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Abstract

The recently discovered interleukin-21 (IL-21) shows strong tumor attenuation in preclinical studies, and is considered a promising

cancer immunotherapy agent. Yet, to exploit its potential, therapeutic strategies must be designed to achieve adequate balance between

several conflicting aspects. A mathematical model describing the IL-21-antitumor effects provided the basis for application of the

optimization methodology, aimed at finding improved immunotherapeutic regimens. Both dosages and inter-dosing intervals were

optimized while considering maximal efficacy, determined by reduction of tumor burden, and minimal toxicity, estimated by cumulative

IL-21 doses applied. Simulations allowed to compute the optimal regimen and explore its dependence on the weights of the target

function. Optimized schedules lead to substantial cancer regression even with relatively low drug concentrations. Collectively,

administration times shifted towards treatment onset, and IL-21 intensities sequentially decreased. Interestingly, there was a certain

window in which deviations in the total IL-21 dosage administered largely influenced tumor elimination. The findings emphasize the

importance of early tumor detection and the critical consequence of the inter-dosing interval on therapeutic efficacy, as supported by

similar research involving chemotherapy. Our work provides initial basis for identifying clinically applicable IL-21 therapeutic strategies

with improved efficacy/toxicity ratios.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The design and evaluation of therapeutic regimens
that maximize efficacy/toxicity ratios is a critical stage
of drug development. However, the identification of
adequate treatment strategies is a complicated matter.
The wide spectrum of biological reactions induced
by a specific therapeutic agent creates an intricate network
of processes, thus simple biological intuition may not
suffice for designing treatments that fully exploit the
potential of a therapeutic agent. Commonly used ap-
proaches of experimental trial and error in clinical
evaluations are time and resource consuming, with no
guarantee of success.

Mathematical models may aid in rational design of drug
administration. Such models provide a deeper under-
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standing of the dynamics involved in biological processes,
and serve as a basis for implementing mathematical
optimization techniques. Over the past 20 years or so,
mathematical modeling has been oriented towards rational
development and application of cancer treatment (Norton
and Simon, 1977; Goldie and Coldman, 1979; Agur et al.,
1988, 1992; Ubezio et al., 1994; Kirschner and Panetta,
1998; Skomorovski et al., 2003; Arakelyan et al., 2005;
de Pillis et al., 2005, 2006). Optimization algorithms are
natural methods within the growing biomathematical tool
kit, for studying various aspects of disturbed biological
environments. These methodologies have already been
applied in the field of cancer chemotherapy (Acharya and
Sundareshan, 1984; Swan, 1987, 1988, 1990; Pedreira and
Vila, 1991; Swierniak, 1995, 1996; Boldrini and Costa,
2000; Swierniak et al., 2001; Agur et al., 2006) and cancer
immunotherapy (de Pillis and Radunskaya, 2001; Burden
et al., 2004), with minimization of tumor burden as their
primary objective. Such studies have emphasized the
importance of adequate selection of therapeutic times,
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inter-dosing intervals, and drug intensities, with respect to
the final goals.

The newly discovered interleukin-21 (IL-21) was recently
suggested as a promising immunotherapeutic agent due to
its strong exertion of tumor rejection in a variety of
preclinical studies (Ma et al., 2003; Wang et al., 2003;
Habib et al., 2003; Moroz et al., 2004; Sivakumar et al.,
2004; Nutt et al., 2004). IL-21 enhances tumor kill by
facilitating a rapid and efficient transition from innate
natural killer (NK) cell responses to adaptive cytotoxic T
lymphocyte (CTL) responses, while increasing the natural
cytotoxicity of both effector cells. Yet, some immuno-
inhibitory effects of IL-21 on NK-cells and other factors do
exist, creating conflicting processes in IL-21-induced tumor
elimination. Moreover, though IL-21-associated toxicities
are yet to be evaluated in humans, experience with other
cytokine-based therapies suggests that it would clearly be
beneficial to limit the use of IL-21 in a clinical scenario.
Collectively, the need for accurate balance between
stimulatory and inhibitory functions of this cytokine,
together with the general preference for minimal drug
application, poses an adequate basis for an optimization
problem focused on finding administration schedules that
fulfill the best compromise. The end effect of such
optimized strategies could be advanced response rates in
clinical studies of IL-21, accelerated drug development, and
improved therapeutic utility.

Mathematical modeling of the anticancerous effects of
IL-21 has already given preliminary recommendations
for first-stage immunotherapy in primary solid tumors
(Cappuccio et al., 2006), suggesting that the tumor
immunogenicity is of primary consequence to the chosen
immunotherapeutic strategy. The model analysis empha-
sized the superiority of tumor mass-dependent IL-21
dosing over constant drug administration in aggressive,
poorly immunogenic cancers (Cappuccio et al., 2006). In
this work, we further refine the suggestions of the previous
model by optimizing IL-21 immunotherapy in a murine
melanoma model. Various possibilities of treatment regi-
mens, each complying with different therapeutic considera-
tions involving tumor mass and drug toxicity, are explored.
The optimization method provides rational and quantita-
tive administrative plans for initial IL-21 immunotherapy,
constituted by sequences of administration times and dose
intensities. Our analysis supports initiation of IL-21
administrations during the early stages of tumor challenge,
and shows that optimal schedules can result in successful
reductions of the tumor burden even with relatively low
dosages of the immunotherapeutic drug.
2. Methods

2.1. Biological background

The basis for the optimization problem associated with
potential IL-21 therapy stems from our recently described
mathematical model of the IL-21-antitumor effect
(Cappuccio et al., 2006). IL-21 mediates the transition
from innate to adaptive anticancer responses, as mani-
fested by the decrease in NK-cell availability coupled with
enhancement of tumor-specific CD8þ T-cell expansion and
survival. An adequate balance between the two arms of
immunity, ultimately determining the efficiency of the
response, is a direct consequence of the IL-21 administra-
tion strategy. Accordingly, we utilize the optimization
approach to find IL-21 dosing schedules that lead to
improved tumor eradication. Concurrent with the fact that
the immune balance is even more important in aggressive
cancers classified with poor immunogenicity, where the
NK-cell-mediated tumor lysis plays a central role in
eliminating the cancer, simulations are conducted with
reference to a non-immunogenic B16 melanoma line
for which the previous mathematical model was fitted
(Cappuccio et al., 2006).
The implemented method is aimed mainly at minimizing

tumor size. Notwithstanding, a toxicity limitation of the
immunotherapeutic treatment is taken into account.
Although there are indications of only moderate IL-21-
induced toxicity in mice (Ma et al., 2003; Wang et al.,
2003; Sivakumar et al., 2004), we assume that such a
limitation is clinically relevant, as rationalized by a
few considerations: First, IL-21 may cause severe inflam-
mation, as it exerts its cytotoxic effects by increasing
immune cell-produced molecules such as perforin and
granzymes, that cause cell lysis by membrane pore
formation or specific intracellular signaling (Cappuccio
et al., 2006; Sivakumar et al., 2004; Ma et al., 2003).
IL-21 also shares structural and functional homology
with IL-2, the dose-limiting side effects of which are
known in humans (Wang et al., 2003; Habib et al., 2003;
Sivakumar et al., 2004). Accordingly, the optimization goal
of tumor size will be considered with, or without, a
measure of IL-21-induced cytotoxicity. The latter is
mathematically described by a general cytotoxic factor,
which accounts for the collective effect of the above-
described cytolytic molecules secreted by NK- and CD8þ

T-cells in the IL-21 scenario, and estimated in arbitrary
units (Cappuccio et al., 2006). This component of the
model will therefore be used to estimate the IL-21-
associated toxicity.
2.2. Optimization algorithm and simulation settings

The generic ODE system on which the optimization is
based is given by

_X ¼ f ðX ðtÞÞ þ uðtÞ, (1)

where X 2 Rn is the vector of populations, f represents the
dynamics, and uðtÞ is the control function, acting only on
the component X D ð1pDpnÞ. We consider treatment
schedules consisting of a finite number of r instantaneous
injections at times ti, represented by control functions uðtÞ
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of the form

uðtÞ ¼ 0; . . . ;
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Here, dð�Þ denotes the Dirac delta function, eD ¼

ð0; . . . ; 1
zfflfflfflffl}|fflfflfflffl{D

; 0; . . . ; 0Þ is the Dth vector of the standard Rn

basis, and ui is the amount of drug delivered at time ti.
Next, the space of schedules S of duration T is defined as

the set of 2r-vectors, s ¼ ðt1; . . . ; tr; u1; . . . ; urÞ, satisfying the
constraints

0ot1ot2 � go � � �otr � gotroT ; ui40. (3)

Parameter g is a positive number that represents the
minimal interval between two consecutive injections. This
is set to avoid clustering of multiple injections, ensuring
that the optimized schedules comply with clinical require-
ments.

Any element s 2 S generates a trajectory that is to be
denoted by X s. In our system, the population vector X has
six components, X ¼ ðu;x; y; z; p;mÞ, accounting for the
densities of the drug IL-21, NK-cells, CD8þ T-cells, tumor
surface, a memory component, and cytotoxic mediator,
respectively, as described in our previous work (Cappuccio
et al., 2006) and summarized in Appendix A. Importantly,
the analysis considers the surface of the tumor, rather than
tumor cell number, as motivated by experimental con-
siderations (Cappuccio et al., 2006). The control function u
is set to act on the first component of X, that is, D ¼ 1.

In conjunction with the above-described goals, the
following cost function is introduced:

FðX sÞ ¼ azðTÞ þ b

Z T

0

pðtÞdtþ c
Xr

k¼1
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ðtkþ1 � tk � gÞ2
þ
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The first term represents the tumor surface when therapy
ends, while the second term is an indicator of drug-induced
toxicity, being proportional to the average concentration of
the cytotoxic mediator p (see Appendix A, Eq. (A.5)). The
third term ensures that the regimens comply with the
constraints in expression (3). Parameters a, b, and c

represent the weights of the combination.
The optimal schedules s% are designated as the solutions

to the problem

FðX s% Þ ¼ min
seS

FðX sÞ. (5)

These solutions are computed through a steepest descent
algorithm, selected for its implementation simplicity, and
due to the smoothness of the model. The steepest descent is
based on a first order approximation of the derivatives of
the performance criterion in Eq. (4). The optimization
scheme and numerical methods implemented for our
simulations are elaborated in Appendix B.
Model parameters for simulation are configured with

respect to preclinical settings and are biologically relevant,
as previously shown (Cappuccio et al., 2006) and detailed
below (see Appendix A). Concurrent with the fact that the
mathematical model depicts initial, short-term immu-
notherapy in primary tumors (Cappuccio et al., 2006),
the considered time window T is confined to 30 days
following tumor challenge. The minimal interval between
injections, g, is set to 0.1 days.
The optimization procedure was initialized with a

clinically feasible treatment schedule consisting of r ¼ 10
injections, each containing 500 ng=ml of IL-21 and equally
distributed across a 20-day therapeutic window. For
procedures aimed at maximizing tumor mass, simulations
were initialized with delayed treatment schedules, in order
to allow maximal tumor progression. These consisted of 10
equally distributed 500 ng=ml doses applied during the last
10 days of the considered time frame. The inoculated
tumor burden at time 0 was set at 105 cells, corresponding
to a primary tumor surface of 0:1mm2 (Cappuccio et al.,
2006).
To compare distinct therapeutic scenarios, simulations

were divided into two classes: in the first case, the tumor
mass zðTÞ alone was minimized while optimizing only the
administration timing, as implemented by setting aa0,
b ¼ 0, ca0. In the second case, minimization of the total
objective function (Eq. (4)) was done while optimizing both
the timing and the amount of each injection, as set by aa0,
ba0, ca0.

3. Results

3.1. Optimizing IL-21 administration times

We first applied the optimization method to search for
the best time schedule to satisfy minimal tumor mass, while
keeping all dosages at a fixed amount. Accordingly, the
procedure was initiated with a schedule of 10 IL-21
injections (500 ng=ml each) within 20 days, and the weights
of the cost function were set to a ¼ 1, b ¼ 0, c ¼ 0:01. The
final tumor mass decreased monotonically as a function of
steepest descent iterations (Fig. 1), proving the efficacy of
the optimization procedure. The algorithm required 1820
iterations to convergence within the considered fractional
tolerance of 10�4. The time optimization resulted in a final
tumor surface of zminðTÞ ¼ 0:02mm2, which was approxi-
mately 20% of the initial value (Fig. 2, left panel). The
injection times during the optimization were globally
shifted toward the initial days of tumor challenge therapy
beginning 0.09 days after inoculation (Fig. 2, right panel).
The first two injections were separated by a minimal
interval of 1.8 days, while the last two injections were
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Fig. 1. Gradual decrease of final tumor mass during optimization. An

initial treatment schedule, including ten 500ng=ml IL-21 injections equally

distributed across a 20-day therapeutic window, was optimized to ensure a

minimal tumor size following therapy. Cost function weights were set to

a ¼ 1, b ¼ 0, c ¼ 0:01. The final tumor mass, that is the focus of the cost

function, is displayed with respect to the optimization iterations.
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Fig. 2. Optimization of IL-21 administration times to achieve minimal

tumor mass. An initial treatment regimen, consisting of ten 500ng=ml IL-

21 injections equally distributed across a 20-day therapeutic window, was

optimized with the purpose of achieving the minimal tumor size at therapy

termination. Cost function weights were set to a ¼ 1, b ¼ 0, c ¼ 0:01. The
optimized treatment schedule (right panel) is displayed alongside its

resulting tumor dynamics (left panel).
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Fig. 3. Gradual increase of final tumor mass and modification of IL-21

administration times during optimization. An initial treatment regimen,

consisting of ten 500ng=ml IL-21 injections from day 20 to 29, was

optimized with the purpose of achieving maximal tumor size at the end of

therapy. Cost function weights were set to a ¼ �1, b ¼ 0, c ¼ 0:01. The
final tumor mass, that is the focus of the cost function (left panel), as well

as the shifting time schedule for IL-21 application (right panel), is

displayed as a function of the optimization iterations.

A. Cappuccio et al. / Journal of Theoretical Biology 248 (2007) 259–266262
separated by the maximal distance of about 3.1 days. These
results emphasize that the earliest stage of the treatment,
when the tumor mass is still minor, is the most crucial one.

A comparison of the performance of an optimal regimen
to the outcome of alternative choices allows to assess the
impact of the optimization procedure and test its efficacy in
a specific setting. Ideally, the optimization would prove to
be advantageous if the optimal strategy results in a tumor
mass vastly lower than the one obtained by the worst
possible therapeutic regimen. It was therefore important to
compare the above-evaluated zmin (Fig. 2), signifying the
best response to therapy, with the largest final tumor mass,
zmax. This problem was formulated by applying the weights
a ¼ �1, b ¼ 0, c ¼ 0:01 to the cost function. Since maximal
tumor masses can be generated by a late treatment onset,
we used an initial regimen which was similar in drug
intensity, but delayed (i.e. ten 500 ng=ml injections
distributed at the last 10 days of the 30-day time frame).
Indeed, the cost function drastically decreased during
optimization (Fig. 3, left panel), requiring only 400
iterations to convergence. Injection times were shifted
toward the late stage of the therapeutic window (Fig. 3,
right panel), creating an optimized schedule commencing at
day 23, and terminating at day 29 following tumor
challenge (Fig. 4, right panel). A value of zmaxðTÞ ’

200mm2 was obtained (Fig. 4, left panel), a 104-times
larger tumor than zminðTÞ. The maximization of the final
tumor mass confirmed the strong influence of the
optimization procedure, as the selected therapeutic time
schedule drastically affected the treatment outcome within
the considered time span.

3.2. Optimizing IL-21 administration times and dosages

Next, both the times and dosages of IL-21 application
were optimized in relation to the extended cost, described
by Eq. (4). In the first case, cost function weights were set
to a ¼ 1, b ¼ 10�4, c ¼ 0:01, simulating a weak influence of
the IL-21 dosage and a strong influence of the final tumor
mass on the cost function. After 2115 iterations, a final
tumor size of 0:01mm2, equivalent to 10% of the initial
tumor burden, was obtained (Fig. 5, left panel), with a total
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Fig. 5. Optimization of IL-21 administration times to minimal tumor

mass, with low consideration of toxicity. An initial treatment regimen,

consisting of ten 500ng=ml IL-21 injections equally distributed across a

20-day therapeutic window, was optimized with the purpose of minimizing

tumor burden as well as drug toxicity. An indicator of IL-21 treatment

toxicity was introduced as a low weight factor in the objective function, by

setting the cost function weights at a ¼ 1, b ¼ 10�4, c ¼ 0:01. The optimal

treatment schedule (right panel) is displayed alongside its corresponding

tumor dynamics (left panel).
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Fig. 6. Optimization of IL-21 administration times to minimal tumor

mass, with moderate–high consideration of toxicity. An initial treatment

regimen, consisting of ten 500ng=ml IL-21 injections equally distributed

across a 20-day therapeutic window, was optimized with the purpose of

minimizing tumor burden as well as drug toxicity. An indicator of IL-21

treatment toxicity was introduced as a moderate–high weight factor in the

objective function, by setting the cost function weights at a ¼ 1,

b ¼ 5� 10�4, c ¼ 0:01. The optimal treatment schedule (right panel) is

displayed alongside its corresponding tumor dynamics (left panel).
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Fig. 4. Optimization of IL-21 administration times to achieve maximal

tumor mass. An initial treatment regimen, consisting of ten 500ng=ml IL-

21 injections from day 20 to 29, was optimized with the purpose of

achieving the maximal tumor size at the end of therapy. Cost function

weights were set to a ¼ �1, b ¼ 0, c ¼ 0:01. The optimized treatment

schedule (right panel) is displayed alongside its resulting tumor dynamics

(left panel).
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concentration of IL-21 that amounted to 5490 ng=ml. As in
the previous case, injection times collectively tended to the
initial stages of tumor challenge. Interestingly, dose
intensities spread across several values, decreasing toward
termination of therapy (Fig. 5, right panel). Thus, by
allowing the drug amounts to be optimized with low weight
of toxicity, we achieved a schedule that was more efficient
in reducing tumor mass, but that required higher total
IL-21 dosages.
To investigate how the optimized treatment changes in
function of the weights of the target, parameter b was
increased from 10�4 to 5� 10�4, enhancing the contribu-
tion of the total IL-21 applied, or the total cytotoxic
factor produced. Here, following 2232 iterations, optimized
injection times were not significantly modified as compared
to the previous case, and dosages remained monotonically
decreasing, yet applied IL-21 intensities were all lower
(Fig. 6, right panel). In these conditions, the final tumor
mass arrived at 0:03mm2 (Fig. 6, left panel), with a
therapeutic schedule involving a total IL-21 dosage of
4445 ng=ml. Thus, this strategy seemed superior to the
regimen optimized with respect to time alone (Fig. 2), the
latter requiring a higher drug quantity ð5000 ng=mlÞ to
reach a slightly lower final tumor mass. This exemplifies
that an adequate tumor reduction can be achieved with
lower amounts of IL-21, provided that the doses are
calibrated according to their optimal values.
The IL-21 dose intensities maintained a monotonically

decreasing pattern throughout the optimized schedule
(Fig. 7, right panel), even when the relative impact of the
drug toxicity on the cost function was elevated further
(b ¼ 3:45� 10�3). However, a significantly lower total
IL-21 dose of 2740 ng=ml was achieved via this strategy,
as observed after 2357 iterations. The resulting tumor size
after 30 days was in this case 0:18mm2, a higher value than
the initial tumor mass (Fig. 7, left panel), indicating that
there is a basal amount of drug necessary to promise
successful therapy within the considered time window.
To further elucidate the relationship between the

final tumor mass and the total amount of IL-21 adminis-
tered during treatment, we ran simulations with steadily
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Fig. 7. Optimization of IL-21 administration times to minimal tumor

mass, with high consideration of toxicity. An initial treatment regimen,

consisting of ten 500ng=ml IL-21 injections equally distributed across a

20-day therapeutic window, was optimized with the purpose of minimizing

tumor burden as well as drug toxicity. An indicator of IL-21 treatment

toxicity was introduced as a high weight factor in the objective function,

by setting the cost function weights at a ¼ 1, b ¼ 3:45� 10�3, c ¼ 0:01.
The optimal treatment schedule (right panel) is displayed alongside its

corresponding tumor dynamics (left panel).
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increasing values of parameter b. For all simulations, the
initial tumor surface amounted to 0:1mm2. A hyperbola-
like behavior was observed, where increasing levels of drug
application (corresponding to decreasing values of b) were
coupled with reduced final tumor sizes (Fig. 8). The slope
of this curve showed that, for optimized treatment
schedules applying a cumulative IL-21 dose between 1700
and 3000 ng=ml, the final tumor sizes resulting from
such regimens varied largely, being highly sensitive to the
total IL-21 amounts, whereas above this range, a certain
saturation effect was detectable.

4. Discussion

The search for rational ways to apply immunotherapeu-
tic agents and to improve their efficacy is of high relevance
in medical treatments. Biomathematical models are becom-
ing increasingly instrumental in planning concrete treat-
ment strategies, as they improve our understanding of how
the timing of drug administration, the inter-dosing interval,
drug fractionation, and other aspects of treatment schedul-
ing may affect the patient. In this work, optimization tools
were implemented on the basis of a mathematical model
describing the antitumor effects of the cytotoxic agent
IL-21, and subsequently allowed to draw a number of
clinical implications regarding initial IL-21 immunother-
apy for primary cancer.
This use of an optimization method to detect IL-21

regimens minimizing tumor size appears to be theoretically
justified: treatment regimens, consisting of a constant
number of doses with fixed intensities but different
administration times, were shown to produce final tumor
sizes varying within a range of four orders of magnitude
within the considered time window of 30 days. Thus,
the outcome of the therapy strongly depends on the
injective times and inter-dosing intervals of the immu-
notherapeutic agent. These results support previous pre-
clinically validated studies showing that there is a stringent
correlation between the efficacy of chemotherapy and the
therapeutic interval, and that lower drug doses spaced
appropriately enhance treatment success (Agur et al., 1988,
1992; Skomorovski et al., 2003; Ubezio et al., 1994).
The dynamics of the injection times and dosages during

the optimization give rise to other interesting insights. In
simulations aimed at minimizing tumor mass, administra-
tion times moved towards the first stages of tumor
challenge, where initial IL-21 injections appeared more
influential. This can be rationalized by the following
observations: first, the tumor is smaller at the beginning
of therapy, hence the antitumor activity is more effective at
that stage. In addition, the final time of therapy (T) is
considered smaller than the half-life of the cytotoxicity
mediator (Cappuccio et al., 2006; Moroz et al., 2004). This
implies that early initiation of therapy provides an
antitumor effect that would last during the entire time
span under consideration. Conversely, the effects of a
delayed treatment onset are largely manifested beyond our
therapeutic window.
The optimized dosages of IL-21 were within the

normative biological range of 2002700 ng=ml each. Opti-
mization of both times and dose intensities results
in schedules that were comparable to the case of time
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optimization only, with the use of a lower concentration.
Specifically for a regimen of 10 IL-21 injections, the final
tumor burden achieved by an optimized regimen applying
a total IL-21 concentration of 5000 ng=ml was similar to
that of a regimen applying 4445 ng=ml. Such differences in
drug intensities could be significant in the clinical scenario,
since rational application of IL-21 could very well reduce
adverse events associated with its use.

Minimization of treatment toxicity was considered in the
optimization process by introducing the weight of the
IL-21-induced cytotoxic mediator concentration in
the cost function. Implementing the optimization with
increasing values of this weight consistently leads to
optimized regimens with a monotonically decreasing
sequence of IL-21 dosages. However, analysis of several
optimized regimens generated with respect to different
toxicity factor weights revealed a high sensitivity of the
final tumor mass only for a total IL-21 dosage within
170023000 ng=ml, whereas beyond this range the depen-
dence decreases. These simulations show that the depen-
dence of the optimal schedule upon the specific target
function is not straightforward. We emphasize the
importance of carefully calibrating the weights with
respect to patient-specific clinical requirements, such as
diverse toxicity profiles, tumor types, and basal antitumor
immunity levels.

Importantly, since the non-convex optimization problem
presented in this work is dealt with via local search with
single initialization, the obtained schedules may represent
only local minima, and global optimization techniques may
provide better results. Moreover, with respect to the
optimization procedure, the simplistic steepest descent
method proved to be satisfactory, yet was not exempt
from the well-known feature of slow convergence. Thus,
more efficient optimization algorithms may reveal even
more beneficial regimens.

The optimization method shown in our work may be
adapted to compute optimal strategies in a feedback form,
that is, real-time modification of treatment strategies
according to actual immunological responses of patients.
This is of primary importance for clinical drug develop-
ment. Indeed, stochastic disturbances and a number of
processes, currently not considered in the model, may
induce deviations from the deterministic description,
emphasizing the need for flexible therapies. Additionally,
expansion of the IL-21 model to depict long-term
immunotherapy and consideration of secondary tumor
challenge and metastatic processes will enable optimization
methods to execute clinically relevant simulations and to
produce more reliable predictions.
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Appendix A. The mathematical model

The following quantities form the mathematical model
(Cappuccio et al., 2006) that serves as the basis of
optimization problems described in this work:
1.
 IL-21 concentration measured in units of ng/ml ðuÞ;

2.
 NK-cells counted in the spleen (x);

3.
 Specific CD8þ T-cells counted in draining lymph

nodes (y);

4.
 Tumor surface measured in mm2 ðzÞ;

5.
 Mediator of the NK-cell/CD8þ T-cell cytotoxicity

measured in arbitrary units (p);

6.
 Mediator responsible for the long-term survival of

CD8þ T-cells measured in arbitrary units (m).

The system is given by the following equations:

_u ¼ �m1u, (A.1)

_x ¼ r1x 1�
x

h1ðuÞ

� �
, (A.2)

_y ¼ r2y 1�
y

h2ðmÞ

� �
, (A.3)

_z ¼ gðzÞ � k1pxz� k2pyz. (A.4)

_p ¼
b1u

b2 þ u
� m3p, (A.5)

_m ¼ au� m2m, (A.6)

where h1ðuÞ in Eq. (A.2), the carrying capacity of the
NK-cells, is a decreasing saturated function of IL-21, as
shown by

h1ðuÞ ¼
p1uþ p2

uþ q1

, (A.7)

and h2ðmÞ in Eq. (A.3), the carrying capacity of specific
CD8þ T-cells, is an increasing saturated function of the
memory factor m, as given by

h2ðmÞ ¼ h2ð0Þ þ
sm

1þm=D
. (A.8)

The function gðzÞ represents the tumor growth law of B16
melanoma in non-treated mice, as formulated by

gðzÞ ¼ r3z 1�
z

K

� �o� �
. (A.9)

For all simulations in this work, we used the following
parameter values, as previously indicated (Cappuccio et al.,
2006): m1 ¼ 10, r1 ¼ 0:095, p1 ¼ 0:01, p2 ¼ 1:054, q1 ¼ 0:54,
r2 ¼ 0:26, h2ð0Þ ¼ 0:066, s ¼ 0:0071, D ¼ 0:19� 103, r3 ¼

0:48, K ¼ 400, o ¼ 1:5, b1 ¼ 0:1, b2 ¼ 0:1, m3 ¼ 0:08,
a ¼ 0:57, m2 ¼ 0:014. The initial condition for all simula-
tions was ½0; h1ð0Þ; h2ð0Þ; 0:1; 0; 0�, representing an untreated
scenario in which tumor growth is unchallenged by the
immune system (Cappuccio et al., 2006).
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Appendix B. Numerical methods

The optimal regimens presented in this work were
computed through an implementation of the gradient
method, combined with a line search. At each iteration of
the steepest descent, the cost function was evaluated via
a fourth order Runge–Kutta integrator of the system
(as shown in Appendix A, Eqs. (A.1)–(A.8)) in ½0;T �, with
the specified initial conditions. The partial derivatives of
the cost function in Eq. (4) were approximated by the finite
differences

qFðX sÞ

qsi

’
DFðX sÞ

Dsi

¼
FðX sþhei Þ � FðX sÞ

h
(B.1)

for i ¼ 1; . . . ; 2r. Here, si represents the ith component of
the schedule s ¼ ðt1; . . . ; tr; u1; . . . ; urÞ, and the step h was set
to 10�3.

All numerical procedures applied were implemented via
matlab programming. Specifically, the equations were
solved using the function ode45, and the line search was
executed via the routine fmin. A fractional convergence
tolerance of 10�4 was applied as the arrest condition of the
steepest descent.
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