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Abstract. This work is based on a previous model of Z. Agur, Y. Daniel and
Y. Ginosar (2002), retrieving the essential properties of homeostatic tissue de-
velopment, as reflected by the bone marrow. The original model, represented
by cellular automata on a connected, locally finite undirected graph, identi-
fies the minimal basic properties essential for maintaining tissue homeostasis
and for guaranteeing the ability of a few stem cells to repopulate the tissue
following its depletion. However, this model is too general to ensure a relative
“stability” of stem cell numbers in the tissue, a prerequisite for the integrity of
biological systems. In the present work, some natural limitations on the model
are introduced, under which a formula for the state of a given cell at any given
time is obtained, as well as for the proportion of stem cells as a function of
model parameters. For tube-like graphs, defined for modeling tissue engineer-
ing scaffolds and known tumor geometries, the system obtains a fixed cellular
composition, interpreted as homeostasis, thus enabling precise calculation of
the necessary conditions for tissue reconstruction. These results also can shed
light on conditions for disrupting homeostasis in cancerous tissues.

1. Introduction. Homeostasis, that is, the ability of living organisms to maintain
their physical integrity even under severe perturbations, is the most fundamental
property of complex organisms. For example, it guarantees the ability of a few
stem cells to repopulate a depleted bone marrow after extensive therapeutic irra-
diation [3]. A downside of the same homeostatic property is the persistent tumor
growth under intensive chemotherapy. Tumor integrity is still maintained by a rel-
atively small number of cancer stem cells even if the majority of cancer cells are
successfully eliminated by the drug.

Stem cells are unspecialized cells that can develop into the many different cell
types constituting our body. They can theoretically divide without limit, so as to
replenish cells of different organs, such as skin, bone, blood, brain etc. Stem cell re-
search has thus aroused considerable excitement in the medical research community
worldwide, due to the potential applications in fighting serious medical conditions,
such as cancer or birth defects, which are due to problems that occur during the
process of stem cell development. If researchers better understand the process of
stem cell development, they can perhaps fix disease-causing errors. Moreover, stem
cell research has potential applications in replacing damaged organs and tissues in
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patients, currently possible only by donation from a healthy donor — a difficult
and often impossible task. Stem cells are thus a potentially renewable replacement
source which might be used to treat numerous diseases including Parkinson’s and
Alzheimer’s diseases, spinal cord injuries, stroke, burn injuries, heart disease and
many others [6].

To address such medical challenges, we need to better understand the mechanisms
by which the balance between stem cell self-renewal and differentiation is controlled.
This understanding will enable medical manipulation of tissue development so as to
maintain tissue homeostasis under disruptive medical interventions, or to upset it,
for example, in treating oncologic diseases. The model presented here is simulated
elsewhere for analyzing this problem in the context of tissue damage in the intestine,
caused by Helicobacter pylori [5]. Results show that the proliferation-differentiation
balance is primarily determined by the magnitude of cell-to-cell signalling [2]. For
differential drug treatment and for optimizing tissue engineering it is imperative to
evaluate the cellular composition of the developing tissue at any given moment, as
well as the time until cellular structure stability of the replenished, or reconstructed,
tissue is attained. These latter tasks are taken up in the present work, where the
general model is restricted to describe developing tissues such as bone marrow,
intestines crypts and some solid tumor geometries.

In [1], a simple discrete model was introduced, based on a minimal number of
basic cell properties. This model suffices for showing how a few stem cells can
repopulate a depleted tissue and system’s homeostasis can be maintained. The
reader is cross-referred to the work [1] for the history and biological background of
the theme.

However, although the ability to maintain a minimal lower bound on cell numbers
is shown in the aforesaid work, so that the system is never extinguished, the model
is too general to guarantee a certain “stability” of the stem cell number in the tissue.
In other words, it does not exclude the possibility that large fluctuations exist in
the system so that tissue’s resilience is at risk.

2. ADG-models. In [1], G = 〈V, E〉 is a connected, locally finite undirected graph.
The set V of its vertices describes the set of all places for bone marrow cells. The
set E of graph edges describes neighbourhoods of influence in the bone marrow. A
state of a vertex is a pair. The first coordinate denotes the cell type: S, D or N.
Here, S is the designation for a stem cell, D for differentiated cell, and N represents
a vacant site in the tissue for a new cell to seed in. The second coordinate is a
non-negative integer which denotes an internal counter of the corresponding vertex.
A state of the graph is understood as states of all vertices of the graph. More
formally, a state of the graph is a mapping from the set of all its vertices into the
set of all possible vertex states.

An iterative operator on the set of all states of the graph is constructed in [1].
The operator depends on three non-negative integers Φ, Ψ and Θ, which represent
life span of differentiated cells, minimal time for differentiation of stem cell and
cell cycle length, respectively, the time units being the model steps. The state of
the graph at time t is denoted by xt. Then xt(v) means the state of a vertex v at
time t, so that there exists the initial state x0 at time 0. The iterative operator is
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determined by the following conditions:

xt(v) = 〈D, τ〉 =⇒ xt+1(v) =
{ 〈N, 0〉 if τ = Φ,
〈D, τ + 1〉 otherwise;

xt(v) = 〈S, τ〉 =⇒

=⇒ xt+1(v) =




〈D, 0〉 if τ = Ψ and each v’s neighbour is a stem cell,
〈S, τ〉 if τ = Ψ and there exists a non-stem neighbour of v,
〈S, τ + 1〉 otherwise;

xt(v) = 〈N, τ〉 =⇒ xt+1(v) =




〈S, 0〉 if τ = Θ and v has a stem neighbour,
〈N, τ + 1〉 if τ < Θ and v has a stem neighbour,
〈N, 0〉 otherwise.

Thus, the above iterative operator represents a single time step in the modelled
tissue:

• a differentiated cell at the stage τ (state 〈D, τ〉), with τ < Φ, increases its
life-time counter to state 〈D, τ + 1〉;

• a differentiated cell at the last stage of its life time (state 〈D, Φ〉) dies and its
state becomes 〈N, 0〉;

• a stem cell at the stage τ (state 〈S, τ〉), with τ < Ψ, increases its differentiation
counter to state 〈S, τ + 1〉;

• a stem cell at the last stage (state 〈S, Ψ〉) either remains in the same state
(when it has a non-stem neighbour, including vacant site), or differentiates to
state 〈D, 0〉 (when all its neighbours are stem cells);

• a vacant cell at the stage τ (state 〈N, τ〉), with τ < Θ, which has a stem
neighbour, increases its cell-cycle counter to state 〈N, τ + 1〉;

• a vacant cell at the last stage (state 〈N, Θ〉), which has a stem neighbour,
becomes a stem cell with the state 〈S, 0〉;

• a vacant cell at the stage τ (state 〈N, τ〉), which has no stem neighbour,
accepts the state 〈N, 0〉 (see Remark in the third paragraph of section 4).

We see that for every connected, locally finite graph G, every initial state and
every triple of parameters Φ, Ψ and Θ, a separate model is constructed. Let us call
it the Agur–Daniel–Ginosar model (shortly, ADG-model) of the type 〈Φ,Ψ, Θ〉 on
the graph G with the initial state x0.

In the ADG-model the number of daughters of a stem cell depends on the number
of N-vertices neighboring the S-vertex considered as the dividing stem cell. This
property of the model agrees with the empirical decreasing S-shaped curve which
describes the fraction of proliferating cells as a function of cell density [7, 9]. At low
density, cells proliferate at a maximal rate, and at higher densities, when cells are
confined by space and nutrition is limited, the percent of dividing cells will diminish.
At a certain limit, proliferation rate will tend to zero and a further elevation of
cell density will not considerably affect cell proliferation. This sigmoid-like curve
characterizing natural cell proliferation is also portrayed in the ADG-model. Let
proliferation rate at time t be the ratio between the number of N-vertices adjacent
to at least one S-vertex (and becoming S-vertices at some later moment, so that we
consider all the neighbors of S-vertex that are in the state 〈N, τ〉 with 0 6 τ 6 Θ) to
the number of all S-vertices. This number actually is proportional to the fraction of
new S-vertices within the total number of S-vertices at the moment t. Cell density is
described as the sum of S- and D-vertex numbers in the graph. When considering the
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relation between proliferation rate and cell density, the ADG-model also describes
a low-density range, in which all S-vertices are adjacent merely to N-vertices. At
this range, the rate of proliferation, i.e. N to S transition, is high, and is slightly
reduced when elevating cell density. There comes a point at which N-vertices are
simultaneously adjacent to more than one S-vertex and that is when proliferation
rate decreases considerably with the elevation of cell density. This effect of “mutual”
N-vertices increases when cell density is high, and, correspondingly, the effect of
“free” S-vertices (meaning S-vertices surrounded merely by N-vertices) decreases.
Above a certain density the changes in proliferation rate are negligible, and at the
maximal cell density it will be equal to zero. These results are a property of the
model, reflecting the behavior of tissue cell populations and serving as an additional
support for the model validity.

3. Regular subsets. In [1] some general results on ADG-models are obtained.
Here we limit the heterogenous class of all ADG-models in order to obtain more
detailed results, which may prove useful in the future. This description can be
viewed as defining properties of a stem cell signaling and proliferation network,
which is highly dependent on the available settling sites in the developing tissue
(bone marrow, intestine, etc.), as well as on the distance between stem cells and the
boundaries of the tissue. To follow the spread of the stem cells in the developing
tissue we define “culs-de-sac” as those stem cell sites, from which no further spread
is possible.

Let us denote by ρ(u, v) the distance between vertices u and v of a considered
connected graph in the shortest-path metric induced by it. And, similarly, let us
denote by ρ(u,U) the distance between a vertex u and a non-empty subset U (when
it is clear from the context that it is a set of graph vertices) of the graph base set:

ρ(u,U) = min
v∈U

ρ(u, v).

It is obvious that any couple of adjacent sites vary in distance from any subset of the
graph by no more than 1. Therefore in the following analysis we take for granted
that

(∀u, v ∈ V )(∀U ⊆ V )
(
U 6= ∅& ρ(u, v) = 1 −→

−→ ρ(u,U)− 1 6 ρ(v, U) 6 ρ(u,U) + 1
)
.

A vertex u of a connected graph will be called a cul-de-sac for a non-empty set
U of graph vertices in the graph, iff there is no vertex v 6= u of the graph such that
the equality

ρ(v, U) = ρ(u,U) + ρ(u, v)
holds. It is clear that u is a cul-de-sac for U in the graph if and only if there is no
vertex v such that the following equalities hold:

ρ(u, v) = 1, ρ(v, U) = ρ(u,U) + 1. (1)

A cul-de-sac u for a set U in the graph will be called strong, iff there is no vertex v
such that the equalities

ρ(u, v) = 2, ρ(v, U) = ρ(u,U) + 1

hold, and weak otherwise. It is clear that the cul-de-sac u for U is strong if and
only if for every vertex v, for which

ρ(u, v) = 1, ρ(u,U) = ρ(v, U),
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Figure 1. An example of a graph as presented by its diagram.
In this example, the vertex v11 is a strong cul-de-sac for the set
{v1; . . . ; v6}, while the vertex v9 is a weak cul-de-sac for the same
set.

v is a cul-de-sac for U in the graph. For example, in the graph, presented by its
diagram in Figure 1, the vertex v11 is a strong cul-de-sac for the set {v1; . . . ; v6},
while the vertex v9 is a weak cul-de-sac for the same set.

Let the value Cu for every vertex u of a connected graph be determined by the
following condition (where the graph and the non-empty set U of graph vertices are
clear from the context):

Cu =
{

0 if the vertex u is a cul-de-sac for a set U in the graph,
1 otherwise.

A non-empty set U of vertices of a connected graph 〈V, E〉 will be called a regular
subset of the graph, iff each vertex from U is connected by an edge with a vertex
from V \U , and for every cul-de-sac u for U in the graph the integer ρ(u,U) is even
and the cul-de-sac is strong.
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Example 1. Let k and n be non-negative integers, a1, . . . , ak be positive even
integers, V be the following subset of the (k + n)-dimensional space1:

V = {〈x1, . . . , xk+n〉 ∈ Zk+n | (∀i 6 k) 0 6 xi 6 ai},
E be a set of all pairs of neighbour points (i.e. connected by an edge) of V satisfying
the following formula:

〈〈x1, . . . , xk+n〉, 〈y1, . . . , yk+n〉〉 ∈ E ←→
k+n∑

i=1

|xi − yi| = 1. (2)

Then each subset of the form M1 × · · · × Mk+n ⊆ V , where for all i and for all
x, y ∈ Mi the conditions

x ≡ 0 (mod 2), x ≡ y (mod 4)

are valid, is a regular subset of the graph 〈V,E〉.
Example 2. Same as in Example 1, but replacing the definition (2) of E with the
following formula:

〈〈x1, . . . , xk+n〉, 〈y1, . . . , yk+n〉〉 ∈ E ←→
(
(∀i) |xi − yi| 6 1

)
&

(
(∃i)xi 6= yi

)
.

4. Regular ADG-models. Transplantation of donor stem cells to a depleted bone
marrow justifies the consideration of initial states in which there are no differen-
tiated cells and only a few stem cells, because, due to [1], even one initial stem
cell can well repopulate the entire tissue. It is biologically realistic to add to the
condition that all internal counters are equal to 0, that the life span of differentiated
cells is much longer than the stem cell-cycle time and that the process of differen-
tiation is relatively short. To consider such cases we define regular ADG-models as
follows hereafter. Note that the justifications for making various simplifications are
discussed in details in [2].

An ADG-model of a type 〈Φ,Ψ, Θ〉 with an initial state x0 will be called regular,
iff there exists a regular subset U of the graph such that the following conditions
hold:

Φ > Θ, Ψ 6 2Θ + 1, x0(u) =
{ 〈S, 0〉 if u ∈ U ,
〈N, 0〉 otherwise.

Then the set U will be called the corresponding regular subset.

Remark 1. Note that if the property

(∀i, u)
(
x0(u) = 〈N, i〉 −→ i = 0

)

of the initial state is fulfilled (this takes place always in the case of regular ADG-
models), then the following formula2 is true:

(∀k, u)
(
∀i ∈ {1; . . . ; Θ− 1}

)(
xk(u) = 〈N, i〉 −→ xk+1(u) = 〈N, i + 1〉

)
.

1It is natural to consider the case k +n = 3 only. But the other cases can be represented natu-
rally as well, because every graph has a suitable representation (diagram) in the three-dimensional
space.

2It is evident that in [1] this formula is taken for granted, without explicitly mentioning.
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Indeed, the equality xk(u) = 〈N, i〉 for positive integers i and k implies the
equality xk−1(u) = 〈N, i− 1〉 and existence of a stem neighbor s of the vertex u at
time k−1; however the stem neighbor does not become a differentiated cell at time
k, due to the fact that u is a non-stem neighbor of s at time k − 1.

Let (−̇) denote the following binary operation on the set Z:

x−̇y =
{

x− y if x > y,
0 otherwise.

In the following we use the symbol “{” to denote a system (a conjunction) of few
formulae, while the symbol “[” is used, in an analogous way, to denote a disjunction.

The proof of the following statement can be found in the Appendix.

Lemma 4.1. Let a tissue be described by a regular ADG-model of a type 〈Φ,Ψ, Θ〉
and U be the corresponding regular subset. At time t > 0 a vertex u of the graph is
in the following state xt(u):

• 〈N, 0〉 if



t 6 (Θ + 1)(ρ(u,U)− 1), (a)



ρ(u, U) ≡ 0 (mod 2), (b)
t > Ψ + Cu · ((Θ + 1)−̇Ψ) + (Θ + 1) · ρ(u,U), (c)
t ≡ Φ + Ψ + 2 + Cu · ((Θ + 1)−̇Ψ) +
+ (Θ + 1) · ρ(u,U) (mod Φ + Ψ + Θ + 3); (d)

(3)

• 〈N, τ〉 (where τ ∈ {1; . . . ; Θ}) if



t = τ + (Θ + 1) · (ρ(u,U)− 1), (a)



(3b),
(3c),
t ≡ Φ + Ψ + τ + 2 + Cu · ((Θ + 1)−̇Ψ) +
+ (Θ + 1) · ρ(u,U) (mod Φ + Ψ + Θ + 3); (b)

(4)

• 〈S, τ〉 (where τ ∈ {0; . . . ; Ψ− 1}) if



t = τ + (Θ + 1) · ρ(u,U), (a)



(3b),
(3c),
t ≡ τ + Cu · ((Θ + 1)−̇Ψ) +
+ (Θ + 1) · ρ(u,U) (mod Φ + Ψ + Θ + 3); (b)

(5)

• 〈S, Ψ〉 if




t > Ψ + (Θ + 1) · ρ(u,U), (a)


ρ(u, U) ≡ 1 (mod 2), (b)
t < Ψ + Cu · ((Θ + 1)−̇Ψ) + (Θ + 1) · ρ(u,U), (c)
t ≡ Ψ + Cu · ((Θ + 1)−̇Ψ) +
+ (Θ + 1) · ρ(u,U) (mod Φ + Ψ + Θ + 3); (d)

(6)

• 〈D, τ〉 (where τ ∈ {0; . . . ; Φ}) if




(3b),
(3c),
t ≡ Ψ + τ + 1 + Cu · ((Θ + 1)−̇Ψ) +
+ (Θ + 1) · ρ(u,U) (mod Φ + Ψ + Θ + 3). (a)

(7)

The enumerated cases are all possible ones.
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Remark 2. The above lemma allows to determine the state of any vertex of the
graph at time t, depending on its distance from the initial set. To facilitate the
later use of the results of this lemma we also formulate its statement for different
positions of u, relatively to U , and for sequential time periods.

Consider ADG-model of a type 〈Φ,Ψ, Θ〉 with the corresponding regular subset
U . Let u be a vertex.

Define P = Φ + Ψ + Θ + 3, t1 = (Θ + 1)(ρ(u, U)− 1), t2 = (Θ + 1)ρ(u,U).
• If u ∈ U , then:

– for 0 6 t 6 Ψ, the state of u is 〈S, t〉,
– for Ψ + 1 6 t 6 max{Ψ, Θ + 1}, the state of u is 〈S, Ψ〉
– for t > max{Ψ, Θ + 1} the states of u are periodical with period P . Let

τ be the remainder of t−max{Ψ, Θ + 1} − 1 modulo P . Then the state
of u is:
∗ 〈D, τ〉, if 0 6 τ 6 Φ,
∗ 〈N, τ − Φ− 1〉, if Φ + 1 6 τ 6 Φ + 1 + Θ,
∗ 〈S, τ − Φ−Θ− 2〉, if Φ + Θ + 2 6 τ 6 Φ + Θ + 2 + Ψ.

• If ρ(u,U) ≡ 1 (mod 2), then:
– for t 6 t1, the state of u is 〈N, 0〉,
– for t1 + 1 6 t 6 t2 − 1, the state of u is 〈N, t− t1〉,
– for t2 6 t 6 t2 + Ψ− 1, the state of u is 〈S, t− t2〉,
– for t > t2 + Ψ, the state of u is 〈S, Ψ〉.

• If ρ(u,U) ≡ 0 (mod 2), ρ(u,U) > 0 and u is cul-de-sac:
– for t 6 t1, the state of u is 〈N, 0〉,
– for t1 + 1 6 t 6 t2 − 1, the state of u is 〈N, t− t1〉,
– for t2 6 t 6 t2 + Ψ, the state of u is 〈S, t− t2〉,
– for t > t2 + Ψ the states of u are periodical with period P . Let τ be the

remainder of t− t2 −Ψ− 1 modulo P . Then the state of u is:
∗ 〈D, τ〉, if 0 6 τ 6 Φ,
∗ 〈N, τ − Φ− 1〉, if Φ + 1 6 τ 6 Φ + 1 + Θ,
∗ 〈S, τ − Φ−Θ− 2〉, if Φ + Θ + 2 6 τ 6 Φ + Θ + 2 + Ψ.

• If ρ(u,U) ≡ 0 (mod 2), ρ(u,U) > 0 and u is not cul-de-sac:
– for t 6 t1, the state of u is 〈N, 0〉,
– for t1 + 1 6 t 6 t2 − 1, the state of u is 〈N, t− t1〉,
– for t2 6 t 6 t2 + Ψ− 1, the state of u is 〈S, t− t2〉,
– for t2 + Ψ 6 t 6 t2 + max{Ψ, Θ + 1)}, the state of u is 〈S, Ψ〉,
– for t > t2 + max{Ψ,Θ + 1)} the states of u are periodical with period P .

Let τ be the remainder of t − t2 −max{Ψ,Θ + 1} − 1 modulo P . Then
the state of u is:
∗ 〈D, τ〉, if 0 6 τ 6 Φ,
∗ 〈N, τ − Φ− 1〉, if Φ + 1 6 τ 6 Φ + 1 + Θ,
∗ 〈S, τ − Φ−Θ− 2〉, if Φ + Θ + 2 6 τ 6 Φ + Θ + 2 + Ψ.

Let us define for each connected finite graph the function χ, which maps every
subset U of graph vertices to the real number, equal to the fraction of those vertices
u of the graph for which the integer ρ(u,U) is odd.

Theorem 4.2. Let a tissue be described by a regular ADG-model of a type 〈Φ,Ψ, Θ〉
on a finite graph having n vertices and U be the corresponding regular subset. Then
starting with the time (Θ+1) max

u
ρ(u, U) the average numbers of all stem cells and

of all differentiated ones in the tissue over any time period of Φ + Ψ + Θ + 3 steps
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are equal correspondingly to

S̄ = n

(
χ(U) +

(
1− χ(U)

)
· Ψ + 1
Φ + Ψ + Θ + 3

)
,

D̄ = n
(
1− χ(U)

)
· Φ + 1
Φ + Ψ + Θ + 3

.

Proof. From Lemma 4.1 it follows that over each such time period n(1 − χ(U))
vertices will be Ψ + 1 moments in the state of stem cells and Φ + 1 moments in
the state of differentiated cells, while the rest nχ(U) vertices will be Φ + Ψ + Θ + 3
moments in the state of stem cells. Thus, the average numbers of stem cells and
differentiated ones are equal to S̄ and D̄ correspondingly.

Due to the Theorem 4.2 the following definition is natural. Define the fraction
of stem cells in the population as the ratio between the average number of all stem
cells over a time period of Φ + Ψ + Θ + 3 steps to the average number of all cells
over the same period3.

Theorem 4.3. Let a tissue be described by a regular ADG-model of a type 〈Φ,Ψ, Θ〉
on a finite graph and U be the corresponding regular subset. Then starting with the
time (Θ + 1) max

u
ρ(u,U) the fraction of stem cells in the population in the tissue is

(Φ + Θ + 2)χ(U) + Ψ + 1
(Θ + 1)χ(U) + Φ + Ψ + 2

.

Proof. The desired fraction is given by the expression

S̄

S̄ + D̄
,

using the notation of Theorem 4.2. Substituting the expressions given by Theo-
rem 4.2 and simplifying, we obtain the result.

5. Tube-like regular ADG-models. Here we would like to focus on specific
tissue shapes, in particular, on the cylindrical ones. Those are of interest especially
in tissue engineering, where an artificial scaffold of a certain shape and dimensions
is constructed and mounted with stem cells at specific sites [8]. The evolved system
is then transplanted at the desired organ. This shape is also relatively common in
tumor cooption forming cylindrical arrangements of tumor cells growing around a
blood vessel [4]. It is natural to restrict our attention by considering ADG-models
that are cylindrical, as is the shape of the bones in the body and intestinal crypts,
for example. To describe a cylindrical tissue in our model, we demand an equal
texture of different layers in the sections of such cylinder and direct connections
between closed layers. Let us formulate the concept precisely.

For a set B and a natural number h, a graph (B × {0; . . . ;h}; δ), where the set
δ of edges satisfies the conditions

(∀x, y ∈ B)(∀i, j ∈ {0; . . . ; h})
(
δ(〈x, i〉, 〈y, i〉) ←→ δ(〈x, j〉, 〈y, j〉)

)
,

(∀x, y ∈ B)(∀i ∈ {0; . . . ;h})(∀j 6= i)
(
δ(〈x, i〉, 〈y, j〉) ←→ x = y & |i− j| = 1

)
,

will be called a simple tube with the layers B×{0}, . . . , B×{h} or a simple tube, for
short. Then the subsets B × {0} and B × {h} will be called the bases of the simple

3It should not be assumed that the ratio must be equal to the time average of the fraction of
stem cells in the set of all cells.
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tube with these layers, h will be called the altitude of the simple tube with these layers
and the longest distance inside one layer in the shortest-path metric induced by the
graph will be called the diameter of the simple tube with these layers. The set B in
this definition represents a projection of all layers in the sections of the cylinder. A
regular ADG-model on a graph will be called tube-like or in other words cylindric-
like or prism-like, iff the graph is isomorphic to a simple tube with some layers,
which will be called a corresponding tube with these layers, and the isomorphic
image of the corresponding regular subset under this isomorphism contains only
vertices of one layer. Note, that in this case for such regular subset U we have the
following inequalities:

h

2h + 2
6 χ(U) 6 h + 2

2h + 2
.

This follows from the fact that if some vertex in the layer B × {i} is at distance
ρ from U , then the vertices connected to it in the layers B × {i ± 1} (i.e. the
vertices “above” an “below” it) are at distances of either ρ + 1 or ρ − 1 from U .
That means that for sufficiently large values of h the value of χ(U) is close to 0.5.
It follows that in the statements of Theorem 4.2 and Theorem 4.3 the calculated
values practically almost do not depend of the choice of the regular subset. Note
also that in tube-like ADG-model, the set of all culs-de-sac is confined within the
bases of the tube, B × {0} and B × {h}.
Theorem 5.1. Let a tissue be described by a tube-like regular ADG-model of a
type 〈Φ,Ψ, Θ〉 with layers L0, . . . , Lh, and integers h and d be correspondingly
the altitude and the diameter of the corresponding simple tube with these layers.
Assume that the integers 2(Θ + 1) and Φ + Ψ + Θ + 3 are relatively prime. Then
there exist integers s and u, such that at each moment starting from (d+h)(Θ+1),
the numbers of all stem cells and of all differentiated cells in the tissue do not differ
from s and u, correspondingly, more than by γ%, where

γ =
400(Φ + Ψ + Θ + 3)

h + 1
<

1600(Φ + 1)
h

.

Proof. Without loss of generality we can assume that the graph is just this simple
tube with these layers and the corresponding regular subset is included in the layer

B × {m} with the condition m 6 h

2
. Let m1 be the minimal non-negative integer

satisfying the condition

m1 ≡ m (mod 2(Φ + Ψ + Θ + 3)),

m2 be the maximal integer satisfying the conditions

m2 6 h, m2 ≡ m (mod 2(Φ + Ψ + Θ + 3))

and k, s and u be the following integers:

k = 2 +
m2 −m1

2(Φ + Ψ + Θ + 3)
, s = k(Φ + 2Ψ + Θ + 4) · |B|, u = k(Φ + 1) · |B|.

By Lemma 4.1, the numbers of all stem cells at an arbitrary moment, starting from
(d + h)(Θ + 1), in the sets

B × {m1 + 1; . . . ; m2}, T, (B × {0; . . . ; m1; m2 + 1; . . . ; h}) \ T,
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where T is the set of all culs-de-sac for the regular subset, are as follows: the first
one is equal to

m2 −m1

2(Φ + Ψ + Θ + 3)
· (Φ + 2Ψ + Θ + 4) · |B| = k − 2

k
· s,

and each one of the two others is less than or equal to

2(Φ + 2Ψ + Θ + 4) · |B| = 2
k
· s.

Then the sum of these three integers is between
k − 2

k
· s and

k + 2
k

· s, whence

the sum does not differ from s more than
200
k

%. The analogous assertion for
differentiated cells holds, replacing Φ+2Ψ+Θ+4 with Φ+1 and s with u. Finally,

γ 6 200
k

6 400(Φ + Ψ + Θ + 3)
h + 1

6 400(Φ + 2Θ + 1 + Θ + 3)
h + 1

6

6 400(Φ + 2Φ + 1 + Φ + 3)
h + 1

<
1600(Φ + 1)

h
,

as required.

Corollary 1. Let a tissue be a tube-like regular ADG-model of a type 〈Φ,Ψ, Θ〉
with layers L0, . . . , Lh, integers h and d be correspondingly the altitude and the
diameter of corresponding simple tube with these layers, and the integers 2(Θ + 1)
and Φ + Ψ + Θ + 3 be relatively prime. And let γ be an arbitrary given real number
from the interval (0; 100). Then a sufficient condition for the existence of integers s
and u, such that at each moment, beginning at the time (d+h)(Θ+1), the numbers
of all stem cells and of all differentiated cells in the tissue do not differ from s and
u correspondingly more than γ%, is the inequality

h > 1600(Φ + 1)
γ

.

One can see from the proof of Theorem 5.1 (and this is corroborated by com-
puter simulations4) that the estimations from Theorem 5.1 and consequently from
Corollary 1 are rough and can be improved under further constraints. In contrast,
attempts to narrow the estimated interval impede generality of the results or lead
to considerably more bulky wordings and computations.

Nevertheless, we consider a result, which is special by its absolute stationarity.

Theorem 5.2. Let a tissue be a tube-like regular ADG-model of a type 〈Φ,Ψ, Θ〉
with layers L0, . . . , Lh, where the regular subset is included in one of the bases
L0 or Lh, and integers h and d be correspondingly the altitude and the diameter
of corresponding simple tube with these layers. And let the integers 2(Θ + 1) and
Φ + Ψ + Θ + 3 be relatively prime and the conditions

Ψ > Θ, (h + 1) ≡ 0 (mod 2(Φ + Ψ + Θ + 3)) (8)

hold. Then starting with the time (d + h)(Θ + 1) the numbers of all stem cells and
of all differentiated cells in the tissue do not change at all.

4Z. Agur, O. U. Kirnasovsky and L. Levi; in preparation.
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Proof. Without loss of generality we can assume that the graph is just this simple
tube with these layers and the corresponding regular subset is included in the layer
B × {0}. By Lemma 4.1, at each moment t, starting from (d + h)(Θ + 1), the
numbers of all stem cells and of all differentiated cells in every set of the form

B × {i · 2(Φ + Ψ + Θ + 3); . . . ; (i + 1) · 2(Φ + Ψ + Θ + 3)− 1}
do not depend on t and on i, when

0 < i · 2(Φ + Ψ + Θ + 3), (i + 1) · 2(Φ + Ψ + Θ + 3)− 1 < h

or when

Ψ > Θ, 0 6 i · 2(Φ + Ψ + Θ + 3), (i + 1) · 2(Φ + Ψ + Θ + 3)− 1 6 h.

Thus, the conditions (8) are sufficient for such steady state of the numbers of stem
cells and differentiated cells.

6. Discussion. Recall that the model constructed in [1] determines the common
sense ground rules governing individual stem cell behavior, allowing factors which
influence the “decision” of individual stem cells to proliferate, differentiate or remain
quiescent, to be modulated. Even though the representation of the developing
system is very simple, the properties that emerge are general and hold for more
complex descriptions.

It is clear that all properties of the general model are conserved for the model
presented here. Moreover, our regular model guarantees (almost-) stability of stem
cell numbers in the considered system. For the general case, the exact average
numbers of cells of all types are computed and are shown to be constant. In addition,
for the special case of tube-like shape, it is shown that all cell numbers at each time
step are close to that average. Based on these results we can add to the discussion
of the work [1] the statement that even a simple non-stochastic model enables to
maintain practically stable number of stem cells. This means, that there is no
necessity to assume existence of more elaborate mechanisms to explain the basic
properties of such homeostasis. Moreover, this is an important result as it enables
to a priori determine the initial tissue structure which, eventually, will become
resilient.

The average fraction of stem cells in a steady state of the system is expressed
via the kinetic parameters of the model and its spatial organization. This formula
enables to evaluate the fraction of stem cells at any moment. Note that this may
be important in all in vivo situations, since the available experimental methods to
evaluate these proportions may be detrimental. Moreover, this information is ex-
tremely valuable when therapy of solid tumor is considered. As treatment should
target only the malignant stem cells, their fraction at the moment of therapy ini-
tiation should determine the drug schedule. Moreover, the formula for the time
elapsing from process initiation to the achievement of a fully resilient tissue may
be important for bone marrow transplantation procedures and tissue engineering,
which rely on a small number of stem cells replenishing empty scaffolds.

In summary, our work provides further support to the previously developed no-
tion that homeostasis in developing tissues is obtained by a negative feedback of
stem cells on their proliferation. Furthermore, our work provides analytical tools
for designing efficient medical interventions.
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7. Appendix: Proof of Lemma 4.1. Let us show, first, that there are no con-
ditions of the theorem for different states of the vertex u that can take place simul-
taneously. Then we will be able, obtaining the condition for a state, to conclude
automatically that conditions for all other states are false. Let us consider all pos-
sible cases.

If the inequality (3a) is true then the inequalities (3c) and (6a), for 1 6 τ 6 Θ
the equality (4a) and for 0 6 τ < Ψ the equality (5a) are false. If the conjunction
of the relationships (3b), (3c) and (3d) is true then the relationship (6b) is false
due to (3b), the inequality (6c), for 1 6 τ 6 Θ the equality (4a) and for 0 6 τ < Ψ
the equality (5a) are false due to (3c), and the relationship (6d), for 1 6 τ 6 Θ
the relationship (4b), for 0 6 τ < Ψ the relationship (5b) and for 0 6 τ 6 Φ the
relationship (7a) are false due to (3d). Thus, the condition for the state 〈N, 0〉 is
possible simultaneously with the condition of no another state.

Let µ ∈ {1; . . . ; Θ}. If for τ = µ the equality (4a) is true then the inequalities
(3c), (6a), for τ 6= µ where 1 6 τ 6 Θ the equality (4a) and for 0 6 τ < Ψ the
equality (5a) are false. If the conjunction of the relationships (3b), (3c) and (4b)
with τ = µ is true then the relationship (6b) is false due to (3b), the inequality
(6c), for 1 6 τ 6 Θ the equality (4a) and for 0 6 τ < Ψ the equality (5a) are false
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due to (3c), and the relationship (6d), for τ 6= µ where 1 6 τ 6 Θ the relationship
(4b), for 0 6 τ < Ψ the relationship (5b) and for 0 6 τ 6 Φ the relationship (7a)
are false due to (4b) with τ = µ. Thus, the condition for the state 〈N, µ〉 is possible
simultaneously with the condition of no another state.

Now, let µ ∈ {0; . . . ; Ψ − 1}. If for τ = µ the equality (5a) is true then the
inequalities (3c), (6a) and for τ 6= µ where 0 6 τ < Ψ the equality (5a) are false.
If the conjunction of the relationships (3b), (3c) and (5b) with τ = µ is true then
the relationship (6b) is false due to (3b), the inequality (6c) and for 0 6 τ < Ψ
the equality (5a) are false due to (3c), and the relationship (6d), for τ 6= µ where
0 6 τ < Ψ the relationship (5b) and for 0 6 τ 6 Φ the relationship (7a) are
false due to (5b) with τ = µ. Thus, the condition for the state 〈S, µ〉 is possible
simultaneously with the condition of no another state.

Now, let µ ∈ {0; . . . ; Φ}. If for τ = µ the conjunction (7) is true then the
relationship (6b) is false due to (3b), the inequality (6c) is false due to (3c), and
the relationship (6d) and for τ 6= µ where 0 6 τ 6 Φ the relationship (7a) are
false due to (7a) with τ = µ. Thus, the condition for the state 〈D, µ〉 is possible
simultaneously with the condition of no another state.

So, for no pair of different states the corresponding conditions of the theorem for
the states hold simultaneously. Therefore, it remains to prove that for every t and
u the corresponding condition of the theorem for the state xt(u) is true.

Note that the condition (6) is equivalent to the same condition when replacing
the strict inequality (6c) with the corresponding not strict one:

t 6 Ψ + Cu · ((Θ + 1)−̇Ψ) + (Θ + 1) · ρ(u,U), (9)

because in the case, when (9) is true but (6c) does not, the relationship (6d) holds.
Fix a vertex u. Let us prove the statement of the theorem by mathematical

induction on the variable t. Let t = 0. If u /∈ U then

xt(u) = 〈N, 0〉.
On the other hand, the condition (3) is true, because (3a) is true. If u ∈ U then

xt(u) = 〈S, 0〉.
On the other hand, the corresponding condition for 〈S, 0〉 is true. Indeed, if Ψ = 0
then this condition is (6) which follows from the true inequalities (6a) and (9), and
if Ψ 6= 0 then this condition is (5) with τ = 0 which follows from the true equality
(5a). The base case t = 0 is proved. Now, let us fix an arbitrary integer k > 0.
Assume that with t = k the statement is true and prove that one is true with
t = k + 1 as well. Firstly note that there exists a vertex v such that the equalities

ρ(u, v) = 1, ρ(u,U) = ρ(v, U) + 1 (10)

are true if and only if u /∈ U . Secondly, recall remarks to the definitions of a
cul-de-sac and of a strong cul-de-sac. Let us consider now all possible cases.

Case 1: the state xk(u) is either 〈N,µ〉 with 1 6 µ < Θ or 〈S, µ〉 with µ 6 Ψ− 2
or 〈D, µ〉 with µ < Φ. Then the corresponding equality from the following ones is
true:

xk+1(u) = 〈N, µ + 1〉, xk+1(u) = 〈S, µ + 1〉, xk+1(u) = 〈D,µ + 1〉.
On the other hand, it is clear that if one of three conditions (4), (5) or (7) is true
when t = k and τ = µ then the same condition of them is true when t = k + 1 and
τ = µ + 1 as well.
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Case 2: xk(u) = 〈D, Φ〉. Then xk+1(u) = 〈N, 0〉. On the other hand, by in-
ductive assumption, the condition (7) is true when t = k and τ = Φ. Thence the
relationships (3b), (3c) and (3d) are true when t = k + 1, and therefore (3) is true
when t = k + 1.

Case 3: xk(u) = 〈N, 0〉. By inductive assumption, we have (3) for t = k.
Subcase 3.1: k < (Θ + 1)(ρ(u,U) − 1). It is clear that for each neighbor vertex

v of u either the inequality (3a) or for some τ ∈ {1; . . . ; Θ} the equality (4a) holds
substituting t = k and u = v. By inductive assumption, we have that all neighbors
of u are in states of the form 〈N, α〉 at time k. So,

xk+1(u) = 〈N, 0〉.
On the other hand, for t = k + 1 the inequality (3a) holds.

Subcase 3.2: k = (Θ + 1)(ρ(u,U)− 1). Then u /∈ U , and therefore there exists a
vertex v satisfying the equalities (10). This means that for τ = 0 the equality (5a)
holds substituting t = k and u = v (if Ψ = 0, then the inequalities (6a) and (9)
hold with the same substitutions). By inductive assumption, we have that

xk(v) = 〈S, 0〉.
Thence,

xk+1(u) =
{ 〈S, 0〉 if Θ = 0,
〈N, 1〉 if Θ 6= 0. (11)

On the other hand, the equality (4a), and hence the condition (4), is true when
t = k + 1 and τ = 1, whence for the case Θ = 0 the condition (5) is true when
t = k + 1 and τ = 0 (and thence for the case Θ = Ψ = 0 the condition (6) is true
when t = k + 1, because the inequalities (6a) and (9) are true).

Subcase 3.3: the relationships (3b), (3c) and (3d) for t = k are fulfilled simul-
taneously (note that then the first and the second ones are true for t = k + 1 as
well). Because U is a regular subset of the graph, there exists a neighbor vertex v
of u such that either (1) or (10). From (3c) and (3d) for t = k we have that

k > Φ + Ψ + 2 + Cu · ((Θ + 1)−̇Ψ) + (Θ + 1) · ρ(u,U).

However, Φ > Θ, therefore

k > Ψ + Θ + 2 + Cu · ((Θ + 1)−̇Ψ) + (Θ + 1) · ρ(u,U),

whence for t = k the inequality (6a) is true when substituting u = v. It is clear
that the relationship (6b) substituting u = v is true as well. Then by inductive
assumption, we have that

xk(v) = 〈S, Ψ〉.
Thence we obtain (11). On the other hand, the relationship (4b), and hence the
condition (4), is true when t = k + 1 and τ = 1, whence for the case Θ = 0 the
condition (5) is true when t = k + 1 and τ = 0 (and thence for the case Θ = Ψ = 0
the condition (6) is true when t = k + 1, because the inequalities (6a) and (9) are
true).

Case 4: xk(u) = 〈N, Θ〉 with Θ 6= 0. Then xk+1(u) = 〈S, 0〉. On the other hand,
by inductive assumption, the condition (4) is true when t = k and τ = Θ. Thence,
the condition (5) is true when t = k + 1 and τ = 0, and for the case Ψ = 0 the
condition (6) is true when t = k + 1, because the inequalities (6a) and (9) are true.

Case 5: xk(u) = 〈S, Ψ − 1〉. Then xk+1(u) = 〈S, Ψ〉. On the other hand, by
inductive assumption, the condition (5) is true when t = k and τ = Ψ − 1. Then
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the condition (6) is true when t = k+1. Indeed, if the equality (5a) is true for t = k
and τ = Ψ − 1 then the inequalities (6a) and (9) are true for t = k + 1, and if the
relationships (3c) and (5b) are true for t = k and τ = Ψ− 1 then the relationships
(6a) and (6d) are true for t = k + 1.

Case 6: xk(u) = 〈S, Ψ〉. By inductive assumption, we have (6) for t = k. In
particular, the inequality (6a) is true with t = k.

Subcase 6.1: the integer ρ(u,U) is odd. Then u is not a cul-de-sac for U and
u /∈ U . This implies that there exist a vertex v with the conditions (1) and a vertex
w with the conditions (10) substituting v = w. Note that the vertex w is not a
cul-de-sac for the set U . Let us assume that the vertices v and w are in states of the
form 〈S, α〉 and 〈S, β〉 correspondingly at time k. Then by inductive assumption,
we have the following facts: if α = Ψ, then the inequality

k > Ψ + (Θ + 1)(ρ(u,U) + 1) (12)

and at least one of the conditions

k < Ψ + Cv · ((Θ + 1)−̇Ψ) + (Θ + 1)(ρ(u,U) + 1), (13)
k ≡ Ψ + Cv · ((Θ + 1)−̇Ψ) +

+(Θ + 1)(ρ(u,U) + 1) (mod Φ + Ψ + Θ + 3) (14)

are true; if α ∈ {0; . . . ; Ψ− 1}, then the equality

k = α + (Θ + 1)(ρ(u,U) + 1) (15)

or both of the conditions

k > Ψ + Cv · ((Θ + 1)−̇Ψ) + (Θ + 1)(ρ(u,U) + 1), (16)
k ≡ α + Cv · ((Θ + 1)−̇Ψ) +

+(Θ + 1)(ρ(u,U) + 1) (mod Φ + Ψ + Θ + 3) (17)

is (are) true; if β = Ψ, then at least one of the conditions

k < Ψ + ((Θ + 1)−̇Ψ) + (Θ + 1)(ρ(u,U)− 1), (18)
k ≡ Ψ + ((Θ + 1)−̇Ψ) +

+(Θ + 1)(ρ(u,U)− 1) (mod Φ + Ψ + Θ + 3) (19)

is true; and if β ∈ {0; . . . ; Ψ− 1}, then the congruence

k ≡ β + ((Θ + 1)−̇Ψ) +
+(Θ + 1)(ρ(u,U)− 1) (mod Φ + Ψ + Θ + 3) (20)

is true, because the equality

k = β + (Θ + 1)(ρ(u,U)− 1)

contradicts the inequality (6a).
Let α = β = Ψ. Then we have

(12)&
(
(13) ∨ (14)

)
&

(
(18) ∨ (19)

)
.

If the inequalities (12) and (18) hold both, then

Ψ + (Θ + 1)(ρ(u,U) + 1) < Ψ + ((Θ + 1)−̇Ψ) + (Θ + 1)(ρ(u,U)− 1),

whence 2(Θ + 1) < (Θ + 1)−̇Ψ 6 Θ + 1. A contradiction. If the congruences (14)
and (19) hold both, then

(1− Cv) · ((Θ + 1)−̇Ψ) ≡ 2(Θ + 1) (mod Φ + Ψ + Θ + 3).
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But this contradicts the chain of the following evident inequalities:

0 6 (1− Cv) · ((Θ + 1)−̇Ψ) 6 Θ + 1 < 2(Θ + 1) 6 Φ + Θ + 2 < Φ + Ψ + Θ + 3.

Hence, (12)& (13)& (19). Accounting the evident inequalities

((Θ + 1)−̇Ψ) + (Θ + 1)(ρ(u,U)− 1) 6
6 (Θ + 1) + (Θ + 1)(ρ(u,U)− 1) <
< (Θ + 1)(ρ(u,U) + 1),

(21)

we have from the conditions (12) and (19) the inequality

k > Φ + Ψ + Θ + 3 + ((Θ + 1)−̇Ψ) + (Θ + 1)(ρ(u,U)− 1). (22)

Combining it with (13), we obtain the inequality

Φ + Ψ + Θ + 3 + ((Θ + 1)−̇Ψ) + (Θ + 1)(ρ(u,U)− 1) <
< Ψ + Cv · ((Θ + 1)−̇Ψ) + (Θ + 1)(ρ(u,U) + 1), (23)

which contradicts the inequality Φ > Θ.
Let now α < β = Ψ. Then we have

(
(15) ∨

(
(16)& (17)

))
&

(
(18) ∨ (19)

)
.

If the conditions (15) and (18) hold both, then

α + 2(Θ + 1) < Ψ + ((Θ + 1)−̇Ψ),

whence we obtain the inequality

2(Θ + 1)− ((Θ + 1)−̇Ψ) 6 Ψ, (24)

which contradicts the inequality Ψ 6 2Θ + 1. Indeed, if two these inequalities are
true both, then

(Θ + 1)−̇Ψ > 2(Θ + 1)−Ψ > 2(Θ + 1)− (2Θ + 1) = 1 > 0,

whence Θ + 1 > Ψ, and consequently we get a contradiction in the following way:

2(Θ + 1)− ((Θ + 1)−̇Ψ) = 2(Θ + 1)− (Θ + 1−Ψ) = Ψ + Θ + 1 > Ψ.

If the conditions (15) and (19) hold both, then

α + 2(Θ + 1) ≡ Ψ + ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3),

whence Ψ− α ≡ 2(Θ + 1)− ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3). Then, accounting
the evident inequalities

0 < Ψ− (Ψ− 1) 6 Ψ− α 6 Ψ < Φ + Ψ + Θ + 2,
0 < 2(Θ + 1)− (Θ + 1) 6 2(Θ + 1)− ((Θ + 1)−̇Ψ) 6

6 2(Θ + 1) 6 Φ + Θ + 2 6 Φ + Ψ + Θ + 2,
(25)

we obtain that Ψ − α = 2(Θ + 1) − ((Θ + 1)−̇Ψ), whence we have the inequality
(24), which contradicts the inequality Ψ 6 2Θ + 1. Thus, the conditions (16) and
(17) are true both. If the inequality (18) is true as well, then

Ψ+Cv ·((Θ+1)−̇Ψ)+(Θ+1)(ρ(u,U)+1) < Ψ+((Θ+1)−̇Ψ)+(Θ+1)(ρ(u,U)−1),

whence 2(Θ + 1) < (1−Cv) · ((Θ + 1)−̇Ψ) 6 (Θ + 1)−̇Ψ 6 Θ + 1. A contradiction.
Hence, (19) is true. Then from (17) we obtain the congruence

α + Cv · ((Θ + 1)−̇Ψ) + 2(Θ + 1) ≡ Ψ + ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3),
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whence Ψ − α ≡ 2(Θ + 1) − (1 − Cv) · ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3). Then,
accounting the evident inequalities (25) and

0 < 2(Θ + 1)− (Θ + 1) 6 2(Θ + 1)− (1− Cv) · ((Θ + 1)−̇Ψ) 6
6 2(Θ + 1) 6 Φ + Θ + 2 6 Φ + Ψ + Θ + 2,

we obtain that Ψ − α = 2(Θ + 1) − (1 − Cv) · ((Θ + 1)−̇Ψ), whence we have the
inequality (24), which contradicts the inequality Ψ 6 2Θ + 1.

Let now β < α = Ψ. Then we have

(12)&
(
(13) ∨ (14)

)
&(20).

If (14) is true then from (14) and (20) we obtain the congruence

Ψ + Cv · ((Θ + 1)−̇Ψ) + 2(Θ + 1) ≡ β + ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3),

whence

Ψ− β + 2(Θ + 1) ≡ (1− Cv) · ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3),

that contradicts the chain of the following evident inequalities

0 6 (1−Cv)·((Θ+1)−̇Ψ) 6 Θ+1 < Ψ−β+2(Θ+1) 6 Ψ+2(Θ+1) 6 Φ+Ψ+Θ+2.

Hence, (13) is true. Accounting the inequalities (21), we have from the conditions
(12) and (20) the inequality (22). Combining it with (13), we obtain the inequality
(23), which contradicts the inequality Φ > Θ.

At last, let now α < Ψ and β < Ψ. Then we have(
(15) ∨

(
(16)& (17)

))
&(20).

If the conditions (15) and (20) hold both, then

α + 2(Θ + 1) ≡ β + ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3), (26)

whence β − α ≡ 2(Θ + 1) − ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3). Accounting the
evident inequalities

|β − α| 6 (Ψ− 1)− 0 < Ψ, (27)

we have that either the inequality (24) is true or the inequality

2(Θ + 1)− ((Θ + 1)−̇Ψ) > (Φ + Ψ + Θ + 3)−Ψ

is true. But the first one contradicts the inequality Ψ 6 2Θ+1, and the second one
implies the inequality

2(Θ + 1) > Φ + Θ + 3,

which contradicts the inequality Φ > Θ. Hence, the congruences (17) and (20) hold
both, whence

α + 2(Θ + 1) ≡ β + (1− Cv) · ((Θ + 1)−̇Ψ) (mod Φ + Ψ + Θ + 3).

When Cv = 0 we get the congruence (26), which is false as it is proved above. Then
Cv = 1, and consequently

α + 2(Θ + 1) ≡ β (mod Φ + Ψ + Θ + 3).

Accounting the inequalities (27), we have that at least one of two following inequal-
ities is true:

2(Θ + 1) < Ψ,
2(Θ + 1) > (Φ + Ψ + Θ + 3)−Ψ.
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But the inequalities contradict to the inequalities Ψ 6 2Θ + 1 and Φ > Θ corre-
spondingly.

Thus, the assumption, that the vertices v and w are in states of the form 〈S, α〉
and 〈S, β〉 correspondingly at time k, is false. Then

xk+1(u) = 〈S, Ψ〉. (28)

In contrast, the conditions (6a) and (6b) are true for t = k + 1. So, (6) is true for
t = k + 1.

Subcase 6.2: the relationship (6c) is true when t = k. Accounting (6a) for t = k,
we have the inequality

Cu · ((Θ + 1)−̇Ψ) > 0,

whence Cu = 1 and Θ > Ψ. Then there exists a vertex v with (1). For this vertex
v the equality (4a) holds substituting u = v when t = k and

τ = k − (Θ + 1) · ρ(u,U).

For this integer τ the inequalities (6a) and (6c) with t = k imply that

Ψ + (Θ + 1) · ρ(u,U) 6 τ + (Θ + 1) · ρ(u,U) <
< Ψ + Cu · ((Θ + 1)−̇Ψ) + (Θ + 1) · ρ(u,U) =
= Ψ + 1 · ((Θ + 1)−Ψ) + (Θ + 1) · ρ(u,U) =
= (Θ + 1)(ρ(u,U) + 1),

whence Ψ 6 τ < Θ+1, and hence, 0 6 τ 6 Θ. This means that, substituting u = v,
either (3a) or (4a) with τ ∈ {1; . . . ; Θ} holds when t = k. By inductive assumption,
this implies that

xk(v) = 〈N, τ〉.
Then we have (28). In contrast, the inequalities (6a) and (9) are true for t = k + 1.
So, (6) is true for t = k + 1.

Subcase 6.3: the relationship (6d) is true when t = k and the integer ρ(u,U) is
even. Because

0 6 Cu · ((Θ + 1)−̇Ψ) 6 Θ + 1 < Φ + Ψ + Θ + 3,

the conditions (6a) and (6d) with t = k imply the inequality

k > Ψ + Cu · ((Θ + 1)−̇Ψ) + (Θ + 1) · ρ(u,U). (29)

Let v be an arbitrary neighbour vertex of the vertex u.
If the equalities (1) are true, then Cu = 1, and consequently from the inequality

(29) we obtain the inequality

k > (Θ + 1)(ρ(u,U) + 1).

Therefore, substituting t = k and u = v, either the equality (5a) for some non-nega-
tive integer τ < Ψ or the conditions (6a) and (6b) is (are) true. Then by inductive
assumption, we get

(∃α)xk(v) = 〈S, α〉. (30)

Let now the equalities (10) be true. Then the conditions (6a) and (6b) substi-
tuting t = k and u = v are true, whence by inductive assumption, we have (30).

At last, let the equality
ρ(u,U) = ρ(v, U)

be true. Because all culs-de-sac for U are strong, the vertices u and v either are culs-
de-sac for U both or do not both. Then the conditions (6a) and (6d) substituting
t = k and u = v are true, whence by inductive assumption, we have (30).
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Thus, for every neighbour vertex v of u the condition (30) is true, whence

xk+1(u) = 〈D, 0〉.
In contrast, accounting the inequality (29), we have that the condition (7) is true
when t = k + 1 and τ = 0.

By the principle of mathematical induction, the statement of the Lemma is true.¥
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