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The aim of the present work is twofold: to develop numerical procedures for a priori
determining whether a given cell population, having a distributed cell-cycle duration,
will srow or decay when subjected to prescribed chemotherapy; to evaluate the cumuls-
tive error in the Jong-term predictions for such populations. We show that cell population
dynamics vnder drug treatinent can be modelled by iterative application of a compact
operator on the initial cell age-distribution. We further show that this model can be
approximated by iterative application of matrices on some finite-dimensional vector,
containing initial conditions. Moreover, we develop a method for estimating the growth
rate of cell population and show that in fully periodic treatinents the estimated error
does not grow as time tends to infinity. From the biomedical viewpoint this means that
only fully periodic (strictly periodic) schedules can be considered for successfully pre-
dicting the long-term effect of chemotherapy. Thus, cyclic drug treatment is shown to
be advantageous, not only in increasing selectivity of chemotherapy, as has been previ-
ously demonstrated, but also in increasing long-term predictability of specific treatment
schedules.

Keywords: Cancer modelling; compact operators; spectral radius evaluation; population
dynamics; numerical approximations; biological measurement, error.

1. Introduction

Why have we made so little progress in the war against cancer? While there have
been substantial achievements in the last three decades, the USA annual death
toll has risen over 73% over this period. One of the major reasons for that is
that investigators rely on models that are consistently bad in predicting treatment
success {Fortune Magazine, March 2004).
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Although the above argument refers to the poor predictability of animal models
for human cancer, mathematical models of cancer suffer from a similar drawback, in
that they are seldom both realistic enough and predictive enough to have long-range
clinical implications.

Numerous mathematical models of cancer, which take into account different
levels of tumor organization, have been developed, while multiscale modelling of
multicellular systems has been critically analyzed by Bellomo et al.’1 The present
work is related to a simplified approach in which tumor and host organism are
considered as groups of cells whose growth dynamics under cell-cycle phase-specific
drug treatment is studied. A mathematical theory suggests the existence of a reso-
nance phenomenon, in which intermittent delivery of cell-cycle phase-specific drugs,
at intervals equivalent to the mean cell-cycle time of host cells, can minimize harm-
ful toxicity without compromising therapeutic effects on target cells (Z-Method). 13
Subsequently, explicit general formulae have been derived for the growth or decay
of cell populations that are subjected to repeated pulse delivery of cell-cycle phase-
specific drugs,’®1? and an algorithm has been developed for calculating the required
length of treatment for this protocol.” The existence of this resonance phenomenon
has been further demonstrated for a general class of chemotherapy functions, thus
supporting the underlying theory.1%:24:25:29

The predictions of the Z-method have been verified in experiments in micc bear-
ing lymphoma, treated by repeated pulse delivery of the anti-cancer drug, Ara-C,
and by the anti-viral drug AZT. In these experiments it has been shown that
when the rhythm of drug delivery roughly coincides with the characteristic bone-
marrow cell-cycle time, animals survive and myclotoxicity is significantly reduced.
The optimal spacing of repeated trcatments was determined by measurements of
the kinetics of cell movement through different cell-cycle phases. These experiments
showed that it is feasible to control host toxicity by rational drug scheduling, based
on the Z-method.*3:9:27

Realistic models of ccll population dynamics take into account distributions
of cell-cycle length in the population. For some specific distributions of cell-cycle
duration (normal?® or some other1%:2? described below) it was shown both analyt-
ically and numerically®!2-2? that resonance in cell population growth takes place
when the drug is administered regularly every 7, where 7 equals the mean cell-cycle
duration or is its integer or fractional multiple. It is shown that the resonance is
sharper for smaller variance in the distribution of cell-cycle duration.® However,
the applicability to the clinic of cell population models with generally distributed
cell-cycle has yet to be shown.

The main aim of the present work is to develop model-specific numerical proce-
dures for a priori determining whetlier a given cell population, having a distributed
cell-cycle duration, will grow or decay when subjected to prescribed chemother-
apy. Assuming classical linear age-structured model,}22%:26 we will show that cell
population dynamics under a drug treatment can be modelled by iterative appli-
cations of compact operator on the initial cell age-distribution. We further show
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that the model can be approximated by iterative applications of matrices on some
finite-dimensional vector, containing initial conditions. Moreover, we will develop
a method for growth-rate estimation and will show that under fully periodic treat-
ments the estimation error does not grow as time tends to infinity. In addition, the
problem of inexact initial data will also be considered and the criteria for determin-
ing whether or not this inexactness is crucial for cell population growth estimation
will be developed.

2. Continuous Model

In this section the differential equation, describing cell age distribution n(a,¢t), is
integrated, and as a result a recursive formula for r(¢) = n(0, ¢) is obsained. Here a
is cell age and ¢ is time. It will be shown that the behavior of 7(¢) determines the
behavior of N(t), i.e. the number of cells at time 2, as ¢ tends to infinity.

The rnodel equations, describing cell age distribution are

ni{a,t) + nq(a.t) = —(3(a) + n{a.t))n(a.t), a>0, tER, (2.1)
n{(0,t) =2 [Tm;’)’(a)n(a, t)yde, t>0, (2.2)
n{a,0) = no(af’), a >0, (2.3)

where n, and n, denote partial derivatives On/8a and 8n/0t, respectively.12:20:26

The age-specific division rate of cells is 3(e), the age-specific mortality rate (due to
natural causes or to a treatment) of cells is n{a. ), and the initial age distribution
of cells is no(a). The function B(a) satisfics 3(a) = f(a)/a(a), where [* f(a)da is
the probability that a cell divides between ages a; and a2 and nfe) = f;’° f(a)da
(the function n(a) gives the fraction of cells undivided by age a). In our case the
support of 3 (the set of all points on which 3 has nonzero values) is a subset of
by Tone)-

In this particular model we assume that the division and mortality rates of the
population are independent of the population density. It should be noted that in
general, the division rate of cell population may depend on the total cell number.
This can be so in noncancerous cells populations, where 3 and 1 depend also on
the total number of the cells, N(£) = f;™ n(a,t)da. In such cases, being out of the
scope of the present paper, 3(N,a) is a decreasing and 7(N,a,t) is an increasing
function of N (negative feedback regulation of overall cell number).

Our approach to solving the system (2.1)-(2.3) is close to that of Diekmann
et al.,131¢ except that we use a less gencral basic system of equations in order to
achieve more explicit results, Both Diekman et al. and Webb'?:28:29 have analyzed
the behavior and stability of the system (2.1)-(2.3), while we focus our study on
the prediction capacity of the models, where tractability is traded-off by increased
-realism and, hence, population growth is numerically estimated. In the works of
Webb it is assumed that cells can divide as of the zeroth age. In reality, this is
not the case, and therefore, we replace this assumption by rinimal division age
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being 7 > 0. This latter assumption enables recursive evaluation of n(e,?) as ¢
increases. As a consequence, when n(a, t) is given for each positive a and for each
negative ¢ and is continuous and integrable, it is possible to calculate n(a,t) for any
positive time and the existence and uniqueness of solution follows automatically
(see (2.9), (2.11), (2.15)). When 1, = U, the solution for n{q,t) is written as a
functional implicit equation and the proof of uniqueness and existence is difficult
to obtain,19:28.29

Let us find general solutions of (2.1)—(2.3) in the form n(a,t) = m(a,t — a} (it
is clear that n = ¢ — a is a characteristic curve of the Eq. (2.1)). Let us denote
n(a,t) = n(a,t + a). Then Egs. (2.1)-(2.3) take the following form:

'ma(as C) = -(ﬂ(a) + ﬁ(a:C))m(a’ C)! a>0, (2'4)

where { =t — q,
m©.¢)=2 [ Ham(aC+ada, (=t>0, (25)
m{a, —a) =ngp(a), a > 0. (2.6)

It is easy to see that

/T:_,’B(a)da = a-ﬁm—f%da= —/:(ln (‘/:mf(u)dv))’da
—In (%:—-J;—E:—;j—:) ln(.[; ” f(z/)du), (2.7)

because [ f(v)dv =1 (f is a distribution function on {75, 7).
Thus the general solution of (2.4) is

r{(¢)e™ Jo Mad)da, 0<a<n,
Tm -~
m(a'a C) = T(C) (/ f(U) dl/) e f: e da, b S 2 < T, (28)
0, ’ Tm < @,

where r(¢) is any C? (continuously differentiable) function, which in each specific
case is determined by given boundary conditions. Thus

n(a,t) = r(t — ¢)F(a)©(a, ), (2.9)
1, 0<a<m,
Fla) = f fw)dv, % <a<tm,
Tm = @

G(a, t) =e" fo n(a,t—a) da?
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where O(qa, t) describes treatment. For very aggressive treatment 6(a,t) tends to 0
and in the absence of the drug B(a,#) = 1. The boundary condition (2.3) looks as

no(e) = r(—a)F(a)®{a,0), (2.10)

or
no(a)
B(a, 0)F(@)’ =
. no(a)
o2 B0’
It follows from (2.9) that

r(—a) = (2.11)

a=7m.

n(0,t) = r(t) (2.12)

so that r(¢) is always finite by its biological definition. Thus the set of all admis-
sible functions ng{e) must be such that limg—.,,, ﬁ%ﬁ exists, making (2.11)
legitimate.

Boundary condition (2.2) reads as

r(t) =2 f " B(a)r(t ~ a)e I F@ M g (g da, ¢ 0. (2.13)

From (2.7) it follows that
[ fwdy  fla) [ f)dv
[ fyde [ f)dy JoT f(v)dy

__ e |
= T =@ (2.14)

From (2.13) and (2.14), we have
r(t) =2 /Tmf(a) r(t — a) ©(a, t)da. (2.15)

Bla)e” I #@% = g(g)

In the next section we find the iterative solution of the integral equation {2.15).
Theorem 1 stated in Sec. 4 uses this solution to obtain the description of the
asymptotic behavior of the cell number N ().

3. Iterative Solution for r(%)

The solution for r(t) can be obtained reccursively from r(t) for negative t using
(2.15) as follows. Let

rn(s) =r(s+nmn), forall s€i0,7], neZ (3.1)
Taking into account that supp(f) C [, 7n] and s < 7, we have

Tn(s) = 2 [Tmf(a) r(s + nn — a) B(a, s +nny)da

T+ 8
=2 [ fla)r(s+ nm — a) B(a, s+ nmp)da
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M s+(j+1)
= Z 2 / fla)r(s+nn —a)©(a,s + nn)da
j=0 ¢

+37s

= {va.riables change: v=a-—(s +j7'b)}

M ™
= Z 2 / Jv+ s+ j3m) rnj-1(me — V) O(V + 8+ j7p. 8+ n7p)dV
._0 0
M . M
-y fo Ejn(v18) Tyt — v = 3 Ty mrnmgoa(s), (3.2)
j=0 =0

where Ej,(v,3) = 2f(v+ 3+ jn)OW + 8 + jn,s + nm) and Tj,g(s) =
fo’ Ejn(v.8)g(ms — v)dv for any g € L[%Jb], M = ['?—f] + 1, is either finite or
infinite. In this paper we consider the finite case, i.e. 7, < oc. Equations (3.2)
define rccursively {r,(£)}32,, provided that r_s(¢),...,7ro(t) are known.

4, Operator Formalism

In this section we cousider the stability of the growth rate of the solution r(t)
as ¢ tends to infinity as well as the accuracy of the proposed finite-dimensional
approximations. The following definitions are very important for further
discussion:

Definition 1. Let H be the set (L;"Om,])M 71 with a following inner product:

(z,y) = Zj‘f{l (zj,y;), where {z;,y;) is an inner product of components in
2

0.,

Clearly, H with this inner product constitutes Hilbert space. Now we define
partial order rclation on H, as follows:

Definition 2. For any z in H we say that x is (strictly) positive if each of its
components is & (strictly) positive function and denote this by z > 0 (z > 0). For
any z, yin H wesay that x>y (z>y)ifz—y 20 (x—y>0).

Definition 3. Let H; and H, . be subsets of H, containing all (M +1)-dimensional
vectors, whose elements are non-negative and strictly positive functions, respec-
tively. We call operator K on H positive (strictly positive) if K(H,) C H.
(if K(Hyy) € Hyy), and write K > 0 (K > 0) to denote that K is positive
(strictly positive). For any two operators S; and Sy on H we say that S; > 5,
(S1>82)if $1 — 82 >0 (if S; — S» > 0).
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Let us denote

0 1d 0 - 0 Tr— (L)
0 0 Id N { Tn—mM+1(t)
Tn = : : : ooy W)= : . (41)
0 0 0 ee Id Tn—1 (t)
TM.n TM -1.n TM—2,n v T(),n Tn(t)

Thus Eq. (3.2) can be rewritten in the following form:
Un = Ty« Un-1, (4'2)

and the initial conditions are given by vy. Clearly {7},}3%, is a sequence of compact
operators from H to H. In the case of cyclic treatment there is & minimal 3 > 0,
such that O(a,t) = O(a,t + p) for any @ > 0 and any ¢ > tg. Two possibilities
exist: (a) p/7 is rational; (b) /7 is irrational; In the second case we can take
7y = T, — A, for A arbitrary small positive number such that $/7] is rational. Since
supp(f) € [76+7m) C {75.7m) we can safely put n, := 75. Thus in any case we
suppose, without loss of generality, that p/7; is rational, i.e. p/n, = P/P’, where P
and P’ are natural numbers and P/P’ is irreducible. Thus ©(a,t) = &(a,t + P7)
for any a > 0, £ > {5, and P is the minimal positive integer with this property.
From this it easily follows that {7,,}32, is a periodic sequence of operators with
the minimal positive period I’. Let us define operator, whose spectral properties
are crucial for population growth rate determination, as will be shown later:

T=T,-Ts-...-Tp. (4.3)

This implies immediately that T is a compact operator on H and for every
initial vector vo € H we have P sequences {T™up}%_q, {T™ - T vo}5i o
ceey {T™ Ty - oo - Toy10}0-o and obtain a sequence of vectors of functions

{(rn(t), Tpa1(t)ye ooy Tr—ps (t)) }m ] in the following way: ro(t) =T™ .1} -...-T; vo,

for any natural n, represented as n = m P + i, 0 < ¢ < P. This means that the
behavior of r(¢) in infinity is determined by {T7}%%_,. The following theorem gives
an estimation of the treated cell population growth through the spectral radius of
the operator T'.

Theorem 1. For any s € [0, 7]

1
limsup Nn(s)m < p(T) (4.4)
N—C
s always true and
1
lim No.(s)[B] = p(1) (4.5)
nN—oC

is true in generic case, which is in complete analogy to (3.1),

No(s) =N(s+nm), Vsc[0n), VREZ (4.6)
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The proof of Theorem 1 is given in Appendix A.1l. From this theorem it follows
immediately that the value of the spectral radius p{T’) fully characterizes population
growth or decay: the population grows exponentially if p(T) > 1 and decays if
p(T) < 1. These rates are bounded by p(T) and tend to it for almost all initial
conditions, which are represented by non-negative functions. In the following section
of this paper the problem of effective approximation of p(T') is discussed.

5. Numerical Approximation for r(t) and Applications
We propose a finite-dimensional approximation to {r,}3L; as follows. Let IV be

a large natural number. Let h = 2y = ih, ¢ = 0,...,N. Then we define the
following two sequences of functions on [0, 7y):

F2(s) = 74,(s) = ra(s), forse[0,n], ne{-M,...,0},

M
6= [ Bt du-z RO
j=0 70

M ™ (5.1)
=3 /0 EL(v,8) sy (v) dv
j=0

Z in n_j_l(s), for s €[0,n], n>0,

where
AF
E}fn(z/, 8) = Z sup{Ejn(v.8) | (v, 8) € Qs 1} xn,, (v, 8)s
i1=0
N

E} (s} = ) inf{Ejn(v,s) | (¥ 8) € Qia}xur,, (1 9),

14=0
Qi1 =[5, Zi41) X [0, T142)s
1, if(v,s)€ 4, for any set A,
Xalss) = { otl(lenw)lse ’

T2 g(s) = / s (.5) g(v)dv,
T! o(s) = [0 B, (9)g)dv, VgelId,,

In both cases we approximate E; (v, s) with step functions, bounding it from
abave (superscript “u™) or from below (superscript “”). It follows recursively
that {75 (s)}32, and {7¥(s)}3%, are also step functions, constant on each of
{ [:z:;_.rz+1)}zh=1 and they constitute lower and upper boundaries of {rn(s)}32,. The
set of such functions is isometric with CV, having Euclidean norm. The isometry
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can be taken as follows: every step function g is transformed to .V-dimensional
vector {f(z;) VA}Y,

Let us denote the subspace of H, containing all (A + 1) dimensional vectors of
step functions, which are constant on each of {[z;,Z141 }z _j, as Hy. It is obvious
that Hy is isometric to CN{M+1), In complete analogy to (4.2) operators 7. and
T can be defined. Let

(5.2)

TU=TF TP .... 3
It is obvious that T{(H) C Hy and T*(H) C Hx. Thus all eigenvectors of 7 and
T* are contained in Hy. Keeping in mind isometry of H with CN¥M+1) | we can
treat T! and T as finite-dimensional matrices in order to find their spectral radii.
Different effective algorithms have been developed for this purpose.?® The following
theorem, whose proof is given in Appendix A.2, shows how o(T') can be estimated
using p(T*) and p(T").

Theorem 2. For any ¢, if |[T¢ — T%|| < € in operator norm, then

p(Th) < p(T) < p(T™), (5.3)
|o(T*) — p(T*)| < €. (5.4)

The proof of Theoremn 2 is provided in Appendix A.2. From Theorem 1 follows
a property, associated with fully periodic treatments: when subjected to fully peri-
odic drug treatments, the behavior of a cell population at large ¢ is determined
by the spectral radius of some operator 7. This means that the inexactness in the
evaluation of cell population dynamics is determined by the inexactness of the pop-
ulation growth rate estimation at any time. Thus, the error in the initial data will
lead to a bounded error in the evaluation of the population growth-rate for large ¢.
Theorem 5.3 enables one to evaluate this error as follows: we assume that the distri-
bution function f and the chemotherapy determining function ©(e,t) are Riemann
integrable. Thus, for any £ > 0 it is possible to find a natural number N, determin-
ing the equal partition of [0, 73], as discussed before, such that {|T% — T!}| < €. By
(5.4) p(T) — p(T!) < € and by (5.3) p(T*) < p(T) < p(T"), from which will follow
that p(T) differs from p(T) and p(T*) by less than .

One of the problems any predictive mathematical model has to cope with is the
inexactness of the biological data. In the present model, if we know f up to some
accuracy. the following question arises: given a cyclic drug treatment, is the inex-
actness in the biclogical input data crucial for our prediction ability of population
growth or extinction?

Let fi{a) < f(a) < fa(a) for each a € [my, 7). Let 1T and »T be the respective
operators on H. Then by Proposition A.2.1, presented in the Appendix, it follows
that p(1 ) < o(T) < p(2T). Given any € > 0, we can evaluate p(1T) and p(»T)
with accuracy less than <. In the generic case p(7) # 1. Thus we can assume that
for sufficiently small ¢ the interval (p(T) — €, p(T') + <) is either from the left or
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from the right of 1, from which follows that both p(17) and p(2T) are greater or
less than 1, or p(17) < 1 < p(2T). In the first case the population increases; in the
second it decreases and in the third case the provided data for f are not sufficient.

6. Discussion

In the present work we have analyzed an age-structured growth model of cancer
cells treated by chemotherapy. The model is presented in terms of PDE with bound-
ary conditions for population density function. Under a reasonable assumption of
existence of minimal and maximal possible values of cell-cycle length, we obtained
an iterative solution of the equation. We showed that under a strictly cyclic treat-
ment the asymptotic behavior of the cell number N(#) is similar to that of r(t),
i.e. the density of cells of age 0 at titne t. The iterative equation for r(t) was pre-
sented using operator formalism on Banach space of vectors of real functions. The
solution is given by iterative application of the compact operator T on the vector
of initial conditions. Thecorem 1 shows that the asymptotic behavior of population
size is determined by the spectral radius p(T"). Thus, we turned to the problem of
evaluating the spectral radius of compact operator. To this end, we propose finite-
dimensional approximation of N(¢) and r(¢) with step functions, bounding them
from above and from below. This approximation is based on partitioning the time
axis into intervals of length 7,/N, and on considering the space of functions which
are constant on each of these intervals. We have shown that this approximation
induces approximation of T by operators T and 7* bounding it from above and
below. These operators act on (M + 1) N-dimensional space of vectors of piece-
wise constant functions that approximate the original real-valued functions. We
show that by choosing finite-dimensional approximations, close enough to T, we
can evaluate p(T") with arbitrarily small error. The precision of this approximation
depends on N. We propose the following algorithm: given the equation, approxi-
mate p(T) to the desired precision, so that the interval [o(T")}, p(T%)| lies entirely
below or above 1 (this is the generic case). Then p(T) lies within this interval,
and the asymptotic behavior of N(¢) is known. Note that in the case p(T) = 1,
the algorithm does not give a solution to the problem and, indeed. in this case the
asymptotic behavior of N(t) is unknown — it can be bounded or grow subexponen-
tially, e.g., in a polynomial fashion. Since this case is not generic, its consideration
has little practical importance.

We also discuss the problem of inexactness of the bivlogical measurements, i.e.
when the parameters of the equation are given up to some error. In this case we
assume that T3 < T' < T3 (in operator sense). We can evaluate p(T') as lying
within the interval [p(T1), p(T%)]. or in the finite-ditnensional approximation, as
lying within the interval [p(TY), o(T¥)]. If no approximation can locate this interval
- strictly below or above 1, we can state that the biological data are not exact enough
for inferring the asymptotic behavior of N(t). We also stress that only a strictly
periodic treatment allows such estimations as above, since in this case the evaluation
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error of population growth rate does not accumulate due to the periodicity of the
solution. Such a predictability is the advantage of periodic regimens over non-
periadic ones.

7. Perspectives

A number of generalizations can be added to the model. First and foremost, cell
populations whose growth rate depends on population density need to be consid-
ered. In addition, populations can consist of several subpopulations that differ in
cell age distribution functions, so that selection during the treatment can take place.
Drug diffusion and spatial heterogeneity can also be taken into account. In practice,
the treatment cannot be ideally cyclic, so stochastic deviations in drug application
can be introduced into the model. The putative effect on cell population dynamics
of cell-cycle arrest, caused by some phase-specific drugs, should also be explored.

In the Appendix we present proofs of Theorems 1 and 2. These proofs employ
results on positive and compact operators. For a more profound survey of this
subject see Refs, 15-17.

Appendix A
A.l. Proof of Theorem 1

In order to prove Theorem 1 secveral important results from operator theory are
presented. Let us bear in mind the following elementary fact in operator theory: if
X is a Bauach space, v € X and A is a bounded operator ou X, then

1As] < (1Al f1o]] (A1)
pl4) = lim JlA"]=. (A.2)

The following proposition with its proof can be found in Ref. 22.

Proposition A,1.1. For any positive compact operator K on H, the spectrul rudius
o(K) is an eigenvalue of K with at least one eigenfunction x > 0.

Proposition A.1.2. For any positive compact operator K on H and for any v € H,
limy o | K 0i% < p(K), and for almost everyv € Hy, limy o0 |JE™ )% = p(K).

Proof of Proposition A.1.2. The first part of this proposition can be obtained
trivially from (A.1) and (A.2) as follows: |K™v||x < [|[K®||7 |[¢]|x — p(X). In order
to prove the second part, it is sufficient to prove that the set {v| limp_.oo [[K? v||* =
p(K)} contains a subset, which is open and dense in H,. Let H, be a set of
strictly positive functions in H, such that their infimum is also positive. It is clear
that H 4 is open and dense in H,. Let er be a unit vector in Hy, which is an
eigenvector of p(T} (from Proposition A.l.1 we know that er exists). Let W be
a subspace of H, ;. of all the vectors having nonzero product with e, such that
for each w € W there exists a small §,, > 0, such that w — dyer € Hipy. It is
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clear that W contains open and dense sets in H, 4 and thus in H,. Then for any
weW

K"w = K™yer + K™ (w — &per) > K"0per = 6,p(K)"er,
thus [|K™w)) 2 6up(K)" or K wl* 2 85p(K).  (A3)
As n tends to infinity the last inequality in (A.3) looks as lim,— || K "w“% >
p(K). Taking into account that ||[K™w)|* < [[K "|[%]w|ﬁ' — p(X) we immediately

obtain limp_,e0 [[K™w||* = p(K). This completes the proof of Proposition A.1.2.
O

Proof of Theorem 1. By definition of total cell number at time ¢, N(t) and in
complete analogy to (3.2),.(A.4) we get:

Tm
Np(s) = / n(a, s + nmp)da
0
M-1

(G+1) T
= Z / r(s + nm ~ a)B(a, s + nn)F(a)da
J

j=-173T

M n
= Zf Fv+s+jin)rn_j-1{n —v)Ov + s+ j1,9 + n1p)dv
0

j=—1
M T _
= z j E;n(v,5) Tp—j-1(7p — u)dv
j=-170
M -~
= Y Tjnrn-j-1(s)y VYrEN, (A.4)
j=—1

where

Ejn(1.8) = F( + s+ 1) O(v + 5 + jTp5 + n7),
Tz,_

%w@=] @qum—m@,ge%m,
0

It is clear that 0 < E; (v, 8) < 1 for all natural 4, n, and s,v € [0, 7). Thus

}\"n(s) g Z /0 Tu_j_;[(’rz, - V)dl/

j=—1

M ™
= E/o T‘n_j_]_(l/)dll

j=-1

M
< S nliracseal (A.5)

j==1

M~1
{ because of the addition of non-negative term 7, (||rn_ Ml + Z 7= ,-_1[[)}
j==1
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M=1
< (It el +2 3 s

j=-1
< nMi(llenll + lva-1l), (A.6)

for any s € [0, 78], n € N. Here M, is a constant, for which ||a||; £ Mi||o||2 for any
vector a € CM+! (such M) exists because every two norms on finite-dimensional
Banach spaces are equivalent). Cauchy-Schwartz inequality has been used in (A.6).
The last inequality in (A.6) is based on the fact that for any real numbers ay,...,0%
the following inequality always takes place:

\/a'{+---+a§ <jap]+ -0+ |kl

It should be noted that in this paper the notation of norm of any object relates to
the space, where the object is situated, for exarnple in (A.6) ||r;|| means norm of r;
in L, .1 and ||v;]| means norm of v; in H for any relevant index i.

b)
From Proposition A.1.2 we know that lim,,.oc Iivnum < p(T) (and equals to
it in generic case). Thus

lirnsum\f'n.(S)IiT < p(T) (A.7)

n—oc

for any s € [0, 7). Let T}, be the operator from H x H to L[Zom,], defined as
Tn = ((0ye- -, 0, Tarn)s (Tot—t1mr e - o s Tooms Tm1,0))- (A.8)
Thns
Np = Tn(vnoy,vn)- (A.9)

Bear in mind the notations of Proposition A.1.2: ep is a unit vector in H
which is an eigenvector of p(T"), let W be a subspace of Hy . of all the vectors of
H having nonzcro product with ep, such that for each w € W there exists a small
0w > 0, such that w — d,,ex € H ... It has heen shown that ¥ is open and dense
in Hy. Let us denote by

ra(s) =Ty - Tier(s),
r*(n7 +s) = ri(s),
Na(s) = Talrnoy (8) 75 (9)),
N*(n1p + 8) = N:(s).

(A.10)

r*(t) and N*(t) arc r(t) and N(t) respectively for initial conditions of r(t), deter-
mined by er (i.e. Ti—j = (eT)M.f.l_j, j=1....,.M+1),
Let

0r - Tn_l """ 11"'_,-—], r= 0\ 1, ¢ m ,P - 1. (A.-].l)
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Thus in generic case, taking vp € W, determining initial conditions for r(t), as
has been mentioned before, we have

Nn(s) = Tn(Tn_j """ Tl‘Uo(S),T,;..l MR TIUO(S))
> 62 To(Tne1 - -+ Tien(s), Tnos - - - - Ther(s))

= 82T (85, - T ler(s). 65, - TlPler(s))
= 50 p(T)FTHRIT (8, ex(s), 8).e1(s)), (A12)
for any s € [0, 7). Here j, = n — [3] P.

Proposition A.1.3. There ezists &* > 0 such that T,,(0;,_,er(s),8;.er(s)) > &*
for any s € {0, ) and eny natural n.

Proof of Proposition A.1.3. Suppose that this is not true. Then there are
sequences {nk}§2., of natural numbers and {sx};Z, in [0, 7], such that

Tnl-. (ejnk—-l eT(Sk), ejnk CT(Sk)) k_._af 0' (A'13)

It is easy to see that {T(f;._,er,0;.er)}3, is a periodic sequence of func-
tions with period P of functions. Thus, without loss of generality, we can
assume that there is l[p € {0,1,...,P — 1}, such that fnk(ejn‘:_leT.ej"keT) =
13, (8;, €795, —1€7). From this, (A.13) and the fact that {0, 73] is a compact set, it
follows that there is s* € {0, ), which is a density point of 7, (0j,, €1, 05, ~16T)-
It is obvious that N*(lom, + s*) = N (s*) = Ti, (85, €7(5"), 85, —167(5%)) = 0. If
N*(t*) = 0 for some time t* then ¥*(t) =0 and r*(¢) = 0 for any ¢ > t*, because
N*(t) is the total nuinber of cells at time t and r(¢) = n(0, ), density of cells at time
t and at zeroth age. Thus r},(s) = @ for any n > ly7s and any s € {0, 75]. From this it
follows that T"er = 0 for all n > lo4+ A +1, and this contradicts to the fact that eps
is eigenvector of T relative to p(T"), which is positive. This proves Proposition A.1.3.

a

We proceed with the proof of Theorem 1 as follows: from Proposition A.1.3 and
(A.12) it follows immediately that

No(s) 2 Sup(T)Fle*, Vsel0,m), o (A.14)
No(5) [#] > (6,e9 ] p(), Vseio,n), (A.15)

in the generic case. From (A.7) and (A.14) follows that in the generic case the
following limit exists for every s € [0, 75]:

Tim (1|1 = p(7). (A.16)

)
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A.2. Proof of Theorem 2

From the definition of T, 7% and T*, it is clear that they are positive operators.
The following proposition is a classical result!® in the theory of positive operators.

Proposition A.2.1. Given Sy, Sz being any bounded positive operators on H, such
that Sy > Sa, their spectral radii satisfy similar inequality: p(S1) > p(S2).

It has a practical significance: it states that the order is preserved by the map,
which is defined on the set of all bounded positive operators on H, and assigns to
any such operator its spectral radius. It is clear that (5.3) in Theorem 2 follows

immediately from Proposition A.2.1.
In order to prove (5.4) in Theorem 2 we use the following proposition.

Proposition A.2.2. Assume that Sy and So are operators on CV, such that 151 —
Sa2l| < € in operator norm, then

1p(81) = p(S2)] <e. (A17)

In order to prove this proposition let us prove the following two lemmas.

Lemma A.2.1. Assume that Ay and Az are operators on CN, such that [|A; —
A2l < ¢ in operator norm, and Ay has N different eigenvalues A1, ..., An, then

p(A2) < p(Ay) +=. (A.18)
Proof of Lemma A.2.1, It is possible to choose an orthonormal basis {ey,...,ex}
of CN as a set of eigenvectors of Ay, {A1,..., A} respectively. Assume that ) is an
eigenvalue of Az, such that [A| = p(Az2). Then
Asw = dw (4.19)
for some vector w € CV, |jw|| = 1. Thus
14y = Awj] = [ Ayw — Az = fi(A1 ~ Az)] < &, (A.20)

from which it follows immediately that

N
\j oI = Nuwsl2 <, (A.21)

where w; = (w,e;}, 7 = 1,...,N. Now assume that |A; — Al > ¢ for each j €
{1,...,N}. Then

[~ [~
\jzl(,\,- ~Nwil2> | Y juyft=e . (A22)
j=1 \J =1
which contradicts (A.21). Thus there exists jp € 1,..., N such that
i — M <, (A.23)

from which we immediately get (A.18). o
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Lemma A.2.2. For every € > 0 and every operator S on N-dimensional CVN there
ezists Se, an operator on CV, such that ||S; — S|| < &, the distance between spectra
of S and S, is less than € (i.e. for each eigenvalue of S exists eigenvalue of S; such
that distance between them is less than €, and vice versa), Selspanies,....en} 5 a1
isomorphism, S, has N different eigenvalues.

Proof of Lemma A.2.2. Let {ei1,...,ex} be an orthonormal basis of C¥. Let U
be an automorphism of C¥, such that U SU~! has a Jordan form:

B, 0 0
0 B, 0 0
B=USU =] : - : sl (A.24)
0 0 ... By_1 O
0 ... 0 By,

where each Bj; is either complex number p; or s;-dimensional Jordan block

Hj i 0 ... 0O ¢
0 0

-

0 Hj
Bi=1: i i .. i (4.25)
0 0 ¢ 3] 1
0 0 0 0 iy
in the case that s; > 1. Here 7 = 1,..., Ny, and uy,...,un, are the eigenvalues

of B. Let § > 0 be a small number. Let us construct the matrix B%, as follows:
BY is different from B on nondiagonal elements only, with the difference always
less than ¢ in absolute value. Every N diagonal elements /\‘,5,. . ,/\}sv are pairwise
different. It is easy to sce that it is always possible to construct such BS. The
eigenvalues of B® are exactly X$,...,A%, because its characteristic polynomial is
p(z) = ITL; (M —2).

For any given automorphism U of CV the transformation ¢ — U~'CU is
continuous (on the space of all matrices on CV). Thus, we can easily choose J. < &
such that JU-1B% U — § = || < e, Let us define S on H as U~! B% [J. Clearly
S. satisfies all the demands of the lemma. 07

Now we proceed to prove Proposition A.2.2, as follows hereafter.

If both 5; and S2 have distinct eigenvalues, then we apply Lemma A.2.1 twice,
interchanging the roles of Sy and S, and obtain (A.17). Otherwise, given any é > 0,
using Lemmma A.2.2 we find S and S3, operators on C¥, both have N different
eigenvalues and satisfy Sy — S3I| < 6, 15 — S31[ < 8, |n(S1) — p(SP] < 8, |p(S2) -
p(53)] < 4. In the case that Sy or S» already has N distinct eigenvalues (without
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loss of generality, S), we take S¢ = S). From the triangle inequality it follows that
1S3 — S3if < & + 26, (A.26)

from which and from the case that both matrices have N different eigenvalues,
follows

|o(S%) — p(82)! < & +26. (A.27)
From the triangle inequality and from (A.27) follows that

[p(S1) — p(82)] < 1p(S1) = p(SH +1p(S3) — p(S2)1 + 10(S5) — p(S2)]
<OI+e4+20+0=c+49, (A.28)

which is true for any é > 0. In the limit § — 0 (A.28) becomes (A.17). O
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