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Abstract

Doxorubicin treatment outcomes for non-Hodgkin’s lymphomas (NHL) are mathematically
modelled and computationally analyzed. The NHL model includes a tumor structure incorporating
mature and immature vessels, vascular structural adaptation and NHL cell-cycle kinetics in addition
to Doxorubicin pharmacokinetics (PK) and pharmacodynamics (PD). Simulations provide qualitative
estimations of the effect of Doxorubicin on high-grade (HG), intermediate-grade (IG) and low-grade
(LG) NHL. Simulation results imply that if the interval between successive drug applications is
prolonged beyond a certain point, treatment will be inefficient due to effects caused by heterogeneous
blood flow in the system.
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1. Introduction

Non-Hodgkin’s lymphomas (NHL) are neoplastic transformations of lymphoid tissue
cells (Bast et al., 2000). In 2003, 60,000 cases of NHL were expected to be diagnosed
in the United States, where it ranks as the sixth leading cause of cancer-related death
(Boring et al., 1994). Less than 35% of all diagnosed cases are cured; hence the treatment
of this disease poses a difficult clinical problem. Currently, NHL patients are treated
with so-called CHOP chemotherapy (Cyclophosphamide, Hydroxydoxorubicin, Oncovin,
Prednisone) in which Hydroxydoxorubicin (Doxorubicin) and Cyclophosphamide are the
more active drugs (Lepage et al., 1993). CHOP is usually administered over a total of 6
to 8 cycles separatedby 21 day intervals (Couderc et al., 2000). The relationship between
this dosing interval and the efficacy of NHL CHOP treatment has not been systematically
analyzed. However, theory suggests that thesuccess of cancer chemotherapy is primarily
determined by the frequency of drug administration (Agur, 1985; Agur et al., 1988;
Cojocaru and Agur, 1992). For this reason we attempt to assess the efficacy of the CHOP
protocol by means of a more systematic approach based on mathematical modelling and
computersimulation.

Extensive studies concerning the modelling of vascular tumor growth have previously
been carried out byLiotta et al. (1977), Orme and Chaplain (1996)and recently by
Arakelyan et al. (2002). In this work, we propose a two-dimensional mathematical model
aimed at simulating the effect of Doxorubicin on NHL. The framework that we use is that
of the hybrid cellular automata (CA), which has already been applied to different aspects
of tumor growth (Anderson and Chaplain, 1998; Anderson et al., 2000; Patel et al., 2001;
Deutsch and Dormann, 2002; Alarcón et al., 2003).

In ourmodel, chemicals (nutrient and drug) and flow-related quantities are represented
as continuum variables, whereas cells and vessels are considered as individual elements.
The model distinguishes between three different grades of NHL: Low Grade (LG), which
progresses slowly and is the least aggressive, High Grade (HG), which is very aggressive
and progresses over a short period of time, and Intermediate Grade (IG), which is
moderately aggressive. Clinical studies haveshown differences in the cell-cycle kinetic
profiles of the three grades, which are implemented in the model (seeTable 1).

We consider a computational domain composed of a vascular network filled with NHL
cells. The vascular network supplies the NHL cells with blood-borne nutrients and drugs.
The model takes into account two key factors influencing the efficiency of drug delivery.
The first is the coupling of NHL growth with the vascular network (Yancopoulos et al.,
2000), which affects the configuration of the blood vessels, i.e., the creation of mature
or immature vessels. The second is the blood flow heterogeneity which results from this
diverse construction (Jain, 2001; McDougall et al., 2002).

The dynamics of the NHL cell colony are determined by the cell-cycle kinetics and
by the nutrient and drug concentrations available through diffusion from the vasculature.
Doxorubicin pharmacokinetics (PK) were investigated in order to accurately determine the
drug concentration in the vasculature at any given time. Doxorubicin pharmacodynamics
(PD) were investigated as well, in order to simulate the qualitative effect of the drug on
NHL cells.
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Fig. 1. Representation of NHL cells and the vascular network on the computational domain. Black areas represent
cancer cells, grey lines (red lines in the web version) represent blood vessels. Left: a fully populated domain; right:
the domain following significant cell depletion.

2. Mathematical model description

We consider a 2 mm square tissue (2D model) composed of 110 vessels, producing a
density in accordance with quantitative estimations. Vessels compose a simple vascular
network, as has been observed in vivo (Honda and Yoshizato, 1997). A similar
‘honeycomb’ vascular structure has been observed in liver and colon tissues (Konerding
et al., 2001). Hence, it is reasonable to assume that the basic vascular structure will not
change significantly throughout the initial stages of tumor development.

The vessels’ radii are set initially at 20µm (Willemse et al., in press) and are subject to
modification through vessel structural modification processes.The domain is initially filled
with NHL cells forming unified core structures or more scattered patterns (seeFig. 1).

2.1. Vessel structural modification

In our model the vasculature is subject toremodelling, which occurs according to two
different mechanisms. The first is the so-called structural adaptation mechanism, studied
by Pries et al. (1994, 1998)and then byAlarcón et al. (in preparation).

Normal vasculature is endowed with smooth muscle cells and pericytes, which allow
blood vessels to contract and expand. This adaptation is assumed to occur in response to
three stimuli (Pries et al., 1994): hemodynamic, metabolic and a ‘shrinking tendency’. The
hemodynamic stimulus corresponds to the tendency of the vascular system to maintain a
constant wall shear–transmural pressure relationship. The metabolic stimulus corresponds
to the response of the vessel to tissue demands, and the ‘shrinking tendency’ signifies
vessel shrinkage which occurs in the absence of growth factors.

The second vascular remodelling mechanism that we implement is vessel maturation
and the destabilization of mature vessels. In cancer, due to neovascularization, a significant
proportion of the vessels are immature (Benjamin et al., 1999). Unlike mature vessels,
immature vessels are not encased in pericytes and smooth muscle cells. Therefore we
consider them as incapable ofstructural adaptation. As a result, their configuration is
lessstable: their radii are subject to random change and tend to be larger than the radii
of mature vessels, increasing leakage. In order to incorporate these characteristics, the
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immature vessels’ radii are modified at eachtime step of the simulation according to the
following process:

r im = rmat · (1 + ε) (1)

wherer im stands for the immature vessel radius andrmat is the initial radius of the mature
vessels, taken to be 20µm. ε is a random number uniformly distributed in the interval
(0, 3) according toWillemse et al. (in press). As the NHL cell colony grows it engulfs
nearby blood vessels. Since cancer cells have the ability to destabilize mature vessels
(Yancopoulos et al., 2000), we have considered that once a vessel is surrounded by NHL
cells it immediately becomes immature. The status of a vessel (mature or immature) is
updated at each time step of simulation, thus allowing immature vessels to become mature
once again, as occurs in actual vascular tumors (Yancopoulos et al., 2000).

2.2. Blood flow

We assume the flow in each vessel to be laminar steady Poiseuille flow, i.e.,

�P = Q̇Z (2)

Z = 8µ(r, H )L

πr 4
(3)

where�P is the pressure dropbetween two points of the network,Q̇ the flow rate in each
vessel,Z, L, r andH are respectively the resistance,length, radius and hematocrit.3 µ is
the radius and hematocrit dependent viscosity (Alarcón et al., 2003).

2.3. Diffusion of nutrients and drug

We make the biologically realistic assumption that nutrient and drug molecules reach
their equilibrium state on a timescale far shorter than that of the cell dynamics. This
assumption allows us to apply the so-called adiabatic approximation, according to which
these chemicals can be considered instantaneouslyin the steady state. Hence, the diffusion
of drug and nutrient molecules has been described by successive solutions of an elliptic
boundary value problem.

Considering a two-dimensional domain, letC(x, y, t) be the concentration of nutrient
or drug. According to the adiabatic approximation, the corresponding diffusion equation
can be written as follows:

Dp∇2C(x, y, t) − k(x, y) · C(x, y, t) = 0 (4)

whereDp is the diffusion coefficient andk(x, y) the uptake coefficient at position(x, y).
We prescribe appropriate boundary conditions for Eq. (4) assuming thatnutrient and

drug molecules enter the system by crossing the vessel walls, the flux being given by

�J = −Dp∇C. (5)

3 The hematocrit is defined as the fraction of the volume of blood occupied by red blood cells.
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Thus, we impose the following mixedboundary conditions on the vessel walls:

−Dpnw ·∇C(x, y, t) = P · (Cb − C) (6)

wherenw is the unit outward vector, orthogonal to the vessel wall,P is the permeability
of the vessel, assumed to be the same for both nutrient and drug, andCb is the drug or
nutrient concentration in the plasma.

We also impose no-flux boundary conditions along the edges of our computational
domain,Ω :

n|∂Ω ·∇C(x, y, t) = 0 (7)

wheren|∂Ω is theunit outward vector, orthogonal to the boundary of the domain.
This diffusion equation was solved by means of a so-called two-grid V-cycle multigrid

method. The multigrid method enables improvement of the rate of convergence of classical
numerical methods through interpolation of an initially ‘rough’ solution on a fine grid
(Hackbusch, 1985; McCormick, 1987).

2.4. Doxorubicin pharmacokinetics (PK)

We use the so-called one-compartmentmodel in which the decline of drug concentration
in plasma over time is described by

∂Cb

∂ t
= −k · Cb(t) (8)

Cb(0) = dose

Vd
(9)

whereVd is the volume of distribution of the drug andk the fraction of drug removed from
the compartment per unit time, inversely related to the half-lifet1/2 (Hardman et al., 2001).

2.5. Doxorubicin pharmacodynamics (PD)

Doxorubicin is known to act on both proliferative and quiescent cells (Barranco, 1984);
however, the effect on quiescent cells can be assumed negligible. The dependence of the
survivalfraction (s), or thepercentage of cells that survives the drug, on drug concentration
has been modelled (Hardman et al., 2001) by

s = a + 1

b + kd · Cb
(10)

wherea, b andkd are positive constants set according toKwok and Twentyman (1985)and
Nagai et al. (2002).

Because the model considers cells as individuals, the survival fraction was interpreted
as the probability for one cell to survive the treatment.

2.6. Cell population dynamics

We assume that the initial cell colony is composed of NHL cells which can be divided
into two categories:

• proliferative cells that progress through the cell cycle;
• quiescent cells.
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Table 1
NHL classification, clinical values and biological ranges (Brons et al., 1992)

S-DNA (%) GF (%) Ts (h) Tc (h) TG1 (h)

HG NHL 25.2 34 19.1 57 36
(3.6–37.1) (15–93) (9.7–33.6) (21–93) (11–59)

IG NHL 10.2 26 13.4 69 47
(1.9–35.2) (11–85) (8.6–50.2) (20–270) (13–215)

LG NHL 1.2 6 12.8 107 80
(0.4–4.2) (3–36) (8.4–16.5) (22–122) (16–93)

The initial growth fraction (GF), the initial percentage of S-phase (S-DNA) and the
cycle-phase duration (TS for S-phase,TG1 for G1-phase,TG2 for G2-phase,TM for M-
phase andTc for total cell cycle) were set according to various NHL cell-cycle kinetic
studies (Brons et al., 1992; Erlanson et al., 1995; Stokke et al., 1998) (seeTable 1).

The progression of each proliferative cell through its cycle is modelled by the following
CA rules:

• The probability of cell death is determined by the drug’s concentration and PD.
• If the cell is not killed by the drug, it advances one time step in its cycle phase.
• Between G1 and the S-phase [R point restriction (Blagosklonny and Pardee, 2002)],

the cell can either die, be arrested or continue progressing through the cell cycle
according to its local environment (Bast et al., 2000), i.e., local nutrient concentration
and overcrowdedness (Alberts et al., 1994).

• If the environmental conditions are appropriate, the cell enters G2 and divides, daughter
cells moving towards higher nutrient concentrations.

In order to reduce computational complexity, we assume that only glucose regulates
cell proliferation and death, and do not consider the effect of oxygen distribution. This is
also due to the apparent unpredictability of red blood cell concentration downstream from
microvascular bifurcations (Enden and Popel, 1994).

2.7. Cell-cycle kinetic profiles

According to our model assumptions, the cell-cycle kinetics which determine the growth
of the cell colony are regulated by the nutrient flow available to the cell (see above). If
nutrient flow decreases below a certain level,the cell will become quiescent and may even
die. Our model simulates this effect bymeans of a ‘nutrient block parameter’(nblock) and
a ‘nutrient death parameter’(ndeath). Each grade of NHL was attributed its ownnblock and
ndeath values(seeTable 2). Due to a lack of information on the regulation of cell death
at a macroscopic level, we estimated a constant value forndeath. The value ofnblock was
then derived as follows: several simulations of NHL behavior with no Doxorubicin effect
were run per grade, each one testing a differentnblock value. After each simulation, we
computed the average growth fraction (GF) and the average percentage of cells in the S
cell-cycle phase (S-DNA). Thenblock value whichproduced results most similar to those
obtained in clinical studies was selected (seeTable 1).
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Table 2
Cell-cycle kinetic profiles for simulated NHL cell dynamics in a drug-free domain (Brons et al., 1992)

nblock (mM s−1) ndeath(mM s−1) S-DNA (%) GF (%)

HG NHL 0.0066 0.001 11.9 39.2
IG NHL 0.0066 0.001 3.5 20.6
LG NHL 0.009 0.001 0.7 7.9

Table 3
Model parameters

Equation Parameter Description Unit Value Reference

(1) rmat Mature vessel
radius

µm 20 Willemse et al. (in press)

(1) rim Immature vessel
radius

µm 20≤ r im ≤ 60 Willemse et al. (in press)

(6) Cb Glucose concen-
tration in blood

mM 5 Wilson and Foster (1992)

(6) P Vessel perme-
ability

cm s−1 3.0 × 10−4 Crone and Levitt (1984)

(9) Vd Doxorubicin
volume of
distribution

L m−2 682 Hardman et al. (2001)

(9) t1/2 Doxorubicin
half-life

h 26 Hardman et al. (2001)

(4) Dp Glucose
diffusion
coefficient

cm2 s−1 2.3 × 10−7 Casciari et al. (1998)

(4) k Glucose uptake
coefficient

mM min−1 13.2 × 10−11 Lapela et al. (1995)

(4) Dp Doxorubicin
diffusion coeffi-
cient

cm2 s−1 2.7 × 10−10 Lankelma et al. (2000)

(10) a Doxorubicin PD
coefficient

· 5 × 10−3 Kwok and Twentyman (1985)

(10) b Doxorubicin PD
coefficient

L mg−1 1.005 Kwok and Twentyman (1985)

(10) kd Doxorubicin PD
coefficient

L mg−1 2.603 Kwok and Twentyman (1985)

Doxorubicin
effective
concentration

mg L−1 0.39 Nagai et al. (2002)

2.8. Additional parameter values

Table 3contains additional parameter valuesimplemented in themodel, all of which
have been taken from clinical references. Theinfluence of certain critical parameter values
on the model’s behavior, including estimated parameter values such asnblock andndeath
(see above), will be presented inSection 4.
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3. Evaluation of treatment efficacy

Due to inevitable model simplification, we could not validate our simulation results
by comparing them to those obtained in clinical studies. Nevertheless, we attempted to
qualitatively evaluate treatment efficacy for cell colonies by analyzing four kinds of results.
Overall treatment effect: We define the overall treatment effect on NHL as

treatment effect= n′ − n

n
× 100 (11)

wheren andn′ are, respectively, the number of cells at the beginning and at the end of the
simulation. This formulation indicates the relative response of NHL colonies to treatment.
NHL cell regrowth following Doxorubicin application: After each drug application,
we calculated the NHL cell population’s regrowth rate, i.e., the increase in the number
of cells which occurred once the effect of the drug had worn off. This regrowth was
evaluated by computing the difference between the minimum number of cells following
drug administration (maximum drug effect) and the number of cells immediately before
the next drug cycle, that is,

R1|(x) = n|(x+1) − n′|(x)

n′|(x)

× 100 (12)

wheren|(x+1) is the number of cells just before drug cycle(x +1) andn′|(x) thenumber of
cells after the effect of cycle(x). This result illustrates the behavior of the cell population
between cycles.
Rate of regrowth (2): Here, we calculated the ratio of the colony size at the end of each
drug cycle, immediately preceding the next dosing, to its size at the beginning of the cycle,
prior to drug application:

R2|(x) = n|(x+1)

n|(x)

× 100. (13)

Time below threshold: In addition, we investigated the percentage of time in which the
cell population was maintained below a certain threshold, determined as a proportion of its
original size. For example, if we define the thresholdS1/2 as being half of the initial cell
colony size, we compute the percentage of time the colony size is belowS1/2 as follows:

P1/2 =

t=T∑
t=0

H (S1/2 − s(t))

T
× 100 (14)

whereP1/2 is the percentage of time when the colony is below half its initial size,s(t) is
the size of the population at timet andH is the Heaviside function:

H (x) =
{

1 if x > 0
0 if x < 0.

(15)

The thresholds examined wereS3/4, S1/2 andS1/4.



B. Ribba et al. / Bulletin of Mathematical Biology 67 (2005) 79–99 87

4. Results

4.1. Blood flow heterogeneity

Fig. 2 illustrates the effects of changing cellular patterns on nutrient flow. In the top
figure, in which the domain is almost full of cells, the nutrient is distributed to some degree
throughout the entire domain. In the bottom figure, in which we observe disaggregation
of certain portions of the cell colony, the nutrient is concentrated almost completely in the
area of the domain in which the cell pattern remains uniform. These effects demonstrate
the heterogeneous blood flow caused by the vessel maturation/destabilization process [see
Eq. (1)], which is a direct result of spatial rearrangement of cell population.

Blood vessel configuration and cellular patternorganization are mutually dependent.
In densely populated areas the NHL colony incorporates and destabilizes nearby blood
vessels. Because of this structural instability, blood flow in the vasculature becomes
highly heterogeneous, causing irregular nutrient distribution. Rapid changes in nutrient
distribution can cause large areas of the domain to become suddenly nutrient depleted,
thus eliminating a significant proportion of cells and leading others into quiescence. When
cellular patterns disaggregate theadjacent vessels become mature.

Heterogeneous blood flow causes significant oscillations inNHL cell population
growth, as will be shown in the next section.

4.2. Dynamics of an NHL cell colony without chemotherapy

In order to fully appreciate the effect of Doxorubicin treatment on an NHL cell colony, it
is necessary to understand its ‘natural’ behavior, i.e., when its dynamics are regulated only
by nutrient flow.Fig. 3illustrates the dynamics of HG NHL cells. The initial population in
this case consists of 450 cells. This population increases by almost 30% within the first 50
time steps of the simulation, and then continues to oscillate around its increased value. This
results from the fact that the colony cannot continue to grow indefinitely, due to limited
nutrient availability and other constraints imposed by the domain’s carrying capacity.4

The dynamics of the cell colony as depicted byFig. 3 display a sharp decrease
followed by gradually increasing plateau-like oscillations. As mentioned above, these
significant phenomena illustrate the nature of the nutrient delivery, which results from the
heterogeneous blood flow in the vasculature. A sharp decrease in population implies that
an area has become suddenly nutrient depleted, causing a large number of cells to die.
A increase followed by a plateau (seeFig. 3) indicates that an area that was previously
nutrient depleted has begun to receive a sufficient nutrient supply. The fact that a large
number of cells enter the cycle at the same time accounts for the synchronous growth of
thepopulation.

4.3. Dynamics of an NHL cell colony under Doxorubicin treatment

We simulated the effect of 10 mg m−2 Doxorubicin doses on NHL cell colonies of all
three grades. In order to mimic actual chemotherapy protocols, simulations were carried

4 Domain’s maximum capacity: 3800 cells.
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Fig. 2. Dynamics over time of nutrient flow and cell arrangement in a drug-free domain (figures separated by 65
h). 3D graphs: nutrient flow; 2D graphs: cell distribution (small circles). Flux is along they axis from right to
left. Top: the cell arrangement is uniform; the vascular network is clearly visible (honeycomb structure). Bottom:
following cell depletion in certain areas of the domain, the nutrient flow is significantly altered.

out over a period of 2600 h (approximately 31
2 months), allowing six dose administrations

separated by 21 days.
Due to the above-mentioned constraints of themodel domain, the initial cell population

was set randomly between 1000 and 1500 cells.

4.3.1. Overall treatment effect
The first aspect that we examined was the overall effect of the treatment on the NHL

colony, i.e., the difference between the size of the population at the beginning and at the
end of the simulation (seeTable 4). LG NHL cells were not as affected by the treatment as
the other grades: we observe a 48% decrease as opposed to 66% for IG and 62% for HG.
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Fig. 3. Simulated HG NHL cell dynamics in a drug-free domain over 500 h.

Table 4
Theoverall effect of Doxorubicin treatment on NHL cell colonies

Initial Final Overall treatment effect (%)

HG NHL 1292 495 −62
IG NHL 1398 474 −66
LG NHL 1345 704 −48

The regimenconsists of six cycles of 10 mg m−2 doses separated by 21 day intervals.

Table 5
Regrowth of NHL cell populations following periodic Doxorubicin applications (first method): 10 mg m−2 doses
separated by 21 day intervals

Regrowth from: 1st cycle (%) 2nd cycle (%) 3rd (%) 4th (%) 5th (%)

HG NHL 31 27 41 47 14
IG NHL 24 28 53 28 59
LG NHL 13 12 28 20 3

4.3.2. NHL cell regrowth after Doxorubicin application
After each drug dose was administered, we computed the regrowth rate of the NHL cell

population over the period of the drug cycle, i.e., the difference between the minimum
number of cells following the injection (maximum drug effect) and the size of the
population immediately prior to the next injection [see Eq. (12)]. All three grades of NHL
displayed significant cell population recovery between drug cycles. The regrowth rate after
each cycle for LG NHL was lowest at 15% on average, as opposed to 39% for IG NHL and
32% for HG NHL (Table 5).
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Table 6
Regrowth of NHL cell population following periodic Doxorubicin applications (second method): 10 mg m−2

doses separated by 21 day intervals

Regrowth from: 2nd cycle (%) 3rd (%) 4th (%) 5th (%)

HG NHL 94 97 100 86
IG NHL 93 95 80 113
LG NHL 80 107 95 86

In addition, we compared the size of the cell population at the beginning and at the end
of each drug cycle. The figures displayed inTable 65 represent the ratio of the population
size at the end of the cycle, i.e., immediately preceding the next injection, to that at
the beginning of the cycle, just before the previous drug application [see Eq. (13)]. For
example, at the end of the fourth cycle, the HG NHL colony stood at 100% of its size just
prior to the fourth drug application. According toTable 6, regardless of the grade of NHL,
each drug application was followed by regrowth of at least 80%. The average regrowth
rate was 94% for HG, 95% for IG and 92% for LG. Regrowth of 100% or more occurred
for each grade, over different cycles: HG—after the fourth treatment; IG—after the fifth
treatment; LG—after the third treatment.

4.3.3. Time below threshold
Another aspect that we examined was the percentage of time in which the cell

population remained beneathS3/4 (3/4 initial size), S1/2 and S1/4 (seeTable 7). During
most of the treatment, the population was maintained within the range of 25%–75% of
the original size. However, it did not decrease below this margin in any of the grades, and
in the case of LG it did not decrease below 50%. These results show a clear distinction
between HG and IG: treatment succeeded in maintaining IG belowS1/2 50% of the time,
as opposed to 11% in the case of HG.

4.3.4. Growth patterns of cell populations
Fig. 4 depicts the dynamics of HG, IG and LG NHL cell colonies under Doxorubicin

treatment. If we examine the dynamics of the different cell populations between cycles, we
observe behavior similar to that of the cell population without treatment: a rapid increase
followed by gradually increasing oscillations. We note that the oscillations of the LG NHL
population are less pronounced. In addition, the graphs illustrate clearly that the drug
has less impact on LG NHL than on HG and IG as was implied by the previous results.
These effects are due to the LG NHL colony’s slow rate of growth. Moreover, the graphs
demonstrate that IG NHL was more effectively repressed by the treatment than HG NHL:
a significant difference in population recovery rate following the fourth cycle led the IG
NHL colony size to remain below theS1/2 threshold for the remainder of the simulation.

If we analyze the population regrowth after the Doxorubicin dosing, we can easily
distinguish between two stages. The first is a period of rapid and constant growth,
immediately following the drug effect. Then, approximately 200 h after the drug

5 Regrowth from the first treatment has not been displayed due to the random choice of the initial size.
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Table 7
The percentage of time for which the NHL cell population decreases below particular significant thresholds when
Doxorubicin treatment is applied: six cycles of 10 mg m−2 doses separated by 21 day intervals

S3/4 (%) S1/2 (%) S1/4 (%)

HG NHL 94 11 0
IG NHL 99 50 0
LG NHL 80 0 0

Fig. 4. From top to bottom right: HG NHL, IG NHL and LG NHL cell dynamics with Doxorubicin treatment: six
cycles of 10 mg m−2 doses separated by 21 day intervals.

application, oscillations appear, often attaining considerable amplitudes. As mentioned
above, oscillations are a reflection of blood flow heterogeneity. Due to the effects of the
drug, cell clusters disaggregate, and the resulting decrease in overcrowdedness enables
proliferation to accelerate (see CA rules).When new cell aggregations appear, they coopt
vessels and modify their characteristics: engulfed vessels become immature and their radii
are randomly changed [see Eq. (1)]. Consequently, blood flow becomes strongly irregular
in the area. While the cell colony grows, a large proportion of vessels become immature,
thus destabilizing the blood flow over the entire domain. Several areas of the domain
become successively nutrient depleted, leading to cell death. The effects of this instability
are displayed inFig. 10, whichcompares NHL recovery from a chemotherapy cycle when
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vessel maturation/destabilization is implemented as opposed to when it is not. In the first
case we observe significant oscillations in population size, whereas in the second the cell
population increases at a steady pace.

4.4. Model sensitivity to parameters

It is not always possible to derive necessary parameter values directly from clinical
data, especially in a model such as ours which is a two-dimensional representation of an
actual NHL tumor cell colony. When estimating these values, we rely on additional data
provided by the model that can be comparedwith clinical results (see for exampleTable 2).
However, the potential influence of the choice of parameter values on the model’s behavior
cannot be disregarded.

The critical parameters that must be accounted for include:

• morphological parameters, i.e., blood vessel radii [rmat, Eq. (1)], which directly affect
blood flow and distribution;

• the nutrient level below which cells go into quiescence (nblock);

• thenutrient level below which cells die (ndeath).

First we examine the influence of these parameters on a ‘global’ level, by comparing
the overall effect of the treatment on the cell colony.Fig. 5 presents the overall treatment
effect obtained over 300 h following one drug application, when different values of these
parameters are implemented. We can observe that the choice ofndeath has a significant
effect on the simulation’s outcome, whereas the ranges obtained by varyingnblock andrmat
are more limited.

If we attempt to characterize the tumor’s behavior under the influence of different
parameter values, we discover additional effects.

Weobserve that increasing the value ofndeathcauses the size of the NHL cell population
at equilibrium to diminish. A population willonly continue to grow as long as the level
of available nutrients in its environment is able to sustain it. Therefore it is intuitively
obvious that the higher the nutrient level required to maintain the population, the smaller
that population will be.Fig. 6 demonstrates that whenndeath is increased to a certain
point the population size continues to oscillate, though its point of equilibrium is lower.
However, ifndeathis increased beyond this threshold, thecell colony’s point of equilibrium
is so low that it is virtually unable to grow after the initial drug application, and its size
remains almost constant. The lack of growth indicates that there are few or no changing
cell patterns, thus reducing blood flow heterogeneity and eliminating oscillations.

If we modify rmat and nblock, we observe that regardless of the value implemented,
the development of the colony can still be clearly divided into two stages as described
earlier, i.e., a period of constant growth followed by oscillations (seeFigs. 7 and 8).
However, different parameter values may affect the amplitude or other specific qualities
of the oscillations.

We emphasize that all estimated parameter values implemented in the model were
derived in accordance with clinical data, e.g., expected growth fraction (Brons et al., 1992).
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Fig. 5. A histogram illustrating the overall treatment effect on HG NHL, 300 h after Doxorubicin administration.
Each symbol (diamonds, triangles and circles) represents the overall treatment effect obtained when its respective
parameter value (nblock, ndeath, rmat) was modified within a feasible range.

Fig. 6. Simulated HG NHL dynamics over 1000 h with one drug application att = 0. ndeath taken at
0.001 mM s−1 (the value implemented in simulations), at 0.003 mM s−1 and at 0.005 mM s−1.

5. Discussion

Wepresented a modelling framework and simulations aimed at predicting the qualitative
effect of Doxorubicin administration onNHL cell colonies. Our model takes into account
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Fig. 7. Simulated HG NHL dynamics over 1000 h with one drug application att = 0. rmat taken at 20µM (the
value implemented in simulations) and at 60µM.

Fig. 8. Simulated HG NHL dynamics over 1000 h with one drug application att = 0. nblock taken at
0.0066 mM s−1 (the value implemented in simulations) and at 0.008 mM s−1.

principal biological features such as NHL cell-cycle kinetics, Doxorubicin PK/PD and
blood flow heterogeneity.

The simulation results which most accurately reflect treatment efficacy are the
population regrowth rate between cycles and the percentage of time for which the
population is maintained below a certain threshold. The overall treatment effect, while
informative when used to compare between the different grades, does not provide a true
indication of efficacy. This is due to the fact that measurement is begun on a random colony
which has not necessarily reached equilibrium, and is stopped at an arbitrary time step.

Comparison between simulations of the different grades of NHL shows treatment to be
least effective in the case of LG NHL, which displayed a high cell regrowth rate in addition
to a relatively weak drug impact (Table 5). This behavior is due to the low growth fraction
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Fig. 9. An illustration of the two distinct stages of colony regrowth following a 10 mg m−2 Doxorubicin
administration.

of LG NHL cells. This result has been reflected in clinical studies: LG NHL patients are
treated using a different protocol (Al -Ismail et al., 1987).

Furthermore, simulations indicate that treatment was inefficient on all three grades of
NHL. HG, IG and LG NHL displayed significant population regrowth following the effect
of each drug application. In some cases, by the end of the drug cycle the cell colony
managed to recover to a population exceeding that prior to the drug administration.

Blood flow heterogeneity appeared to be a key factor in these results. Simulations show
that a colony’s regrowth following the application of Doxorubicin can be divided into two
stages: a rapid and regular growth (first-stage regrowth) until aggregation of cells leads to a
large proportion of vessels becoming immature and thus structurally unstable [see Eq. (1)].
This structural instability leads to blood flow becoming extremely perturbed, causing
consecutive regions to become nutrient depleted. The result is a pattern of significant
oscillations in population size (second stage regrowth) (seeFig. 9).

The effect of blood flow heterogeneity is illustrated inFig. 10, which compares cell
recovery from a chemotherapy cycle when the vessel maturation/destabilization process is
taken into account, compared to a case in which this assumption is relaxed.

Applying an additional dosing while the system is oscillating will not improve the
effect, though a significant impact may occur occasionally if the new cycle is administered
while the system is at the minimum of the oscillation (seeFig. 9). However, efficacy can
be systematically improved if the new cycle of Doxorubicin treatment is applied while
recovery is still at its first stage.Fig. 11 illustrates the model prediction following such an
application protocol on HG NHL.

We are thus led to the conclusion that in order to optimize the effect of Doxorubicin
treatment, it is not enough to merely reduce the dosing interval. The interval must be
reduced to a point at which additional drug cycles are applied before the NHL cell colony
has a chance to enter the unstable, oscillating stage of its recovery (seeFig. 11). Note
however that the current work does not consider possible toxic effects of the drug.
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Fig. 10. The effect of the vessel maturation/destabilization process on the cell population recovery following a
10 mg m−2 Doxorubicin administration. Thin line: with vessel maturation/destabilization; empty circles (thick
line): no vessel maturation/destabilization is assumed.

Fig. 11. HG NHL cell dynamics following Doxorubicin densified treatment: six cycles of 10 mg m−2 doses
separated by 10 day intervals.

Can biological vascular instability generatesignificant changes in blood supply in a
short time (less than one hundred hours) as depicted inFig. 2?

Weare not aware of any clinical studies estimating the timescale upon which the effects
of blood flow heterogeneity occur. However, the existence of a transition point prior to
which treatment needs to be applied in order to achieve the optimal effect seems an
intuitive conclusion.Figs. 6–8 indicate that this conclusion is robust: regardless of specific
parameter values implemented, this transition point can be observed as long as the NHL
cell colony continues to grow.

Clearly our results are qualitative and should be interpreted as such. In order to provide
any quantitative indication of the effectof Doxorubicin on non-Hodgkin’s lymphoma, a
three-dimensional structure and a larger domain enabling simulation of actual standard
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drugdoses must be considered. However, the study does illustrate the significant influence
of blood flow heterogeneity on the effect of Doxorubicin treatment.
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