time, τ : μe = 

ln (2) 
τ . 
ig. 1. A simple model for the dynamics of the melanoma tumor (red-mustard), the ce

nhibitor (ICI; green). The model is based on the following assumptions: tumor cells s

mmunogenicity; functional APCs activate Effector CD8 + T cells (mustard; right), which m

ILs become exhausted, independently of tumor cell elimination; tumor growth is deter

ILs. Treatment by ICI prolongs activation of effector TILs, and reduces their exhaustion. 

nteractions between them (see box). 
Our estimation of the half-life time is based on experimental

xamination of different immunogens as triggers for the T cell ac-

ivation. We assume that the influence of the immunogen nature

n T cells life span is negligible. Taylor et al. (1999) estimated a

ifetime of 3.9 days for effector T cells in peripheral blood of pa-

ients with human T-cell leukemia virus type 1 (HTLV-1). This cor-

esponds to an exhaustion rate of μe = 0 . 1777 d −1 . 

.2.5. γ mel : net growth rate of tumor cells 

In our model, we assume an exponential cancer growth

Eq. (1c)). γ mel is calculated from the doubling time of

elanoma metastasis: γmel = 

ln (2) 
�t 

, where �t is the doubling time.

arlson (2003) estimated the tumor doubling time from clinical
llular immune system (APCs and Effector CD8+ TILs), and the immune checkpoint 

timulate antigen-presenting cells (APCs; mustard, left), depending on the tumor 

ay infiltrate into the tumor and eliminate tumor cells (TILs, right); Effector CD8 + 

mined by its net growth rate and by the rate of its destruction by Effector CD8 + 

Ellipses represent the dynamic variables of the model, while arrows represent the 
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Table 3 

Numerical description of the phase planes shown in Fig. 6 . 

Figure Value of the changed parameter ∗ Range of initial number of tumor cells ( M 

0 ) Initial number of immune cells (perturbation from a quasi-steady state) ∗∗

(a) - 10–10 9 1 

(b) αe = 0 . 8318 · 557 . 22 d −1 ∗∗∗ 10 4 –10 8 (0.5, 2.5) 

(c) αe = 0 . 8318 · 10 3 [ d −1 ] 10 4 –10 9 (0.5, 1.9) 

(d) μe = 0 . 1777 · 10 −3 [ d −1 ] 10 4 –10 8 1 

(e) γmel = 0 . 0449 · 10 −3 [ d −1 ] 10 4 –10 9 (0.5, 1.5) 

∗ Relative to the reference value from Table 1 . 
∗∗ The initial conditions of immune cells were calculated according to Eq. (5) , by assuming that the number of immune cells adjusts itself rapidly to any change in the 

number of tumor cells. In order to determine the dynamic patterns over a larger range of initial conditions, we perturbed the initial number of cells from the ones calculated 

in Eq. (5) by multiplying all the immune cells by a constant, specified here for each subfigure in Fig. 6 . 
∗∗∗ This value for αe satisfies the condition for a single FP αe · ( νmel ·αA 

γmel ·μe ·μA 
) = b + g + 2 ·

√ 

b · g (see Eq. (13) ). 
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data of three patients as �t = 8 − 212 d. The corresponding growth

rate is 0.003269 < γ mel < 0.086643. This is a few orders smaller

than the tumor growth rate calculated from ex vivo murine mod-

els. In addition, ( Joseph et al., 1971 ) measured an average dou-

bling time of 32 days in three patients with pulmonary melanoma

metastasis. The resulting tumor growth rate is γmel < 0 . 02166 d −1 .

For the model analysis we took the average tumor growth rate of

0 . 04496 d −1 . 

2.2.6. g: Michaelis–Menten constant of effector-tumor cells 

interaction 

We adapted the value g = 2 . 019 · 10 7 cel l s from

( Kuznetsov, 1990 ; Kuznetsov et al., 1992 ; Kuznetsov et al., 1994 ),

based on BCL-1 lymphoma cells transplanted in spleens of

chimeric mice, and ( Kronik et al., 2008 ) who estimated a value

of g = 10 8 cel l s . For the model analysis we considered the average

value of g = 6 . 01 · 10 7 cel l s . 

2.3. Software 

Numerical analyses and simulations were performed using

the ode15s Runge-Kutta ODE solver of Matlab R2016a (The

Mathsworks, UK). 

3. Results 

3.1. Defining a biologically relevant domain for model analysis 

Asymptotic solutions for the system defined in Eq. (1) are of

interest, since they indicate the potential fates of the system. For

example, a positive, steadily growing number of cancer cells over

time suggests inability to cure the disease. Additional potential so-

lutions include, for instance, a decrease in the number of tumor

cells down to a constant amount, indicating shrinkage and tumor

stabilization thereafter. Further solutions may present oscillations

that might indicate alternating periods of tumor shrinkage and

growth. 

Assuming A ( t 0 ) ≥ 0, T ( t 0 ) ≥ 0, M ( t 0 ) ≥ 0, solutions for Eq. (1) exist

for any t > t 0 , and the domain defined by: 

0 ≤ A ≤ αA 

μA 

, 

0 ≤ T ≤ αe · αA 

μe · μA 

, 

0 ≤ M. (4)

is invariant (i.e., if a trajectory has initial values inside this domain,

it will remain there). To see this, note that from Eq. (1) we have

the following two differential inequalities 

−μA · A ≤ dA ≤ αA − μA · A, 

dt a
−μe · T ≤ dT 

dt 
≤ αe · A − μe · T . 

From the former, by the comparison theorem for ODEs it fol-

ows that A ( t ) is bounded from above and below by the trajec-

ories of the equations ˙ x = −μA · x and ˙ x = αA − μA · x , with the

ame initial value, correspondingly. Hence, if A ( t 0 ) ∈ [ 0 , 
αA 
μA 

] , then

or each t > t 0 , A (t) ∈ [ 0 , 
αA 
μA 

] . Similar reasoning, taking into account

he bounds obtained for A ( t ) gives the bounds for T ( t ). Finally, we

ave ˙ M ≥ ( γmel − νmel · T ) · M, from which it follows by comparison

hat if M ( t 0 ) ≥ 0, then M ( t ) ≥ 0 for any t ≥ t 0 . 

In the following, we limit the analysis to the biologically rele-

ant domain, defined in Eq. (4) , additionally assuming that all sys-

em parameters are positive. 

.2. Multiple steady states and their stability analysis 

Theoretical and numerical analysis of the model enables to de-

ermine the number of steady states in the system, and the con-

itions for their stability, as well as to identify the critical bifurca-

ion points. The steady states and the critical bifurcation points can

inpoint parameter ranges for which treatment with ICIs can turn

ersistent tumor growth in an untreated host into conditions un-

er which the immune system can control the disease. We there-

ore determined the fixed points (FPs) in Eq. (1) by nullifying the

erivatives and solving the resulting algebraic system, obtaining

ne trivial solution, for M 

∗ = 0 and two non-trivial solutions, for

 

∗ > 0: 

A = 

αA 

μA 

· M 

M + b 
, 

T = 

αe 

μe 
· A, 

M · [ γmel · ( M + g ) − νmel · T ] = 0 . (5)

.2.1. Immune cells are not activated in a tumor-free state 

In order to analyze the tumor dynamics around the trivial

teady state, we determined the stability of the associated steady

tate solution of Eq. (1) . Substituting M = 0 in Eq. (5) reflects the

ase of a tumor-free host. This yields the FP ( A 

∗, T ∗, M 

∗) = ( 0 , 0 , 0 ) ,

hich indicates correctly that for this condition tumor-specific im-

une cells are not activated. 

The Jacobi matrix of this FP is: 
 −μA 0 

αA 

b 
αe −μe 0 

0 0 γmel 

) 

The characteristic polynomial of this matrix is: 

 ( λ) = ( μA + λ) · ( μe + λ) · ( −γmel + λ) . (6)

The eigenvalues of the Jacobi matrix are ( −μA , −μe , γmel ) . Since

ot all real parts of the matrix are negative, the FP ( A 

∗, T ∗, M 

∗) =
( 0 , 0 , 0 ) is unstable. From this we conclude that if a tumor exists

t time zero in the model, namely M (0) > 0, it will not disappear,

nd, plausibly, the number of tumor cells will diverge from zero. 
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.2.2. Steady states in a tumor-positive scenario can indicate disease 

rogression or treatment efficacy 

Next we studied the conditions under which steady states of

he system can be identified in the presence of tumor. A steady

tate solution can be obtained by solving Eq. (5) for M � = 0. Sub-

titution of the expression for T in the expression for M in Eq.

5) yields 

 = 

νmel 

γmel 

· αe 

μe 
· αA 

μA 

· M 

M + b 
− g. (7) 

By defining K̄ ≡ νmel ·αe ·αA 
γmel ·μe ·μA 

for convenience, Eq. (7) becomes 

 

2 + 

(
b + g − K̄ 

)
· M + b · g = 0 . (8)

The parameter K̄ represents the ratio between the efficacy of

he immune response and the tumor growth capacity. Solving Eq.

8) yields M at steady state, M 

∗: 

 

∗ = 

K̄ − ( b + g ) ±
√ (

b + g − K̄ 

)2 − 4 b · g 

2 

≡ M 

±. (9) 

The two roots M 

± represent two different FP values for the

umber of cancer cells. The number of immune cells in steady

tate are obtained from substitution of Eq. (9) in Eq. (5) : 

a ) A 

∗ = 

αA 

μA 

· M 

±

M 

± + b 
≡ A 

±, 

b ) T ∗ = 

αe 

μe 
· A 

±. (10) 

Depending on the value of K̄ , Eq. (8) can have zero, one or two

eal positive solutions. A necessary condition on K̄ , for Eq. (8) to

ave real positive roots is given by 

¯
 > ( b + g ) . (11) 

By nullifying the discriminant of M 

∗ in Eq. (9) , we obtain the

ondition on K̄ for a single root, that is, a single FP: 

¯
 1 , 2 = b + g ± 2 

√ 

b · g = 

(√ 

b ± √ 

g 

)2 

. (12)

K̄ 1 , 2 are the values of K̄ , which correspond to a single FP. 

The system in Eq. (1) has one real positive FP (PFP), when con-

itions (11) and (12) are satisfied i.e., when 

¯
 = 

(√ 

b + 

√ 

g 

)2 

. (13) 

The discriminant in Eq. (9) is positive when K̄ < ( 
√ 

b − √ 

g ) 2 , or
¯
 > ( 

√ 

b + 

√ 

g ) 2 . Together with the positivity condition in Eq. (11) ,

q. (8) has two real positive roots, that is, two PFPs, when: 

¯
 > 

(√ 

b + 

√ 

g 

)2 

. (14) 

From this we conclude that different values of K̄ impose differ-

nt stability patterns on the system, including a possible saddle-

ode bifurcation, when two FPs collide and disappear. To visualize

his, we rewrite Eq. (8) in the form 

( M + b ) · ( M + g ) = K̄ · M. (15) 

The left-hand side (l.h.s.) of Eq. (15) is a parabola and its r.h.s.

s a straight line. In Fig. 2 , both sides of Eq. (15) are plotted against

ach other for different parameter values. Intersections of the lines

ark the FPs, and their number depends on the values of K̄ , b

nd g . For K̄ > ( 
√ 

b + 

√ 

g ) 2 , the lines intersect twice on M > 0, re-

ulting in two PFPs (dashed line). As K̄ decreases, the intersec-

ions approach each other, until they collide when K̄ = ( 
√ 

b + 

√ 

g ) 2 

grey solid line). The corresponding system has a single FP. For
¯
 < ( 

√ 

b + 

√ 

g ) 2 , the lines in Eq. (15) do not intersect on M > 0 and

herefore Eq. (8) has no positive solutions (dashed-dotted line). 

The value of K̄ for which the system has a single FP (see Eq.

13) ), is K̄ ≈ 6 . 5 · 10 7 cells ( Table 1 ). As demonstrated in Fig. 3 , for

maller K̄ , no PFPs exist, and as will be shown late, the correspond-

ng tumors grow uncontrollably. For larger values of K̄ , the system

as two PFPs, biologically corresponding to tumor shrinkage or dis-

ase stabilization, due to immune control, i.e. , by ICI treatments. 

.2.3. Tumor PFPs can be locally stable under increased activation or 

educed exhaustion rates of CD8 + T cells, and when the tumor 

rowth rate is low 

To learn about the stability properties of the PFPs of Eq. (1) , we

rst studied their local stability. This included calculation of the

igenvalues of the Jacobi matrix of the system, as shown below: 

 

 

−μA 0 

αA ·b 
( M 

∗+ b ) 2 
αe −μe 0 

0 − νmel ·M 

∗
M 

∗+ g γmel − νmel ·T ∗·g 
( M 

∗+ g ) 2 

⎞ 

⎠ 

Note that this matrix depends on the steady state values: ( A 

∗,

 

∗, M 

∗). 

The determinant of ˆ J − λˆ I is a 3 rd order characteristic polyno-

ial: 

 ( λ) = ( μA + λ) · ( μe + λ) ·
[
νmel · g · T ∗

( M 

∗ + g ) 
2 

− γmel + λ

]

+ αA · αe · νmel ·
b 

( M 

∗ + b ) 
2 

· M 

∗

M 

∗ + g 
. (16) 

By defining �̄1 ≡ γmel − νmel ·g·T ∗
( M 

∗+ g ) 2 and �̄2 ≡ αA · αe · νmel ·
b 

( M 

∗+ b ) 2 ·
M 

∗
M 

∗+ g , Eq. (16) becomes 

 ( λ) = ( λ + μA ) · ( λ + μe ) ·
(
λ − �̄1 

)
+ �̄2 . (17) 

Further simplification of �̄1 and �̄2 is achieved by substituting

 

∗ from Eq. (5b), K̄ , and Eq. (15) into Eq. (17) : 

a ) �̄1 = γmel · M 

∗
M 

∗+ g , 
b ) �̄2 = γmel · μA · μe · b 

M 

∗+ b . 
(18) 

The values of �̄1 and �̄2 are limited to the following ranges

 Eq. (19) ), considering that M 

∗ ≥ 0 ( Eq. (4) ). 

a ) 0 < �̄1 < γmel , 

b ) 0 < �̄2 < γmel · μe · μA . 
(19) 

A FP is locally asymptotically stable (LAS) if all the real parts

f its corresponding eigenvalues are negative. To study the signs of

he real parts, we graphically analyzed Eq. (17) for different values

f �̄1 and �̄2 ( Fig. 4 ). 

laim 1. Given that all the eigenvalues of a PFP of Eq. (1) are real,

here exists �̄2 crit 
such that this point is LAS if 

a ) �̄2 > �̄2 crit 
, 

b ) 
dP 

(
λ, �̄2 = 0 

)
dλ

∣∣∣∣∣
λ=0 

> 0 . (20) 

Proof of Claim 1 . To prove sufficiency, assume that Eq. (20b)

olds. When �̄2 = 0 , all the roots of the polynomial in Eq. (17) are

eal. As shown in Fig. 4 a, the largest zero is positive and the rest

re negative. A positive value of �̄2 shifts the polynomial graph

pwards, leading to a decrease in the value of the largest root,

ntil it changes sign ( Fig. 4 b). As a result, the corresponding FP

ecomes LAS. The critical value of �̄ , at which the largest root
2 
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Fig. 2. Existence and number of PFPs depends on the value of K̄ . This Fig. is a graphical analysis of Eq. (15) . The black solid curve represents the left-hand side (l.h.s.) of the 

equation, the others represent the right-hand side (r.h.s.) of Eq. (15) for different values of K̄ . The arrows mark the intersections between the r.h.s. and l.h.s. of Eq. (15) . The 

grey solid line demonstrates the case of a single tangential intersection of the equation sides (for K̄ = ( 
√ 

b + 

√ 

g ) 2 ). This corresponds to a single solution, i.e., one PFP. If the 

r.h.s. line has a steeper slope than the grey solid line, two intersections are obtained, and the system has two PFPs. In case the r.h.s. line has a lower slope than the grey 

line (dashed-dotted line), the system has no PFPs. 

Fig. 3. Bifurcation diagram displaying positive steady states of the Eq. (1) . The number of cancer cells in steady state ( M 

∗
el 

) is plotted versus the parameter K̄ ≡ νmel ·αe ·αA 

γmel ·μe ·μA 
. 

As shown in Fig. 2 , the number of FPs depends on the value of K̄ . Under the estimated parameters in Table 1 and according to Eq. (13) , the system has a single PFP when 

K̄ ≈ 6 . 5 · 10 7 cel l s , with M 

∗
el 

= 2 . 35 · 10 6 cel l s (marked by a black circle). When the value of K̄ is below this threshold, the system has no PFPs, resulting in an uncontrollable 

tumor growth. Otherwise, when the value of K̄ is above the threshold, the system has two PFPs, denoted by M 

+ and M 

− ( Eq. (9) ). 

 

 

�  

 

F  

z  
changes sign, is defined by the intersection of the characteristic

polynomial with λ = 0 

P 

(
λ = 0 , �̄2 = �̄2 crit 

)
= 0 . (21)
Substitution of Eq. (17) in Eq. (21) yields 

¯
2 crit 

= μA · μe · �̄1 . (22)

To prove necessity, assume that Eq. (20) is violated. As shown in

ig. 4 c, when 

dP( λ, ̄�2 =0 ) 
dλ

| λ=0 < 0 and �̄2 = 0 the largest polynomial

ero is positive and the rest are negative, similarly to the condition



N. Tsur, Y. Kogan and M. Rehm et al. / Journal of Theoretical Biology 485 (2020) 110033 7 

Fig. 4. Negativity of the real parts of the zeros of P ( λ) from Eq. (17) depends on its slope at λ = 0 , and the values of �̄1 and �̄2 ( Eq. (18) ). The circles represent the zeros, λ
of P( λ, �̄2 = 0 ) . The largest zero is λ = �̄1 . a, c, and e show three different types of polynomials which satisfy �̄1 > 0 , according to Eq. (19) , and �̄2 = 0 . These polynomials 

have two negative and one positive zeros. b, d, and f demonstrate a sign change of one of the zeros of P ( λ) in (4a), (4c), and (4e), respectively, when �̄2 increases. First, the 

polynomial in (4a) intersects λ = 0 on the right side of its local minimum, thus satisfying dP (λ) 
dλ

| λ=0 > 0 . If �̄2 > 0 the largest zero approaches the origin until it becomes 

negative for �̄2 ≥ �̄2 crit 
(4b). In this case, all zeros have negative real parts and therefore the corresponding FP is stable. In contrast, if the intersection of P ( λ) with λ = 0 

lies left of the local minimum, as shown in (4c), and if �̄2 > 0 , the second large zero changes sign from negative to positive (4d). Hence, either one or two zeros have a 

positive real part and therefore the corresponding FP is unstable. Lastly, zeros can become complex, as shown in (4e) and (4f). Consider for instance the local minimum on 

λ = λ′ , shown in (4e). For �̄2 = λ′ the two closest zeros to the minimum coincide and become a complex conjugate for �̄2 > λ′ , as shown in (4f). Sign determination of 

their real part is graphically not possible and further analytical and numerical calculations are required (see also Section 3.2.1 ). 
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r  

r
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t  
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f  

y

M

n Fig. 4 a. A larger value of �̄2 shifts the polynomial upwards, but

ere the largest zero remains positive and the second biggest one

ecomes positive ( Fig. 4 d). Together, both conditions in Eq. (20) are

herefore necessary and sufficient for local stability of a PFP with

orresponding real eigenvalues. �
We next determined the parameter ranges for which Eq. (20b)

s satisfied, in order to express the stability conditions in terms of

he parameter space. We differentiate Eq. (17) and substitute λ = 0 ,

s follows 

dP 
(
λ, �̄2 = 0 

)
dλ

∣∣∣∣∣
λ=0 

= μA · μe − �̄1 · ( μA + μe ) . (23) 

Thus, the second necessary parametric condition for stability of

 PFP is 

¯
1 < 

μA · μe 

μA + μe 
. (24) 

Under the estimated parameter values from Table 1 , the r.h.s

f Eq. (24) equals about 10 d 

−1 , and the value of �̄1 is about 0.05

 

−1 . Since according to Eq. (19a), the maximum value of �̄ is γ
1 mel 
0.08664 d 

−1 ), Eq. (24) always holds, and thereby the stability con-

ition in Eq. (20b) is always satisfied in the parameter ranges in

able 1 . In conclusion, increase in the activation rate of CD8 T cells,

eduction of their exhaustion rate, as well as low tumor growth

ates enables stability of the corresponding PFP. 

laim 2. If a pair of PFPs of Eq. (1) has only real eigenvalues and if

he condition in Eq. (20b) is satisfied, the larger PFP (with a larger

alue of M 

∗) is always unstable and the smaller one is always LAS.

Proof of Claim 2. Substitution of �̄1 , �̄2 , and �̄2 crit 
expressions

rom Eqs. (18) and (22) in the first necessary condition (Eq. (20a))

ields 

b 

M 

∗ + b 
> 

M 

∗

M 

∗ + g 
. (25) 

Simplifying it we get 

 

∗2 
< bg. (26) 
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+ ( μA + μe ) · �1 · �1 − 1 > 0 (38) 
Substitution of M 

∗2 from Eq. (8) in Eq. (26) yields 

M 

∗ < − 2 bg 

b + g − K̄ 

. (27)

In order to determine the stability of each FP in a system with

two FPs, we substitute M 

∗ from Eq. (9) into Eq. (27) : 

±
√ (

b + g − K̄ 

)2 − 4 b · g < − 4 b · g 

b + g − K̄ 

− K̄ + ( b + g ) . (28)

The r.h.s of Eq. (28) can be written as: 

− 4 b · g 

b + g − K̄ 

− K̄ + ( b + g ) = 

(
b + g − K̄ 

)2 − 4 b · g 

b + g − K̄ 

. (29)

Substitution of Eq. (29) into Eq. (28) yields: 

±
√ (

b + g − K̄ 

)2 − 4 b · g < 

(
b + g − K̄ 

)2 − 4 b · g 

b + g − K̄ 

. (30)

According to Eq. (14) , the r.h.s of Eq. (30) is negative, and there-

fore this inequality is never satisfied for a plus sign in the l.h.s.

Therefore, the necessary condition in Eq. (20a) does not hold for

the larger PFP, M 

+ , indicating that it is always unstable. 

For the lower PFP, M 

−, we multiply both sides of Eq. (30) with

−1 and square it: 

1 > 1 − 4 b · g (
b + g − K̄ 

)2 
. (31)

According to Eq. (31) , the necessary condition in Eq. (20a) is al-

ways satisfied for M 

−. Thus, if the second necessary condition in

Eq. (20b) is satisfied always for M 

−, the corresponding PFP is al-

ways stable. This claim implies that stability of the tumor depends

on its size, and that large tumors are less likely to be stable. �

3.2.4. PFPs with complex eigenvalues are unstable in a treatment-

free scenario but can be stable under ICI-increased immune efficacy.

Both stability conditions described by Eq. (20) relate to the case

in which all zeros of the characteristic polynomial are real. How-

ever, the zeros can also be complex, with positive or negative real

parts. We determined the parametric conditions for negativity of

the real parts of complex zeros. As shown in Fig. 4 e and Fig. 4 f,

two neighboring zeros can collide, subsequently becoming a con-

jugate complex pair (when �̄2 becomes larger than the local min-

imum value of the characteristic polynomial with �̄2 = 0 , which

lies between these zeros; marked by λ′ in Fig. 4 e). Due to the con-

tinuity of root values in the polynomial coefficients, and since the

condition in Eq. (20b) is always satisfied under the estimated pa-

rameter values, when the conjugate complex pair is close to λ′ , its
real parts are negative. However, for certain parameter values the

real parts may change sign, namely, the system undergoes Hopf

bifurcation ( Hassard et al., 1981 ). The biological meaning of this is

that tumors, whose system parameters correspond to negative real

parts of all the eigenvalues of the Jacobi matrix, can be stabilized,

while tumors, whose eigenvalues in the corresponding mathemat-

ical system have positive real parts, are unstable. 

Since an explicit solution of the characteristic polynomial in its

general form is hard to obtain, determination of the sign of the

real part of the zeros is not always possible. Therefore, derivation

of the stability conditions in this case requires further analysis, for

example, by the application of the Hurwitz-Routh stability crite-

rion ( Brauer and Nohel, 2012 ; Yang, 2002 ; Liu, 1994 ; Douskos and

Markellos, 2015 ) and numerical calculation of the eigenvalues of

the Jacobi matrix. Here, we analytically determined the conditions

for a Hopf bifurcation in the system at hand. 

Consider a general form of a 3rd order characteristic polynomial

with one negative real zero λ = −λ0 , where λ0 > 0, and one conju-

gate pair of complex zeros λ1 ± i ω 1 , where ω 1 > 0. The correspond-

ing system undergoes a Hopf bifurcation when the real parts of the
wo corresponding zeros are simultaneously zeroed, that is λ1 = 0 .

he general form of the characteristic polynomial is then: 

( λ + i ω 1 ) · ( λ − i ω 1 ) · ( λ + λ0 ) = 0 . (32)

Opening parenthesis yields: 

3 + λ2 · λ0 + λ · ω 1 
2 + λ0 · ω 1 

2 = 0 . (33)

The necessary conditions for a Hopf bifurcation are deduced

rom the conditions on the polynomial coefficients ( b i ): 

b 0 = λ0 · ω 1 
2 > 0 , 

 1 = ω 1 
2 > 0 , 

 2 = λ0 > 0 , 

 3 = 1 . (34)

According to Eq. (34) , a Hopf bifurcation exists in our system

hen all the coefficients of the characteristic polynomial in Eq.

17) are positive. 

These coefficients are summarized here: 

b 0 = �̄2 − �̄2 crit 
, 

 1 = μA · μe − �̄1 · ( μA + μe ) , 

 2 = μA + μe − �̄1 , 

 3 = 1 . (35)

The first and second coefficients in Eq. (35) are positive when

qs. (20a) and (20b) are satisfied. Positivity determination of b 2 
nder consideration that �̄1 > 0 yields the remaining condition for

 Hopf bifurcation: 

b 2 = μA + μe − �̄1 > 0 , or 

¯
1 < μA + μe . (36)

Under realistic assumptions on the immune system’s parame-

ers (see Table 1 ), μA + μe is approximately 0.4 d 

−1 . Since accord-

ng to Eq. (19a), the maximum value of �̄1 is γmel ≈ 0 . 004 d −1 ,

q. (36) is always satisfied, and therefore a Hopf bifurcation takes

lace for all parameter values. Significant reduction of the exhaus-

ion rates, namely μA , and μe , for example under treatment with

CI, can violate Eq. (36) , and impose stability on the corresponding

FP, as well as the tumor size. 

The condition we deduced in above is a consequence of the

uth Horowitz criterion. The corresponding Routh array of the

olynomial is: 

b 3 b 1 0 

b 2 b 0 0 
b 1 ·b 2 −b 0 ·b 3 

b 2 
0 0 

b 0 0 0 

According to the Routh Horowitz criterion for stability of the

orresponding FP, b i > 0 must hold, as well as that all the terms

n the left column of the Routh array must be positive. Here, the

rst, second, and fourth terms are positive. Substituting b 3 = 1 in

he third term yields 
b 1 ·b 2 −b 0 

b 2 
. In the polynomial of Eq. (33) , the

eal parts of the complex roots are zero, and therefore 
b 1 ·b 2 −b 0 

b 2 
=

 , namely b 1 · b 2 = b 0 , and the complex roots are λ = ±i 
√ 

b 1 . The

ondition of stability of the corresponding FP is 

 1 · b 2 − b 0 > 0 (37)

Substituting b i from Eq. (35) yields 

μA · μe ·
(

μA + μe − γmel ·
b 

M + b 
− 2 · �̄1 

)
¯

(
¯

)
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Fig. 5. Summary of the local stability analysis of systems with two PFPs. The parameters αe , μe , and γmel stand for the activation rate of CD8 + T cells, their exhaustion rate, 

and the tumor growth rate, respectively. The coefficients �̄2 , �̄2 crit 
, and the function P ( λ) are defined in Eqs. (17) , (18) , and (22) . 
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.3. Stability of PFPs is linked to a small tumor burden and an en-

anced activation of CD8 + T cells. For a better understanding of

he local stability patterns, we numerically calculated FPs and the

orresponding eigenvalues for 62,500 parameter sets. In each set,

e modified the values of αe , and μe , specified in Table 1 , from

 to 90 0 0 fold, and 1/90 0 0 to 1 fold, respectively. We chose to

ocus on changes in αe , and μe due to their direct effect on the

umber of CD8 + T cells in the host. We also examined the effect

f the tumor growth rate on the local stability of the FPs by re-

eating the above numerical analysis for both the minimal and the

aximal estimated value of γ mel in Table 1 . The rest of the param-

ters remained unchanged from their reference values in Table 1 .

or each parameter set we determined the stability of each cor-

esponding FP by numerical calculation of the eigenvalues of Eq.

17) . We recorded an FP as locally asymptotically stable, if all real

arts of its corresponding eigenvalues were negative. Otherwise,

e flagged the FP as unstable. The results of these computations,

re listed below (see also Fig. 5 ). 

1. In a system with two PFPs, the larger PFP is unstable over

the whole range of αe , μe , and γmel . The numerical anal-

ysis indicated that the two PFPs have a single real-positive

eigenvalue over the examined range of αpri , μe , and γ mel .

The rest of the eigenvalues can be real or complex, all hav-

ing negative real parts (not shown). 

2. Increase in the activation rate of CD8 + T cells, αe , leads

to local stability of the smaller PFP, while reduction in

the exhaustion rate of CD8 + cells, μe , leads to local insta-

bility. Under the minimal and maximal values of γ mel from

Table 1 , locally stable FPs are associated with low values of

μe , and relatively large values of αe . In addition, the FPs un-

der the minimal value of γ mel have higher stability when

compared to those under the maximal value of γ mel . 

3. Instability of the smaller PFP in a system with two PFPs

is due to positive real parts of a single conjugate pair of

complex eigenvalues. 

All analyzed unstable FPs have positive real parts of only com-

lex eigenvalues. 

Fig. 5 summarizes the results of both the theoretical and the 

umerical local stability analyses. One can see in this summary

hat the larger PFP is always unstable, while the smaller one is un-

table only when the corresponding Jacobi matrix has two complex

igenvalues with real parts, which change sign due to Hopf bifur-

ation. 
.4. Phase-plane analysis emphasizes the role of the initial tumor 

urden in converging towards a stable PFP, and reveals oscillations 

round an unstable PFP 

We next studied the global dynamics of the system by a phase-

lane analysis, in order to study the dynamics of the cell popula-

ions away from the PFPs. To this end, we plotted the time course

f the values of the two most relevant variables, effector CD8 +
 cells ( T ) and tumor cells ( M ), versus each other. Representative

hase portraits of the system, having zero, one, or two FPs are

hown and explained in the following paragraphs. The simulation

esults are summarized in Fig. 6 . 

No PFPs 

Under the estimated parameters from Table 1 , the system has

o PFPs. As shown in Fig. 6 a, the number of tumor cells in this

ase grows uncontrollably, while the number of effector CD8 + T

ells eventually reaches saturation. 

A single PFP 

As previously shown in Figs. 2 and 3 , for certain parameter val-

es, the condition in Eq. (13) is satisfied and the system has a sin-

le PFP. In the particular phase portrait shown in Fig. 6 b, the ob-

ained FP is a saddle node, which refers to a consolidation of a sta-

le and an unstable FP. The part of this phase portrait, for which

he initial number of tumor cells is less than 5 × 10 6 , constitutes

he basin of attraction. All trajectories, beginning inside this basin

f attraction, converge to the FP, while all trajectories beginning

ith a larger number of tumor cells diverge away from this point.

he biological implication of this is that tumors with initially less

han 5 × 10 6 cells will stabilize. 

Two PFPs 

Depending on the parameter values, the system can have two

FPs. Exemplary phase portraits of such systems are shown in Fig.

 c–e. Each of these systems has different parameters, but the same

alue of K̄ and the same number of tumor cells in steady state.

e found that modification of αe , and μe can induce oscillatory

hanges in the number of tumor cells. First, as shown in Fig. 6 c,

ncreasing the activation rates of CD8 + T cells generates a locally

table PFP and an unstable PFP. If the initial size of the tumor cell

opulation is located within the basin of attraction of the smaller

FP, the number of tumor cells approaches this point with damped

scillations and the disease becomes stable. However, if the ini-

ial size of the tumor cell population is located outside the basin

f attraction, the corresponding trajectory escapes from the larger

FP, which results in an uncontrollable tumor growth and disease

rogression. Secondly, as shown in Fig. 6 d, reducing the exhaus-

ion rate of CD8 + T cells generates two PFPs. The number of tu-

or cells around the smaller FP undergoes increasing oscillations.
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Fig. 6. Phase plane analysis captures disease control for an initially low tumor burden. Here we show representative phase planes of the 3-dimensional system described in 

Eq. (1) , which are projected here on the effector CD8 + T cells (T) – melanoma cells (M) plane. The black curves represent trajectories of ( T ( t ), M ( t )) and the small circles mark 

the initial points of each curve. Arrows mark the direction of the trajectories. Big circles denote FPs, at which the number of cells remains constant with time. It separates 

between different dynamic patterns of the cell populations. Information on the parameter values and initial number of cells is summarized in Table 3 . a shows a phase 

portrait of a system with the parameter values estimated from the literature ( Table 1 ); no FPs have been identified, indicating tumor escape and its eventual uncontrollable 

growth. b shows a phase portrait of a system with a single FP, (thin frame with a zoom in in the thick frame). This point is marked by a black circle in Fig. 3 . Initially large 

tumors grow in size, while initially small tumors evolve to be limited by the immune system. As shown in (b), starting from initial number of about 10 7 tumor cells results 

in different fates of the tumor dynamics. Figure 6 c-e represent phase planes of different systems with two FPs, characterized by different parameter values. (c) Increased αe 

generates curved trajectories which tend to the lower FP. This indicates short oscillations (stable focus; thin frame with a zoom-in within the thick frame). Trajectories with 

the initial number of cancer cells larger than ∼5 × 10 6 escape from the larger FP (unstable focus; thin frame with a zoom in in the thick frame). (d) Reduced value of μe 

leads to spiral trajectories, spiraling away from a FP, which indicates growing oscillations. Interestingly, trajectories, which begin close to this FP (thin frame) are attracted 

to it, as zoomed in the thick frame. (e) Reduced value of γmel results in a non-oscillatory dynamics, such that trajectories, which begin with initially small number of tumor 

cells converge into a smaller stable focus and trajectories (lower thin frame with a zoom in in the lower thick frame), which begin with a larger number of tumor cells 

escape from a larger unstable focus (upper thin frame with a zoom in in the upper thick frame). 
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n some cases the amplitude is so large that the tumor will virtu-

lly disappear and then grow again, escaping from host immunity.

hen the initial number of cancer cells is close to the value at this

P, the system will eventually converge to this FP. When the initial

umber of cancer cells is close to the larger PFP, it will either es-

ape from it towards the smaller PFP or grow uncontrollably. Thus,

onsidering two similar sets of initial conditions, one mapping a

oint, located slightly above the larger PFP, and the other map-

ing a point, located slightly below this point, we note that each of

hese points evolves differently in time, corresponding to a differ-

nt disease fate. The evolution of the first set leads to temporary

hrinkage or tumor stability, while the evolution of the second set

eads to disease progression ( Fig. 6 d, magnified area). In addition

o the effects of the host immunity, reduction of the tumor growth

ate also leads to generation of PFPs in the system. As shown in

ig. 6 e, reducing the value of γ mel leads to a sharp, non-oscillatory

ecay in the number of tumor cells towards the smaller PFP, or es-

ape from the larger FP ( Fig. 6 e), depending on the initial number

f tumor cells. 

To better visualize the outcome of the model simulation for

ach steady state, we chose representative initial conditions around

he smaller PFP for each steady state shown in Fig. 6 c and d, and

lotted time series of the corresponding trajectories ( Fig. 7 ). It can

e seen that under a reduced exhaustion rate of CD8 + T cells, the

umor size oscillates around the smaller PFP. As the initial condi-

ions get closer to this FP, the frequency of the oscillations increase

 Fig. 7 b–d). Their amplitude decays and then stabilizes very close

o this FP, while increasing in trajectories that are further away

rom the smaller PFP. 

The dynamic patterns of tumor growth, shown in Fig. 7 , corre-

pond to different types of response to immunotherapy. We note in

ig. 7 a, that an increase in the activation rate of CD8 + T cells due

o treatment, stabilizes the tumor size within a period of a few

onths. The larger the activation rate gets, the smaller is the cor-

esponding tumor size at steady state, and the larger is the basin

f attraction of this stable FP. On the other hand, patients whose

herapy leads to significant reduction in death rates of immune

ells ( Fig. 7 b–d) can experience different disease fates, depending

n the ratio between the activation and the exhaustion rates of

D8 + T cells, as well as on the initial number of tumor cells, and

n the number of immune cells. For large ratios between the acti-

ation and the exhaustion rates of CD8 + T cells, the value of �̄2 is

arge enough for two neighboring polynomial zeros to coincide and

orm a complex-conjugate pair ( Fig. 4 e and f). This results in a pe-

iod of oscillatory tumor dynamics, followed by stability of tumor

ize or an uncontrollable growth. Under the initial number of tu-

or and immune cells lying in the closest trajectory to the smaller

P, the oscillations decay, leading to a stable tumor size ( Fig. 7 b).

n contrast, on a different trajectory, which starts further from this

P, the corresponding tumor size oscillates for a while, followed

y an uncontrollable growth ( Fig. 7 c). Away from a stable PFP, and

hen the initial number of CD8 + T cells is larger than its number

t steady state, the tumor shrinks considerably, only to reappear

fter about a decade ( Fig. 7 d). Taken together, these results sug-

est that when an immunotherapeutic intervention increases the

ctivation rate of effector cells, immunotherapy will lead to dis-

ase stabilization. In contrast, when immunotherapy relieves the

xhaustion of CD8 + T cells, the outcomes may vary from decaying

scillatory convergence, through a stable tumor size, to uncontrol-

able growth, depending on the initial conditions of the tumor and

mmune cells. 

. Discussion 

In this article we showed by mathematical modeling and anal-

sis within the bio-medically relevant parameter ranges, that the
atio between activation and exhaustion rates of CD8 + T cells can

etermine the outcomes of melanoma immunotherapy. Based on

ur results, we suggest to evaluate T cell activation and exhaustion

ates in individual patients for improving the prediction accuracy

f their response to treatment. 

Our theoretical and numerical analyses suggest that under re-

listic assumptions on tumor growth and immune efficacy in an

ntreated person, the cancer always evades the control of the im-

une system, and, indeed, spontaneous regression of melanoma is

arely observed ( Everson, 1964 ). However, our analysis also indi-

ates that under immunotherapy with ICI, which causes increased

ctivation or decreased mortality of effector CD8 + T cells, sta-

ilization of the tumor size is possible. Increased activation of

ffector CD8 + T cells has been clinically observed in response

o immunotherapy. For instance, vaccination of melanoma pa-

ients with a LAG-3 antibody resulted in enhanced proliferation of

umor-specific CD8 + T cells in 13 out of 16 patients ( Legat et al.,

016 ). Similar findings were made also in non-small-cell lung

ancer, with a proliferative burst of effector PD-1 + CD8 + T cells

bserved in 70% of the patients upon treatment with anti-PD-

 ( Kamphorst et al., 2017 ). Furthermore, analysis of melanoma

iopsies from 46 patients, before and during anti-PD-1 treatment

hows an increase in the proliferation of intra-tumor PD-1 + +CD8 +
 cells following treatment ( Tumeh et al., 2014 ). Association of

herapy outcomes with ICI-caused CD8 + T cell proliferation was

xamined in the clinical setting, observing enhanced and early

roliferation, mostly among responders ( Kamphorst et al., 2017 ;

umeh et al., 2014 ; Huang et al., 2017 ). However, samples from

ome responders did not show increased proliferation of CD8 + T

ells. Clearly, then, it is not sufficient to measure the activation rate

f CD8 + T cells for accurately predicting the ICI outcomes. Inte-

rating in the model also the impact of CD8 + T cells on the tumor

an improve the prediction accuracy of the personal response. 

Our results indicate that extended periods of disease stabil-

ty can result from increased activation of immune cells, while

scillatory tumor growth is induced by reduced exhaustion of

he immune cells, for example, due to immunotherapy. From this

nding we infer that immunotherapy by ICI could yield differ-

nt patterns of change in the disease burden. The amplitude of

he modeled oscillations is in the order of 10 6 cells. Consider-

ng that a tumor lesion with 1 cm diameter comprises about 10 9 

ells ( Del Monte, 2009 ), and that a lesion is confidently measur-

ble if its diameter is at least 1 cm ( Eisenhauer et al., 2009 ),

he oscillations are most likely averaged out in clinical size as-

essments. Still, small oscillations in the size of tumor and im-

une cells have been previously suggested. For example, Coven-

ry et al. ( Coventry et al., 2009 ) measured the levels of C-reactive

rotein (CRP) in patients with melanoma and other cancer indica-

ions, and for most cases reported oscillatory patterns, with peri-

dicity of 6–7 days. These oscillations were linked to changes in

he disease intensity and strength of inflammatory signatures. The

uthors suggest that tumor cells induce infection, which leads to a

eficit of T cells, and, subsequently, to their increased proliferation.

he effector cells, in turn, eliminate tumor cells. Other tumor cells

roliferate rapidly, thereby driving the feedback between immune

ells and cancer cells. Of note, similar feedback was discussed by

’Onforio et al., ( d’Onofrio et al., 2010 ), who applied a family of

athematical models to analyze tumor-immune interactions. In

heir study, d’Onforio et al., analyzed the effect of time delays be-

ween the tumor size at a given moment and its effect on the stim-

lation of immune effector cells. They show that exponentially dis-

ributed time delays can induce sustained oscillations in the num-

er of cells. Correspondingly, the oscillation observed in our study

an be explained by an exponentially distributed time lag between

he tumor-induced stimulation term in Eq. (1a), namely αA · M 

M+ b ,
nd oscillations in the number of functional APCs, A ( t ). 
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Fig. 7. Representative time series for the number of immune and tumor cells around the fixed points; a and b–d are plotted for the same parameter sets in the phase 

portraits as in Fig. 6 c and d, respectively. The initial number of immune cells was set under assumption of quasi-steady state, that is, the number of immune cells adjusts 

itself to the number of tumor cells, according to Eq. (5) . 
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Our analysis emphasizes the effect of tumor growth rate and

baseline tumor burden on the success of immunotherapy. Tumor

shrinkage is possible only if the initial number of tumor cells, and

the initial number of immune cells are located within the basin of

attraction of the lower PFP. For patients with a significantly larger

initial tumor burden, a larger effect of the checkpoint blockade is

required to induce tumor shrinkage. From a mathematical point of

view, as the immune efficacy increases, the ratio between the effi-

cacy of the immune response and the tumor growth rate increases,

which, as shown in Fig. 3 , leads to a larger difference between both

FPs, and thus a larger basin of attraction of the stable FP. These re-

sults imply that patients with initially small tumor burden should

benefit more from this therapy, supporting reports that high tu-
or burden is associated with poorer outcome to ICI ( Joseph et al.,

018 ; Ribas et al., 2016 ; Robert et al., 2017 ). Based on our results,

e suggest to clinically test the effect of adjuvant therapy with ICI.

e believe that the reduction of tumor load, either by resection or

y radiation, prior to treatment by ICI, will augment the clinical

enefit of ICI-based therapy. Interestingly, the benefit of combin-

ng immunotherapy and resection, but in an inverse sequence to

he one suggested here, was clinically shown in a study report-

ng that administration of pembrolizumab as an adjuvant therapy

or patients with completely resected high-risk stage III melanoma

ncreased the recurrence-free survival of treated patients, as com-

ared to patients who received placebo ( Eggermont et al., 2018 ).

upport for our model findings on the relation between immune
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ell activity and initial tumor load can be found in ( Huang et al.,

017 ). Huang and colleagues checked a combined emergent param-

ter - the ratio between the reinvigoration rate of CD8 + T cells

as measured by the percentage of CD8 + T cells expressing Ki67)

nd the tumor burden at baseline, and correlated this ratio with

he observed clinical response of patients to pembrolizumab. Their

onclusion is that the combined ratio can better distinguish clinical

utcomes and predict response than each one of these parameters

aken alone, and that this ratio can serve as a calibrated parameter,

redicting response to PD-1 blockade. 

To facilitate the mathematical analyses, our model was delib-

rately kept simple, taking into account only the main effects of

embrolizumab on CD8 + T cells and the melanoma tumor. In par-

icular, the effects of treatment were modeled by assigning bigger

r smaller values to the activation rate of CD8 + T cells, αe , and

o the elimination rate, μe . The immune system as well as the

onsequences of ICI-based therapy are obviously far more com-

lex. For example, the mechanism of action of pembrolizumab

ncludes effects on interactions with additional cell populations,

uch as myeloid-derived suppressor cells (MDSCs), natural killer

ells (NK) , and helper CD4 + T cells ( Nguyen and Ohashi, 2015 ).

imilarly to CD8 + T cells, NK cells have a cytotoxic effect on tu-

or cells. Since they express PD-1, treatment with pembrolizumab

ay increase the abundance of functional NK cells, and thereby

lso contribute to the tumor growth control ( Beldi-Ferchiou and

aillat-Zucman, 2017 ). Moreover, cytometric analysis of blood sam-

les from patients with advanced melanoma under pembrolizumab

nd nivolumab show that the anti-PD-1 treatment reduces the fre-

uency of circulating MDSCs, and increases the frequency of cir-

ulating NK cells among responders ( De Coaña et al., 2018 ). Such

dditional processes can be considered for inclusion in the model

n future extensions. 

In summary, our study provides new insight into the interac-

ions between the immune system and melanoma, enabling a bet-

er understanding of the potential response of individual patients

ith metastatic melanoma to ICI treatment. Analysis of our mech-

nistic model showed that while the natural immunity is not suffi-

ient to control the growth of melanoma tumors in the absence of

reatment, administration of ICIs can turn the uncontrollable tumor

rowth into shrinkage or stabilization, depending on the individual

atient characteristics. This can provide a basis for future studies in

hich model-based predictors for response to ICI treatment could

e developed to address the need for improved and personalized

rognosis in melanoma. 
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