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Abstract

Doxorubicin treatment outcomes for non-Hodgkin’s lymphomas (NHL) are mathematically
modelled and computationally analyzed. The NHL model includes a tumor structure incorporating
mature and immature vessels, vascular structural adaptation and NHL cell-cycle kinetics in addition
to Doxorubicin pharmacokinetic®K) and pharmacodynamics (PD). Simulations provide qualitative
estimations of the effect of Doxorubicin on high-grade (HG), intermediate-grade (IG) and low-grade
(LG) NHL. Simulation results imply that if the interval between successive drug applications is
prolonged beyond a certain point, treatment will be inefficient due to effects caused by heterogeneous
blood flow in the system.
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1. Introduction

Non-Hodgkin’s lymphomas (NHL) are neoplastic transformations of lymphoid tissue
cells Bast et al., 2000. In 2003, 60,000 cases of NHL were expected to be diagnosed
in the United States, where it ranks as the sixth leading cause of cancer-related death
(Boring et al., 1994. Less than 35% of all diagnosed cases are cured; hence the treatment
of this disease poses a difficult clinical problem. Currently, NHL patients are treated
with so-called CHOP chemotherapy (Cycloppbsmide, Hydroxydoxorubicin, Oncovin,
Prednisone) in which Hydroxydoxorubicin (Doxorubicin) and Cyclophosphamide are the
more active drugslepage et al., 1993CHOP is usually admisteled over a total of 6
to 8 cycles separatdaly 21 day intervalsQouderc et al., 2000 The relationship between
this dosing interval and the efficacy of NHLHOP treatment has not been systematically
analyzed. However, theory suggests thatdtexress of cancer chemotherapy is primarily
determined by the frequeynof drug adminstration @Agur, 1985 Agur et al., 1988
Cqgocaru and Agur, 1992 For this reason we attempt to assess the efficacy of the CHOP
protocol by means of a more systematic approach based on mathematical modelling and
computersimulation.

Extensive studies concerning the modelling of vascular tumor growth have previously
been carried out by.iotta et al. (1977) Orme and Chaplain (1996nd recently by
Arakelyan et al. (2002)n this work, we propose a two-dimensional mathematical model
aimed at simulating the effect of Doxorubicin on NHL. The framework that we use is that
of the hybrid cellular automata (CA), which has already been applied to different aspects
of tumor growth Anderson and Chaplain, 1998nderson et al., 200@Pdel et al., 2007,
Deutsch and Dormann, 200&larcén et al., 2003

In ourmodd, chemicals (nutrient and drug) and flow-related quantities are represented
as continuum variables, whereas cells and vessels are considered as individual elements.
The model distinguishes between three different grades of NHL: Low Grade (LG), which
progresses slowly and is the least aggressive, High Grade (HG), which is very aggressive
and progresses over a short period ofdjnand Intermediate Grade (IG), which is
moderately aggressive. Clinical studies hamewn differences in the cell-cycle kinetic
profiles of the three grades, which are implemented in the modeTé&de J).

We monsider a computational domain composed of a vascular network filled with NHL
cells. The vascular network supplies the NHL cells with blood-borne nutrients and drugs.
The model takes into account two key factors influencing the efficiency of drug delivery.
The first is the coupling of NHL growth with the vascular netwowaricopoulos et al.,
2000, which affects the configuration of the blood vessels, i.e., the creation of mature
or immature vesde. The second is the &bd flow heterogeneity which results from this
diverse constructionJéin, 200% McDougall et al., 2002

The dynamics of the NHL cell colony are determined by the cell-cycle kinetics and
by the nutrient and drug concentrations available through diffusion from the vasculature.
Doxorubicin pharmacokinetics (PK) were intigated in order to accurately determine the
drug concentration in the vasculature at any given time. Doxorubicin pharmacodynamics
(PD) were investigated as well, in order to simulate the qualitative effect of the drug on
NHL cells.
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NHL cells

Fig. 1. Representation of NHL cells and the vascular nétven the computational domain. Black areas represent
cancer cells, grey lines (red lines in the web version)esgnt blood vessels. Left: a fully populated domain; right:
the domain following significant cell depletion.

2. Mathematical model description

We consider a 2 mm square tissue (2D model) composed of 110 vessels, producing a
densty in accordance with quantitative estimations. Vessels compose a simple vascular
network, as has been observed in vivlo(da and Yoshizato, 1997 A similar
‘honeycomb’ vascular structure has been observed in liver and colon tidgsaesrding
et al., 200). Hence, it is reasonable to assume that the basic vascular structure will not
change significantly throughout thdtial stages of tumor development.

The vessels’ radii are set initially at 20n (Willemse et al., in predsand are gbject to
modification through vessel strural modification processeEhe domain is initially filled
with NHL cells forming unified core structures or more scattered patterns-(ge#).

2.1. Vessel structural modification

In our model the vasculature is subjectreanodelling, which occurs according to two
different mechanisms. The first is the so-cdlirudural adaptation mechanism, studied
by Pries & a. (1994 1998)and the by Alarcon et al. (in preparation)

Normal vasculature is endowed with smooth muscle cells and pericytes, which allow
blood vessels to contract and expand. This adaptation is assumed to occur in response to
three stimuli Pries & al., 1994: hemodynamic, metabolic and a ‘shrinking tendency’. The
hemodynamic stimulus corresponds to the tendency of the vascular system to maintain a
constant wall shear—transmural pressureti@taship. The metabolic stimulus corresponds
to the response of the vessel to tissue demands, and the ‘shrinking tendency’ signifies
vessel shrikage which occurs in the absence of growth factors.

The second vascular remodelling mechanism that we implement is vessel maturation
and the destabilization of mature vessels. Inoggindue to neovascularization, a significant
proportion of the vessels are immatuiegjamin et al., 1999 Unlike mature vessels,
immature vessels are not encased in péesyand smoth muscle cells. Therefore we
consider them as incapable sfructual adaptation. As a result, their configuration is
lessstable: their radii are subject to random change and tend to be larger than the radii
of mature vessels, increasing leakage. In otdeincorporate these characteristics, the
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immature vessels’ radii are modified at edirthe step of the simulation according to the
following process:

lim = mat- (14 ¢€) 1)

whererim stands for the immature vessel radius apg; is the initial radius of the mature
vessels, tadn to be 20um. € is a random number uniformly distributed in the interval

(0, 3) according tdNillemse et al. (in press)As the NHL cell colony grows it engulfs
nearby blood vessels. Since cancer cells have the ability to destabilize mature vessels
(Yancopoulos et al., 20Q0pwe have considered that once a vessel is surrounded by NHL
cells it immediately becomes immature. The status of a vessel (mature or immature) is
updated at each time step of simulation, thilmsang immature vessels to become mature
once again, as occurs in actual vascular tumdéas¢opoulos et al., 2000

2.2. Blood flow

We assume the flow in each vessel to be laminar steady Poiseuille flow, i.e.,

AP =02z (2)
_ 8u(r, H)L
Z= mwré ®)

whereAP is the pressure drdpetween two points of the networ) the flow rate in each
vessel,Z, L, r andH are respectively the resistandength, radius and hematocfitu is
the radius and hematatdependent viscosityAlarcén et al., 2003

2.3. Diffusion of nutrients and drug

We make the biologically realistic assumpti¢hat nutrient and drug molecules reach
their equilibrium state on a timescale fdnoster than that of the cell dynamics. This
assumption allows us to apply the so-callelibdatic approximation, according to which
these chemicals can be considered instamtasigin the steady state. Hence, the diffusion
of drug and nutrient molecules has been described by successive solutions of an elliptic
boundary value problem.

Considering a tw-dimensional domain, l6€(x, y, t) be the concenttéon of nutrient
or drug. According to the adiabatic approximation, the corresponding diffusion equation
can be written as follows:

DpV2C(X, Y, 1) —k(X,y) - C(X, y,t) =0 (4)

whereDy, is the diffusion coefficient ankl(x, y) the uptake coefficient at positiaw, y).
We prescribe appropriate boundary conditions for Ef).gssuming thanhutrient and
drug molecules enter the system by crossing the vessel walls, the flux being given by

J=-DpVC. (5)

3 The henatocrit is defined as the fraction of thelvme of blood occupied by red blood cells.
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Thus, we impose the following mixdzbundary conditions on the vessel walls:
—Dpnw - VC(X, y, 1) = P - (C, — C) (6)

whereny, is the unit outward vector, orthogonal to the vessel walljs the permeability
of the vessel, assumed to be the same for both nutrient and dru@paiscthe drug or
nutrient concentration in the plasma.

We also impose no-flux boundary condition®@ad) the edges of our computational
domain,{2:

n|3ﬂ 'VC(Xv yv t) =0 (7)

wheren|; ; is the unit outward vector, orthogonal to the boundary of the domain.

This diffusion equation was solved by means of a so-called two-grid V-cycle multigrid
method. The multigrid method enables imprnant of the rate of convergence of classical
numerical methods through interpolatiof an initially ‘rough’ solution on a fine grid
(Hackbusch, 1989 cCormick, 1987.

2.4. Doxorubicin pharmacokinetics (PK)

We usele so-called one-compartmentmodel in which the decline of drug concentration
in plasma over time is described by

aCp .

W =—k-Cp(t) (8)
dose

Cp(0) = o )

whereVy is the volume of distribution of the drug akdhe fraction of dug removed from
the compartment per unit time, inversely related to the halfdjie(Hardman et al., 20011

2.5. Doxorubicin pharmacodynamics (PD)

Doxorubicin is known to act on both proliferative and quiescent cBlisranco, 198%
however, the effect on quiescent cells can be assumed negligible. The dependence of the
survivalfraction (s), or thepercentage of cells that survives the drug, on drug concentration
has been modelledHgrdman et al., 2001by

S=at g (10)
wherea, b andky are positive constants set accordindgfteok and Twentyman (198%)nd
Nagai et al. (2002)

Because the model considers cells as individuhks survival fraction was interpreted
as the probability for one cell to survive the treatment.

2.6. Cell population dynamics

We assume that the initial cell colony is composed of NHL cells which can be divided
into two categories:

o proliferative cells that progress through the cell cycle;
e quiescent cells.
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Table 1
NHL classiftcation, clinical values and biological rang&rgns et al., 1999
S-DNA (%) GF (%) Ts (h) Tc (h) Tg, (h)
HG NHL 25.2 34 19.1 57 36
(3.6-37.1) (15-93) (9.7-33.6) (21-93) (11-59)
IG NHL 10.2 26 13.4 69 47
(1.9-35.2) (11-85) (8.6-50.2) (20-270) (13-215)
LG NHL 1.2 6 12.8 107 80
(0.4-4.2) (3-36) (8.4-16.5) (22-122) (16-93)

The initial growth fraction (GF), the initial percentage of S-phase (S-DNA) and the
cycle-phase durationTg for S-phase;lg, for G1-phase]g, for G2-phase Ty for M-
phase andr. for total cell cycle) were set accordjrto various NHL cell-cycle kinetic
studies Brons et al., 1992Erlanson et al., 1995 tokke et al., 1998(seeTable J).

The progression of each proliferative cell through its cycle is modelled by the following
CArules:

e The probability of cell death is determined by the drug’s concentration and PD.

o If the cell is not killed by the drug, it advances one time step in its cycle phase.

e Between G1 and the S-phase [R point restricti@hagosklonny and Pardee, 2002
the cell can either die, be arrested or continue progressing through the cell cycle
according to its local environmerBést et al., 2000, i.e., local nutrient concentration
and overcrowdednesalperts et al., 1994

o If the environmental conditions are appropriate, the cell enters G2 and divides, daughter
cells moving towards higher nutrient concentrations.

In order to reduce computational complexity, we assume that only glucose regulates
cell proliferation and death, and do not consider the effect of oxygen distribution. This is
also due to the apparent unpredictability af l#ood cell concentration downstream from
microvascular bifurcationdggnden and Popel, 1994

2.7. Cell-cycle kinetic profiles

According to our nedel assumptions, the cell-cycle kinetics which determine the growth
of the cell colony are regulated by the nutrient flow available to the cell (see above). If
nutrient flow decreases below a certain letied cell will become quiescent and may even
die. Our model simulates this effect byeans of a ‘nutrient block parameténipiock) and
a ‘nutrient death parameteimgeary. Each grade of NHL was attributed its owgock and
Ngeath Values(seeTable 3. Due to a lack of information on the regulation of cell death
at a macroscopic level, we estimated a constant valuaggin, The value ofnpjock Was
then derived as follows: several simulations of NHL behavior with no Doxorubicin effect
were run per grade, each one testing a differejyck value. After each simulation, we
computed the average growth fraction (GF) and the average percentage of cells in the S
cell-cycle phase (S-DNA). They|ock Value whichproduced results most similar to those
obtained in clinical studies was selected ($able J).
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Table 2
Cell-cycle kinetic profiles for simulateNHL cell dynamics in a drug-free domaiBions et al., 199p
Nblock (MM s™1) Ngeath(MM s~ 1) S-DNA (%) GF (%)
HG NHL 0.0066 0.001 11.9 39.2
IG NHL 0.0066 0.001 3.5 20.6
LG NHL 0.009 0.001 0.7 7.9
Table 3
Model papmeters
Equation  Parameter  Description Unit Value Reference
Q) I'mat Mature vessel um 20 Willemse et al. (in press)
radius
2 lim Immature vessel pum 20<rjy <60 Willemse etal. (in press)
radius
(6) Cp Glucose concen- mM 5 Wilson and Foster (1992)
tration in blood
(6) P Vessel perme- cms1 30x 1074 Crone and Levitt (1984)
ability
9) \Z Doxorubicin Lm—2 682 Hardman et al. (2001)
volume of
distribution
9) t1/2 Doxorubicin h 26 Hardman et al. (2001)
half-life
(4 Dp Glucose cmé st 2.3x 1077 Casciari et al. (1998)
diffusion
coefficient
(4 k Glucose uptake mMmin~1 132x 10711 Lapela et al. (1995)
coefficient
(4 Dp Doxorubicin cm? st 2.7 x 10710 Lankelma et al. (2000)
diffusion coeffi-
cient
(20 a Doxorubicin PD - 5x 1073 Kwok and Twentyman (1985)
coefficient
(20 b Doxorubicin PD L mg—1 1.005 Kwok and Twentyman (1985)
coefficient
(10 kg Doxorubicin PD L mg~1 2.603 Kwok and Twentyman (1985)
coefficient
Doxorubicin mg L1 0.39 Nagai et al. (2002)
effective
concentration

2.8. Additional parameter values

Table 3contains additional parameter valuegplemented in thenodel, all of which
have been taken from clinical references. fience of certain critical parameter values
on the model's behavior, including estimated parameter values sugfeasand Ngeath
(see above), will be presentedSection 4
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3. Evaluation of treatment efficacy

Due to ineitable model simplification, we codlnot validate our shulaion results
by comparing them to those obtained in aoiai studies. Nevertheless, we attempted to
guditatively evaluate treatment efficacy for cell colonies by analyzing four kinds of results.
Overall treatment effect: We define lhe overall treatment effect on NHL as

/

treatment effect

x 100 (11)

wheren andn’ are, respectively, the number of cells at the beginning and at the end of the
simulation. This formulation indicates the relative response of NHL colonies to treatment.
NHL cell regrowth following Doxorubicin application: After each drug application,

we calculated the NHL cell population’s regrowth rate, i.e., the increase in the number
of cells which occurred once the effect of the drug had worn off. This regrowth was
evaluated by emputing the difference between the minimum number of cells following
drug administration (maximum drug effect) and the number of cells immediately before
the next drug cycle, that is,

Nlx+1) — N'l(x)

R1|(X) = x 100 (12)

)

wheren| 1) is the number of cells gt befae drug cycleix + 1) andn’| ) thenumber of
cells after the effect of cycléx). This result illustrates the bavior of the cell population
between cycles.

Rate of regrowth (2): Here, we calculated the ratio of the colony size at the end of each
drug cycle, immediately precetd) the next dosing, to its size at the beginning of the cycle,
prior to drug application:

n
Rolio = M | 100 (13)

n|(x)

Time below threshold: In addition, we inveigated the percentage of time in which the
cell population was maintained below a certain threshold, determined as a proportion of its
original size. For example, if we define the thresh8ig as being half of the initial cell
colony size, we compute the percentage of time the colony size is I#ews follows:

t=T
> H(Sy2—s(t)

t=0

P1/2 = x 100 (14)

T

wherePy/ is the percentage of time when the colony is below half its initial Sag,is
the 9ze o the population at timé andH is the Heavigde function:

1 if x>0
00 = {o if x < 0. (15)

The thresholds examined we$g/s, Si/2 andSy 4.
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4. Results
4.1. Blood flow heterogeneity

Fig. 2 illustrates the effects of changing cellular patterns on nutrient flow. In the top
figure, in which he domain is almost full of cells, the nutrient is distributed to some degree
throughout the entire domain. In the bottom figure, in which we observe disaggregation
of certain portions of the cell colony, the netnit is concentrated almbcompletely in the
area of the domain in which the cell patterrm@ns uniform. These effects demonstrate
the heterogeeous blood flow caused by the vessel maturation/destabilization process [see
Eq. (1)], which is a direct result of spatial rearrangement of cell population.

Blood vessel configuration and cellular patt@nganization are mutually dependent.

In densely populated areas the NHL colongadmporates and destabilizes nearby blood
vessels. Because of this structural instability, blood flow in the vasculature becomes
highly heterogeneous, causing irregular nutrient distribution. Rapid changes in nutrient
distribution can cause large areas of the domain to become suddenly nutrient depleted,
thus eliminating a significant proportion of cells and leading others into quiescence. When
cellular patterns disaggregate thdiacent vessels become mature.

Heterogeneous blood flow causes siigaint oscillations inNHL cell population
growth, as will be shown in the next section.

4.2. Dynamics of an NHL cell colony without chemotherapy

In order to fully appreciate the effect of Doxorubicin treatment on an NHL cell colony, it
is necessary to understand its ‘natural’ behavior, i.e., when its dynamics are regulated only
by nutrient flow.Fig. 3illustrates the dynamics of HG NHL cells. The initial population in
this case consists of 450 cells. This population increases by almost 30% within the first 50
time steps of the simulation, and then conts to oscillate around its increased value. This
results from the fact that the colony cannot continue to grow indefinitely, due to limited
nutrient availability and other constraints imposed by the domain’s carrying cafacity.

The dynamics of the cell colony as depicted Big. 3 display a sharp decrease
followed by gradually increasing plateau-like oscillations. As mentioned above, these
significant phenomena illustrate the nature of the nutrient delivery, which results from the
heterogeneous blood flow in the vasculature. A sharp decrease in population implies that
an area has become suddenly nutrient depleted, causing a large number of cells to die.
A increase followed by a plateau (sE@. 3) indicates that an area that was previously
nutrient depleted has begun to receive disigit nutrient supply. The fact that a large
number of cells enter the cycle at the same time accounts for the synchronous growth of
the population.

4.3. Dynamics of an NHL cell colony under Doxorubicin treatment

We simulded the eféct of 10 mg nt2 Doxorubicin doses on NHL cell colonies of all
three grades. In order to mimic actual chemotherapy protocols, simulations were carried

4 Domain’s maximum capacity: 3800 cells.
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Fig. 2. Dynamics over time of nutrient flow and cell arrangement in a drug-free domain (figures separated by 65
h). 3D graphs: nutrient flow; 2D graphs: cell distribution (small circles). Flux is along thes from right to

left. Top: the cell arrangement is uniform; the vasculawoek is clearly visible (honeycomb structure). Bottom:
following cell depletion in certain areas of the domain, the nutrient flow is significantly altered.

out over a period of 2600 h (approximatel% gonths), allowing six dose administrations
separatedyp?21 days.

Due to the above-mentioned constraints ofrtiedel domain, the initial cell population
was £t randomly between 1000 and 1500 cells.

4.3.1. Overall treatment effect

The first aspect that we examined was theralleffect of the treatment on the NHL
colony, i.e., the difference between the size of the population at the beginning and at the
end of the simulation (seBable 4. LG NHL cells were not as affected by the treatment as
the aher grades: we observe a 48% decrease as opposed to 66% for IG and 62% for HG.
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Fig. 3. Simulated HG NHL cell dynarms in a drug-free domain over 500 h.

Table 4
The overall effect of Doxorubicin treatment on NHL cell colonies
Initial Final Overall treatment effect (%)
HG NHL 1292 495 —-62
IG NHL 1398 474 —66
LG NHL 1345 704 —48

The regimerconsists of six cycles of 10 mgTﬁ doses separated by 21 day intervals.

Table 5
Regrowth of NHL cell populations flawing periodic Doxorubicin aplgations (first method): 10 mg i’ doses
separatedyp?1 day intervals

Regrowth from: 1st cycle (%) 2nd cycle (%) 3rd (%) 4th (%) 5th (%)
HG NHL 31 27 41 47 14
IG NHL 24 28 53 28 59
LG NHL 13 12 28 20 3

4.3.2. NHL cell regrowth after Doxorubicin application

After each drug dose was administered, wenputed the regrowth rate of the NHL cell
population over the period of the drug cycle, i.e., the difference between the minimum
number of cells fdowing the injection (maximum drug effect) and the size of the
population immediately prior to the next injection [see EiR)]. All three grades of NHL
displayed significant cell population recovery between drug cycles. The regrowth rate after
each cycle for LG NHL was lowest at 15% on average, as opposed to 39% for IG NHL and
32% for HG NHL (Table 5.



20 B. Ribba et al. / Bulletin of Mathematical Biology 67 (2005) 79-99

Table 6
Regrowth of NHL cell population following periodiDoxorubicin applications (second method): 10 mgm
doses separated by 21 day intervals

Regrowth from: 2nd cycle (%) 3rd (%) 4th (%) 5th (%)
HG NHL 94 97 100 86
IG NHL 93 95 80 113
LG NHL 80 107 95 86

In addition, we compared the size of the cell population at the beginning and at the end
of each drug cycle. The figures displayedTable & represent the ratio of the population
size at the end of the cycle, i.e., immedistgreceding the next injection, to that at
the beginmg of the cycle, just before the previous drug application [see E)].(For
example, at the end of the fourth cycle, the HG NHL colony stood at 100% of its size just
prior to the fourth drug application. According Table 6 regardéss of the grade of NHL,
each drug application was followed by regrowth of at least 80%. The average regrowth
rate was 94% for HG, 95% for IG and 92% for LG. Regrowth of 100% or more occurred
for each grade, over different cycles: HG—tafthe fourth treatment; IG—after the fifth
treatment; LG—after the third treatment.

4.3.3. Time below threshold

Another aspect that we examined was the percentage of time in which the cell
population remained beneafh, 4 (3/4 initial size), S/ and Sy/4 (seeTable 3. During
most of the treatment, the population was maintained within the range of 25%—75% of
the original size. However, it did not decrease below this margin in any of the grades, and
in the case of LG it did not decrease below 50%. These results show a clear distinction
between HG and IG: treatmentceeded in maintaining IG belo® > 50% of the time,
as opposed to 11% in the case of HG.

4.3.4. Growth patterns of cell populations

Fig. 4 depicts the dynamics of HG, IG and LG NHL cell colonies under Doxorubicin
treatment. If we examine the dynamics of the different cell populations between cycles, we
observe behavior similar to that of the cell population without treatment: a rapid increase
followed by gradually increasing oscillations. We note that the oscillations of the LG NHL
population are less pronounced. In additiore taphs illustrate clearly that the drug
has less impact on LG NHL than on HG and IG as was implied by the previous results.
These effects are due to the LG NHL colony’s slow rate of growth. Moreover, the graphs
demonstrate that IG NHL was more effectively repressed by the treatment than HG NHL:
a dgnificant difference in population recovery rate following the fourth cycle led the I1G
NHL colony size to remain below thg, > threshold for the remainder of the simulation.

If we analyze the population regrowth after the Doxorubicin dosing, we can easily
distinguish between two stages. The first is a period of rapid and constant growth,
immediately following the drug effect. len, approximately 200 h after the drug

5 Regrowth from the first treatment has not been ldiggd due to the random choice of the initial size.
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91

The percentage of time for which the NHL cell population deses below particular significant thresholds when
Doxorubicin treatment is applied: six cycles of 10 mg?rdoses separated by 21 day intervals

Sg/4 (%) S1/2 (%) Si/4 (%)
HG NHL 94 11 0
IG NHL 99 50 0
LG NHL 80 0 0
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Fig. 4. From top to bottom right: HG NHL, IG NHL and@&NHL cell dynamics with Doxorubicin treatment: six
cycles of 10 mg m2 doses separated by 21 day intervals.

application, oscillations appear, often attaining considerable amplitudes. As mentioned
above, oscillations are a reflection of blood flow heterogeneity. Due to the effects of the
drug, cell clusters disaggregate, and the resulting decrease in overcrowdedness enables
proliferation to accelerate (see CA rulegjhen new cell aggregations appear, they coopt
vessds and modify their characteristics: engulfed vessels become immature and their radii
are randomly changed [see Efj)]( Consequently, blood flow becomes strongly irregular

in the aea. While the cell colony grows, a large proportion of vessels become immature,

thus destabilizing the blood flow over the entire domain. Several areas of the domain
become successively nutrient depleted, leading to cell death. The effects of this instability
are displayed irFig. 10, whichcompares NHL recovery from a chemotherapy cycle when
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vessé maturation/destabilization is implemented as opposed to when it is not. In the first
case we observe significant oscillations in p@pion size, whereas in the second the cell
population increases at a steady pace.

4.4. Model sensitivity to parameters

It is not always possible to derive necessary parameter values directly from clinical
data, especially in a model such as ours which is a two-dimensional representation of an
actual NHL tumor cell colony. When estimagithese valuesve rely a1 addtional data
provided by the model that can be companétth clinical results (see for examplable 2.
However, the potentiahfluence of the choice of parameter values on the model’'s behavior
cannot be disregarded.

The critical parameters that must be accounted for include:

e morphological parameters, i.e., blood vessel radikf Eq. (1)], which drectly affect
blood flow and distribution;

e the nutrient level below which cells go into quiescenagox);

e thenutrient level below which cells diegeatn -

First we examme the influence of these parameters on a ‘global’ level, by comparing
the overall effect of the treatment on the cell coloRig. 5 presents the ovall treatment
effect obtained over 300 h following one drug application, when different values of these
parameters are implemented. We can observe that the choitgfhas a significant
effect on the simulation’s outcome, whereas the ranges obtained by vapgagandr mat
are more limited.

If we attempt to characterize the tumor’s behavior under the influence of different
parameter values, we discover additional effects.

We observe that increasing the valuengéaincauses the size of the NHL cell population
at equilibrium to diminish. A population wilbnly continue to grow as long as the level
of available nutrients in its environment ibla to susta it. Therefore it is intuitively
obvious that the higher the nutrient level required to maintain the population, the smaller
that population will be.Fig. 6 demonstrates that whamyeath is increased to a certain
point the population size continues to osa#lathough its point of equilibrium is lower.
However, ifngeathis increased beyond this thresholds tell colony’s pont of equilibrium
is so low that it is virtually unable to grow after the initial drug application, and its size
remains almost constant. The lack of growth indicates that there are few or no changing
cell patterns, thus reducing blood flow heterogeneity and eliminating oscillations.

If we modify rmat and npjock, We observe that regardless of the value implemented,
the development of the colony can still be clearly divided into two stages as described
earlier, i.e., a period of constant growth followed by oscillations (Si&gs. 7 and 8).
However, different parameter values may affect the amplitude or other specific qualities
of the oscillations.

We enphasize that all estimated parameter values implemented in the model were
derived in accordance with clinical tda e.g., expected growth fractioBrons et al., 199
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Fig. 5. A histogram illustrating the overall treatmenteeff on HG NHL, 300 h after Doxorubicin administration.
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Fig. 6. Simulated HG NHL dynamics ovel000 h with one drug application @&t = 0. ngeath taken at
0.001 mM s™1 (the value inplemented in shuldions), at 0003 mM s ! and at 0005 mM s1.
5. Discussion

We presented a modelling framework and simulations aimed at predicting the qualitative
effect of Doxorubicin administration oNHL cell colonies. Our model takes into account
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Fig. 8. Simulated HG NHL dynamics ovel000 h with one drug application @ = 0. npjgck taken at
0.0066 mM s°1 (the value inplemented in simations) and at @08 mM s™L.

principal biological features such as NHL cell-cycle kinetics, Doxorubiciry PB and
blood flow heterogeneity.

The simulation results which most accialy reflect treatment efficacy are the
population regrowth rate between cycles and the percentage of time for which the
population is maintained below a certain threshold. The overall treatment effect, while
informative when used to compare between the different grades, does not provide a true
indication of efficacy. This is due to the fact that measurementis begun on a random colony
which has not necessarily reached equilibti and is stopped at an arbitrary time step.

Comparison between simulations of thefeliént grades of NHL shows treatment to be
least effective in the case of LG NHL, which displayed a high cell regrowth rate in addition
to a relatively weak drug impacTéble 5. This behavior is due to the low growth fraction
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Fig. 9. An illustration of the two distinct stages of colony regrowth following a 10 nig? rdoxorubicin
administration.

of LG NHL cells. This result has been reflected in clinical studies: LG NHL patients are
treated using a different protoc@l-lsmail et al., 198Y.

Furthemore, simulations indicate that treatment was inefficient on all three grades of
NHL. HG, IG and LG NHL displayed significant population regrowth following the effect
of each drug application. In some cases, bg end of the drug cycle the cell colony
managed to recover to a population exceediraj prior to the drug administration.

Blood flow heterogeneity appeared to be a key factor in these results. Simulations show
that a colony’s regrowth following the application of Doxorubicin can be divided into two
stages: a rapid and regular growth (first-stage regrowth) until aggregation of cells leads to a
large proportion of vessels becoming immature and thus structurally unstable [seB]EQ. (
This structural instability leads to blood flow becoming extremely perturbed, causing
consecutive regions to become nutrient depleted. The result is a pattern of significant
oscillations in population size (second stage regrowth) F&ge9).

The effect of blood flow heterogeneity is illustratedfig. 10, which compares cell
recovery from a chemotherapy cycle when theset maturatin/destabilization process is
taken into account, compared to a case in which this assumption is relaxed.

Applying an additional dosing while the system is oscillating will not improve the
effect, though a significant impact may occur oégaally if the new cycle is administered
while the system is at the minimum of the oscillation (6ég 9). However, efficacy can
be systematically improved if the new cycle of Doxorubicin treatment is applied while
recovery is still at its first stag€ig. 11 illustrates the model prediction following such an
application protocol on HG NHL.

We are thus led to the conclusion that in order to optimize the effect of Doxorubicin
treatment, it is not enough to merely reduce the dosing interval. The interval must be
reduced to a point at which additional drug cycles are applied before the NHL cell colony
has achance to enter the unstable, oscillating stage of its recoveryHiged1). Note
however that the current work does not consider possible toxic effects of the drug.
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Can biological vascular instability generatagnificant changesi blood supply in a
short time (less than one hundred hours) as depictédgn2?

We are not aware of any clinical studies estimating the timescale upon which the effects
of blood flow heterogeneity occur. However, the existence of a transition point prior to
which treatment needs to be applied in @rdo achieve the optimal effect seems an
intuitive conclusionFigs. 6-8 indicate that this conclusion is robust: regardless of specific
paameter values implemented, this transition point can be observed as long as the NHL
cell colony continues to grow.

Clearly our results are qualitative and should tteipreted as such. In order to provide
any quantitative indication of the effeof Doxorubicin on nonHodgkin’s lymphoma, a
three-dimasional structure and a larger domain enabling simulation of actual standard
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drugdoses must be considered. However, the study does illustrate the significant influence
of blood flow heterogeneity on the effect of Doxorubicin treatment.
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