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7.1 Introduction
Growth of malignant tumours beyond the diameter of 1 to 2 mm critically de-

pends on their neovascularization, which provides vital nutrients and growth factors,
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and also clears toxic waste products of cellular metabolism [1]. Indeed angiogenesis
— the formation of new blood vessels by budding from existing ones — has been
proven to have a widespread significance in clinical oncology. Its role as a target for
cancer therapy, first recognised by Folkman in 1971 [2], has received wide accep-
tance in the early 1990s following the discovery of the first specific antiangiogenic
substances by O’Reilly et al. [3,4]. This therapeutic approach seems advantageous
in being universal for different solid tumours and in lacking prominent side effects.

Intensive research during the last 15 years has led to a better understanding of
this process and to a recognition of its complexity [5–12]. Major determinants of new
vasculature formation are genetic features as well as nutrient availability. Moreover,
vascular endothelial growth factor (VEGF) and other stimulatory factors are involved
in the regulation of endothelial cell (EC) proliferation and migration [13–20]. The
dynamics of the tumour vasculature are not merely the consequence of newly formed
vessels, but also of immature vessels transformation into mature ones and the reverse
process of destabilisation. Immature vessels may also regress in response to certain
stimuli.

In order to establish successful antiangiogenic treatment protocols, the dynam-
ics of angiogenesis must be better understood [21]. But, as was mentioned above
and will be further demonstrated, the comprehensive angiogenesis dynamics are too
complex to be captured by intuition alone, since they involve several interacting os-
cillatory processes, which operate on several scales of time and space.

Theory of population dynamics in perturbed environments suggests that oscilla-
tory disease processes can be efficiently controlled when the natural temporal process
of the disease is antagonised by an additional, externally imposed, temporal process.
The latter can be either a natural process, e.g. the host immune system response in
the control of African trypanosomiasis parasitaemia [22], or an artificial one, e.g., a
well controlled periodicity of vaccination or chemotherapy efforts, as in the case of
measles “pulse vaccination strategies” [23,24], HIV chemotherapy [25,26], or cancer
chemotherapy [27–29].

In the present chapter we show how mathematical theory can contribute to the
understanding of antiangiogenic therapy. We do so by briefly describing how math-
ematical models for the angiogenic dynamics are constructed, and subsequently cal-
culated numerically. We begin by elaborating on the complexity of angiogenesis and
analysing some empirical results which relate to tumour growth and its vasculature
development, thus illustrating this complexity. Then we move to discuss the impor-
tance of modelling angiogenesis and present some alternatives for such modelling.
These alternatives are tested for their ability to demonstrate and explain phenomena
observed empirically. Using these models we test the potential effects of various
drugs and drug schedules on the biological system. We then close by introducing
some already accomplished applications of such models, along with suggesting fur-
ther potential applications.
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7.2 Defining the Challenge

As mentioned above, intensive research has led to recognition of this complex
process [5–12]. Fundamentally, the genetic features of the tumour and the availabil-
ity of the nutrients are the major determinants of new vasculature formation. Those
determinants affect through mediators in the form of growth factors. Under condi-
tions of nutrient deprivation, tumour cells secrete stimulatory factors such as VEGF,
a potent stimulator of EC proliferation and migration [13–20]. Consequently, addi-
tional blood vessels are formed and the signal for increased VEGF production dis-
appears. VEGF expression will now return to its basic, genetically determined level.
The fate of the newly formed blood vessels will depend on this basic VEGF level. If
lower than a certain given survival threshold, they will undergo regression [30–32].
This negative feedback can produce successive cycles of growth and regression of
blood vessels [33].

Direct in vivo experiments show that newly formed blood vessels are dynamic
structures, continuously undergoing growth and regression [34,35]. This dynamic
instability can come to an end by vessel maturation, a process where immature ves-
sels are covered by pericytes [34,35], which is governed by platelet derived growth
factor (PDGF) and the angiopoietin system [36–40]. The significance of the an-
giopoietin system in vessel maturation has recently become clear [38–40]. This
system includes Tie-2, the endothelium-specific receptor tyrosine kinase, its ago-
nist, angiopoietin-1 (Ang1), and its natural antagonist angiopoietin-2 (Ang2). Ang1
promotes vessel maturation, while Ang2 antagonises its action and can destabilise
mature vessels [36,37]. Ang1 and Ang2 can be expressed variably in EC or in hu-
man tumour cells, depending on the individual tumour type [36,37,41,42]. Hence,
the expression of VEGF, Ang1, Ang2, as well as PDGF, can be influenced by both
genetic and micro-environmental factors.

From the description above, it is clear that the angiogenesis process involves
several interactive sub-processes, namely tumour growth and regression, nutrient-
dependent production of angiogenic factors, vascular growth and regression, vessel
maturation, and destabilisation of mature vessels. Several angiogenic factors should
be taken into account, including VEGF, PDGF, Ang1, Ang2, and possibly more.
Moreover, the system is comprised of three scales (levels) to be considered; the
molecular level, the cellular level, and the tissue level. Hence, its modelling is a
multi-scale modelling. To demonstrate the complexity of the issue, we bring some
experimental data, of which analysis was performed. The analysis shows the need
for modelling tools in order to fully understand empirical results, all the more so if
one wishes to predict or even manipulate treatment results.
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7.2.1 Analysis of Experimental Results

In order to better understand the dynamics of vascular development and tumour
growth, analysis was conducted on experimental results, using mathematical and
statistical tools.

7.2.1.1 Description of the experiment

The data given were of an experiment performed in M. Neeman’s laboratory at
the Weizmann Institute, Israel [33,43]. The experiment was conducted on 11 mice,
and included subcutaneous implantation of a tumour spheroid in a specific location
in the mouse’s body and following its growth and angiogenesis, including vessel
maturation and functionality [44].

In essence, the data supplied contained:

1. Tumour volume

2. Vessel density – total

3. An estimate of the fraction of functional (perfused) vessels

4. An estimate of the degree of maturation of the vessels

Magnetic resonance imaging (MRI) was used for measuring tumour growth and
blood vessel density. The functionality of vessels was assessed by MRI signal inten-
sity changes in response to an elevated oxygen level, while the maturation of vessels
was assessed by MRI signal intensity changes in response to an elevated carbon
dioxide level. These tests were performed in several measurement points inside the
tumour and in certain locations in the body, relative to the tumour. These measure-
ment points (see Figure 7.1 for the definition of reference points in the mouse’s body
(left) and in the tumour (right)), are specified herein by order from inside the tumour
to the furthest point checked:
In – Inside the tumour spheroid
Rim – Any point located within the 1 mm wide rim around the tumour spheroid
Cn – A close reference site, within 7 mm distance from the tumour spheroid
Cf – A further distant reference site yet in the same tissue

7.2.1.2 Data processing

The above data were processed and prepared for analysis, in the following way:

� Tumour volume was measured in mm3.

� Total vessel density was presented as the average vessel density (AVD). Signal
intensities (S) were measured within the 1 mm diameter vicinity (Rim) of
the implanted tumour as well as in a control region about 7 mm away from



SECTION 7.2 DEFINING THE CHALLENGE 189

 
tissue 

 

radius of tumor 
 

necrotic zone 
 

a mature vessel 
 

radius of 
proliferation 

 

Immature 
vessel 

 

zone of tumor  
stationary state 

 

zone of tumor    
proliferation 

 

Cn 

Rim 

       In 
 Cf 

Figure 7.1

Left- The nomenclature of locations in the mouse’s body. Right- schematisation
of the tumour and its close vicinity, demonstrating the radius measured for tu-
mour volume calculations and mature and immature vessels in its immediate
vicinity.

the tumour (Cn), serving as a reference point. AVD was calculated as 1 �
ln(SRim=SCn). The outcome of this processing reflects in percentage the
degree by which AVD is higher or lower than the normal level measured in the
healthy tissue (at Cn).

� F (functionality) reflects the density of perfused (mature + immature) ves-
sels in a certain tested area. The calculation of parameter F is performed
using MRI measurements. As mentioned above, these measurements were
performed separately for each of the four location points defined. Under the
“calculating parameter values” section will be further demonstration of the
application of readings in different locations within the same mouse.

� Similarly, M (maturation) reflects the maturation level of the vessels in the
area tested. The calculation of parameterM is performed using MRI measure-
ments. Also in common with F , maturation measurements were performed
separately for each of the four location points defined above. The use of which
will be explained below.

7.2.1.3 Calculating parameter values

We defined several parameters, for later use, characterising the tumour and rep-
resenting interrelations between the selected aspects of its growth and vascularity.
For example, the rate of tumour growth was defined as:

Tumour growth rate =

�
V tum(X)

V tum(X � 1)

� 1
Time(X)�Time(X�1)

;

where X represents the measurement day.
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In addition, the reference points Cn and Cf were checked in order to serve as
control over changes in readings that are immaterial to the progress of the disease. In
order to apply this, several parameters were calculated. This was carried out firstly
by calibrating the readings in pointsRim or In, using the same day and mouse read-
ings of one of the two reference points. Two parameter examples are:

1. MRim
Cn

– denotes the calibration of a result reflecting density of mature vessels
in Rim using the reading in Cn as a reference point.

2. F In
Cf

– denotes the calibration of a result reflecting density of functional (per-

fused) vessels in In using the matching reading in Cf as a reference point.

Secondly, a calibration was performed over maturation test results in compari-
son with functionality results. This is in order to render the numerical results equiv-
alent. The source of this necessity was that maturation and functionality values are
retrieved using different procedures and may elicit numerically incomparable results,
though in normal tissue they reflect identical amounts of vessels. This was solved
by calculating the ratio between matching readings of both maturation and function,
performed in the normal tissue (eitherCn orCf ) since these two values are expected
to be practically equal. After such a ratio was defined (marked as K), it served as a
correction factor for these above mentioned values, for example: K = MCf=FCf .

7.2.1.4 Data analysis

While observing in vivo tumour sizes depending on time (Figure 7.2), three
growth behaviours are apparent, differing in growth rate. Thus, mice were assigned
to three groups, according to differences in growth rates and growth patterns:

� Fast growing group: The mice in this group show continuous, rapid tumour
growth with no fluctuations observed in tumour size. These mice died first,
around 20 days from implantation.

� Medium growing group: The mice in this group started a relatively slow tu-
mour growth, which increased past some point. The growth was characterised
by occasional mild fluctuations. Their survival was intermediate, in most cases
(19 to 36 days).

� Slow growing group: These mice showed a slow tumour growth rate. In addi-
tion, many fluctuations in size were apparent during their growth. These mice
survived the longest, over 70 days.

7.2.1.5 Interconnecting tumour growth rate with AVD

Further analysis was performed, by observing the relations between tumour
growth rates and AVD. This was done separately for each of the three growth pattern
groups. Figure 7.3 relates to the fast, medium, and slow groups in the upper, middle,
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Figure 7.2

Course of in vivo tumour growth. Tumour volume designated in mm3 depend-
ing on time in days. Each curve describes growth of one tumour, implanted in
one mouse.

and lower parts, respectively. In the left part of Figure 7.3 are the layouts of tumour
growth rate and AVD results, per each reading performed, per each of the mice in
the group. There is no indication of the time point in the experiment at which these
readings were performed. This is because we are here interested in researching the
relation between AVD and tumour growth rate, independent of time. In each of the
groups, three to four mice are presented, each marked by a different shape. After
the layout was complete, the boundaries within which these points distributed were
marked by dashed lines. Per each of the three groups, an additional graph is pre-
sented on the right side of Figure 7.3, showing the course of growth, i.e., tumour
volume depending on time, of one mouse of that group. Note that the scales of these
three graphs (upper, middle, and lower Figure 7.3, on the right) are different, a result
of the vast differences in the growth rates.

The values of all readings of all three mice of the first group (the upper graphs)
had a minimal tumour growth rate value of one, as appears from the marked inclu-
sive range. Hence, there was no measurement where the tumour was found to have
regressed in size, rather it grew constantly from one measurement to the next.

In the example of a specific mouse of this group (upper-right) it is seen that the
volume increased rapidly and indeed, continuously, reaching a maximum of 60 mm 3

in about 20 days.
As for the reading range of AVD values, it was between 0.665 to 1.2. This

relatively dense appearance (in comparison with the other groups) corresponds to a
constant growth without the fluctuations observed in other groups.
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Figure 7.3

The left column, upper, middle, and lower, contains coordinates of all read-
ings performed in the fast, medium, and slow growing groups, respectively. The
points depict the values of growth rate coinciding with AVD. In these figures, the
results of each individual mouse are marked by a different shape. The bound-
aries within which all points of a group are distributed, are marked by dashed
lines. The right column, upper, middle and lower graphs, show the tumour
volume (mm3) depending on time (days), i.e., the course of growth, of a single
individual mouse in the corresponding group. Note that the scales of these three
graphs are different, a result of the vast differences in the growth rates.
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Both the second and the third groups had a wider range of tumour growth rates,
with some of their values lower than one, indicating a decrease in tumour volume.
The AVD ranges were also wider in these two groups, with the third group having the
widest range of both growth rate and AVD, as well as the most intense fluctuations in
the tumour development. Note that in these two groups, one may find, on both ends
of the AVD range, readings of growth rate either over or under unity. This indicates
that there is no clear association between AVD value and the tumour growth trend
(rate over one, indicating increase or rate under one, indicating decrease). Below we
introduce the concept of using a time delay assumption in the analysis of these data.
This might enable establishing a relation between the two factors: tumour growth
and vessel density.

When observing the individual examples of mice from the second and third
groups, a slower growth rate compared with that of the first group is apparent. While
in the mouse of the first group a maximum of 60 mm 3 was reached in 21 days, in
the mouse of the second group the tumour size was about 1 mm 3 after 20 days and
reached a maximum of about 30 mm3 within 55 days. As for the individual mouse of
the third group, tumour size was kept at a minimum around 1 mm 3 for about 50 days,
and grew to only 20 mm3 after 70 days. While some fluctuations are observed in the
individual reading of the second group (some regression around the day five), much
more prominent fluctuations are demonstrated in the mouse from the third group.

From these observations, it seems that fluctuating and slow growth typically is
associated with drastic changes of AVD, within a relatively wide range. Clearly, AVD
is a crucial factor influencing tumour growth, and there is a mutual effect between
the two processes. Hence, it biologically makes sense that when a phenomenon of
fluctuation in size is observed, drastic changes are also apparent in AVD measure-
ments, playing both roles of effector and consequence. It would be interesting to find
a correlation between any of the relevant values measured here.

7.2.1.6 Correlation tests

The correlations between tumour growth rate and variants of vessel density were
calculated (Microsoft Excel, see Table 7.1), as well as between tumour size and the
same variants of vessels density (data not shown). As demonstrated in the previous
section regarding calculating parameter values, density relates to either mature ves-
sels or to functional vessels (i.e., those that were estimated in vivo to be perfused by
blood). These density readings, performed in a choice of locations in the tumour, are
then calibrated using different options for reference points (see Figure 7.1). Hence,
there is a variety of measurement results for “vessel density” depending on the type
of vessels tested, the location of the testing point in the tumour, and the choice of its
reference point. A result of 0.4 to 0.6 indicated an intermediate correlation while a
result of 0.6 and higher represented a strong correlation. As apparent in Table 7.1,
no correlation was found without time delay, while after introducing time delay into
the calculations, either an intermediate correlation (MI=f ;Mo=f ) or a strong one
(FI=f ; Fo=f ), was found (see below for elaboration on the concept of time delay).
One may notice that in the case of mature vessels (MI=f ;Mo=f ) the correlation was
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Table 7.1 The correlation between the tumour growth rates (Ktg) and vessel
density parameters (Mi=f ;Mo=f ; Fi=f ; Fo=f ) of all readings of a specific mouse,
“P."MI=f : Mature vessel density in point In vs. pointCf . M o=f : Mature vessel
density in point Rim vs. point Cf . FI=f : Functioning vessel density in point
In vs. point Cf . Fo=f : Functioning vessel density in point Rim vs. point Cf .
These correlations were calculated both with and without time delay. The time
delay of 3 days was found to be optimal for some of the parameters while time
delay of 4 days was found optimal for the others.

Mouse "P"
K tg ~ M i/f K tg ~ M o/f K tg ~F i/f K tg ~ F o/f

without time delay -0.174706611 0.059830672 0.305976706 0.095252136
 time delay of 3-4 days -0.493741611 -0.460786427 0.644311185 0.670577493

negative, reflecting destabilisation of the vessels in response to tumour growth.

7.2.1.7 The concept of time delay

Both the correlation table (7.1) and the previous observation that large changes
in AVD seem to correlate with slow and typically fluctuating growth (Figure 7.3),
appear to point to a physiologically expected relation between growth behaviour and
vasculature. Nevertheless, it is clear that a change in AVD cannot immediately af-
fect the tumour size and neither will changes in tumour size immediately affect the
vessel number. Rather, there must be a genetically and environmentally determined
kinetics dictating the characteristic time by which tumour growth will respond to
changes in AVD, and vice versa. Hence, the next step in our analysis was to inves-
tigate the role of different putative time-delays between changes in vessel density
and tumour growth rate. This will serve the purpose of disentangling the above
described intricate dynamics, and will enable the unification of the different angio-
genesis sub-processes into one picture. This means that instead of observing the
relations between AVD and tumour growth rate of the same reading, on the same
day, the growth rate was checked to correlate with the vessel density reading of some
specific time earlier or later. At this phase, the search concentrated on finding the
time delay at which results were to be observed, so that the relation between vessel
density and growth rate was best established.

The method used for testing the effect of time delays was a mathematical cal-
culation using a correlation function (again, Microsoft Excel). Since the experiment
performed consisted of implanting an avascular tumour, which further developed
vasculature, we chose to test the dependence of vessel densities (whether functional
or mature) upon tumour growth. Hence, per each mouse, different time delay op-
tions were checked by testing the correlation function (data not shown), between
AVD/F/M readings of certain days and the tumour growth on the suggested preced-
ing day. We then searched for the best time delay for each mouse, which were not
identical among all mice (data not shown).
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7.2.1.8 Testing the effects of time delay on the analysis outcomes

Vascular densities of different categories of vessels, mature or functional, were
calibrated for each individual mouse, according to the described in “calculating pa-
rameter values” above, similarly to the process preceding the correlation tests. For
example, MI=f , stands for density of mature vessels in area In calibrated according
to readings in area Cf . In addition to vascular density readings, tumour volume was
measured as well (V tum). To demonstrate the relation between vascular density
measurements and V tum, we bring the diagrams in Figure 7.4, relating to the pre-
viously mentioned mouse. Measurements for each of the different vascular density
categories are represented by a curve. Entries whose coordinates are vascular density
(y axis) and V tum (x axis) of each measurement, were connected according to the
chronological order in which the measurements were taken, yielding a curve which
unfolds with time. This type of representation is denoted “phase plane.” In upper
Figure 7.4, the diagram was constructed without any time delay. This means that the
entries represent measurements of the same day for both vascular density and V tum.
In lower Figure 7.4, on the other hand, the optimal time delay found for this specific
mouse (as mentioned in the previous section) was applied into the diagram. Hence,
each entry represents a vascular density reading of a given day and a V tum reading
of a day preceding it, by the constant time delay chosen. Please note that the axes
are now principally switched compared with Figure 7.3, i.e., here the x axis relates
to V tum, and the y axis is AVD.

7.2.1.9 Conclusions from the analysis of the experiments

In both upper and lower parts of Figure 7.4, once V tum is over a certain size,
there appears to be a state of constant growth and no change in any of the vascular
density measurements. This is indicated by the lines being rather straight, horizontal,
and overlapping in that range of V tum. Nevertheless, as it appears in Figure 7.4
(upper), there is an area of intensive occurrences in the lower range of V tum i.e.,
per certain tumour sizes within that range, many different values of vessel densities
(y axis) were observed. All the more so, the directions of the lines with time indicate
that per the same value of vascular density measurement, one may find the tumour
to be either shrinking or in the process of growing. This shows that under the same
vascular density conditions, it is not yet determined whether the growth trend shall
be negative or positive.

In Figure 7.4 (lower), time delay was introduced into the system; specifically
in this case, it was 3 days (optimal time delay found according to the techniques
described above). Once applying the time delay into the results, one can appreciate
the change in the appearance of the graph, in that the areas of intensive occurrences
have cleared up. Instead, oscillations emerge (depicted as a limit cycle behaviour
in these phase planes), indicating an interdependent growth behaviour of the two
processes.
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Figure 7.4

Analysis of experimental results of mouse “ P,” relating vessel density to tumour
growth. Vessel density of four different calculated parameters presented as a
function of tumour volume (V tum) measurements. MI=f : Mature vessel den-
sity in point In vs. point Cf . Mo=f : Mature vessel density in point Rim vs.
point Cf . FI=f : Functioning vessel density in point In vs. point Cf . Fo=f :
Functioning vessel density in point Rim vs. point Cf . The entries are con-
nected according to their chronological order. Upper: The entries are density
and V tum measured at the same day. Lower: A time delay of 3 days was ap-
plied, hence, the entries are created by the measurement of density at a given
day and V tum measured 3 days earlier.
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Analysing tumour growth, contrasting growth trends are observed under the
same vessel density, as reflected by the lines in Figure 7.4 (lower part, dotted line). In
the major loop of V tum corresponding with MI=f (density of mature vessels inside
the tumour, calibrated by their density in reference point Cf ) there are two entries
where MI=f equals about 7:5. However, in the first entry (V tum 0:4) the tumour
is in the process of increasing, while the second entry (V tum 1:2) is a bifurcation
point, where a switch occurs from a phase of growth to a phase of regression in
size. This means that a single vessel density entry cannot reflect the trend of tumour
growth, which is not monotonic. It is to be expected that more complete analysis of
the system can be obtained by separating the involved elements (such as mature vs.
immature vessels, or functional vessels etc.) and checking the role of each one of
them in dictating the growth status, possibly through regression analysis.

Both maturation and functionality of vessels were separately analysed here, and
found to each have the oscillatory behaviour described above. This actually means,
that, through the process of tumour growth, both mature vessels category and the
functioning vessels category, may transiently undergo regression. The regression
of functional vessels is a decrease in the total amount of mature vessels (which are
clearly functioning) and of functioning immature vessels. The regression of ma-
ture vessels is in essence the process of destabilisation. Hence, our results infer to
the fact that immature vessels may undergo regression and mature vessels may un-
dergo destabilisation into immaturity (possibly later leading to regression), even in
the course of tumour growth.

Our analysis results (data not shown) suggest that there might be a different time
delay between mature and immature blood vessels in correlation with the tumour
growth, and this will be further investigated.

7.3 Mathematical Models of Tumour Growth and
Angiogenesis

Vascular tumour growth, including dynamics of both vasculature and malig-
nant cells, have been described in mathematical models by Hahnfeldt et al. [45],
who propose a macroscopic model, assuming logistic tumour growth. However,
this model neither takes into account vessel maturation nor does it allow for the
nutrient-dependency secretion of proangiogenic factors. Bellomo and Preziosi [46]
and De Angelis and Preziosi [47] describe the vascular tumour system on three
scales: molecules, cells, and macroscopic entities (such as tumour volume). The
latter model is much more detailed than the previous one [45], however it also does
not include maturation of new blood vessels.

In this section, we present two classes of angiogenesis models: continuous mod-
els and a discrete model. The continuous models have been fully analysed in [48].
These models generally define three major processes: tumour growth, growth factor
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production, and vessel growth. Each model defines the interrelations between the
three, with several complexity levels being analysed. The analysis of the different
continuous models relates to the empirical findings presented in the previous part.
Hence, we are attempting to identify within each of the models the observed phe-
nomenon of tumour size fluctuations accompanied by slow growth. In addition, the
importance of including a time delay into the system is being demonstrated.

The a priori advantage of the continuous models is their analytic tractability,
that is, their solution holds universally, no matter what the precise parameter values
are. However, once these models become too complex, we find ourselves lacking
the tools for solving them. This trade-off is a constraint, which makes us choose the
suitable balance between complexity and applicability. Nevertheless, since our ulti-
mate aim is to provide methods for improving drug treatment of vascular tumours,
we must take into account events both on the molecular and the organic levels, with-
out compromising our ability to analyse the global dynamics. This delicate balance
is achieved here by using both the analytically tractable models and the more com-
plex discrete models. The former are used for deciphering the universal behaviour of
angiogenesis, while the latter are used for making realistic, practical, and empirically
testable predictions.

Below we present and analyse several continuous models, which differ in com-
plexity. Subsequently, we present the discrete model, which is complex enough to
mimic real life, yet simple enough to enable simulation under many parameter sets.
This model implements an algorithm of vascular tumour growth. The algorithm fur-
ther addresses the complexity described and demonstrated above. This is performed
by taking into account all the aforementioned sub-processes constituting the mod-
elled process, along with the effects of several critical growth factors. Modelling is
carried out on three scales; the molecular level, the cellular level and the tissue level.
As we shall see in the next section, the algorithm used here enables the induction of
drug therapy as well.

7.3.1 Continuous Models

In this part we consider angiogenesis models presented by order of increased
complexity, which originates from adding dimensions to the system. In addition,
time delay is also introduced into the system. Time delay was introduced into the
analysis of empirical results in the previous section, and was shown to have a major
impact. Similarly, mathematical analysis of these models shows here that in a sense
this time delay is mandatory if one wishes to demonstrate the fluctuations observed
in experimental results.

7.3.1.1 General assumptions of the models

Each of the models described herein involves the following time dependent vari-
ables:
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� the number of tumour cells or tumour size (denoted by N )

� the amounts of growth factors known to be involved in angiogenesis supplying
the tumour defined as P . For more accurate description, P may be broken
down into several growth factors (proteins) which may differ in their effects
and/or kinetics

� the effective volume of blood vessels supplying the tumour, which again may
either be defined separately for immature and mature vessels or as the total of
both, denoted by V

All modelling alternatives are systems of ordinary differential equations with
or without time delay. In all of these models we use “sigmoid like” functions —
smooth monotonous functions having a horizontal asymptote, e.g., 1=[1 + e k(x+s)].
These functions describe a response of the system to the relevant biological stimuli
affecting it. The reasons for such a choice of the response function are the experi-
mental observations which show that below and above certain thresholds, changes in
the intensity of the stimuli have minor effects on the response. Between the thresh-
old values (in the sensitivity region), the process rate depends monotonously on the
stimuli value. In our analysis we use only the basic properties of sigmoidal functions,
and we do not expect their exact shape to be easily determined from experiments or
otherwise.

We assume that the tumour size dynamics is determined by availability of oxy-
gen and nutrients. The amount of nutrients delivered and the oxygen supplied to the
tumour is proportional to the volume of blood vessels supplying the tumour, whether
inside the tumour or in its close vicinity. To take this into account we use effective
vessel density (EVD) which may relate to immature vessels, mature vessels, or the
total of both, denoted by E1, E2, or E, respectively. EVD is calculated by dividing
the corresponding vessel volume by the tumour size E = V

N . To simplify our mod-
els we assume that vessel wall permeability (perfusion) is the same for immature
and mature vessels. For the tumour size dynamics in all our models we assume the
Malthusian law determined by

_N = f1(E)N(t); (7.1)

where f1 is an increasing sigmoid function capturing the processes of cell prolifera-
tion and death:

f1(E = 0) < 0; lim
E!1

f1(E) > 0: (7.2)

For dynamics of protein (growth factor) compartments we assume that proteins
are produced by tumour cells or immature vessels, and degraded by an intrinsic clear-
ance process. Elaboration of the clearance process will be discussed later, suggesting
the introduction of additional consuming elements, such as the forming vessels, into
the model.
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For dynamics of vessel compartments we assume that it is a superposition of
four processes, some are contrasting some of the others: formation of immature ves-
sels, regression of immature vessels, maturation of immature vessels, and destabili-
sation of mature vessels into immature vessels. We assume that these four processes
are driven by sigmoid like responses, as described above, depending on specified
proteins. These proteins are the stimuli mentioned earlier as the effectors of these
functions.

7.3.1.2 A three-dimensional model with no time delay

The simplest modelling option presented merely captures the three independent
variables mentioned earlier: tumour sizeN , total vessel volume V , and the amount of
protein P . The only thing that we assume about the protein is that it drives the vessel
formation or regression in a sigmoidal way. The rate of change of N is determined
by a Malthusian law sigmoidally depending on E (representing EVD, as defined
earlier). The protein P is produced by the tumour at a rate sigmoidally dependent
on E and is decaying, by some clearance process as mentioned above, at a constant
positive rate Æ. The rate of change of the vessel volume V is sigmoidally driven by
the protein. Thus we have the system

8<
:

_N = f1(E)N;
_P = f2(E)N � ÆP;
_V = f3(P )V;

(7.3)

where

� f1 is the tumour cells proliferation rate, it is an increasing function of E and
satisfies Equation (7.2).

� f2 is the protein production rate, it is a decreasing function of E and satisfies

f2(E) > 0 ; lim
E!1

f2(E) = 0: (7.4)

� f3 is the vessel growth rate, it is an increasing function of P and satisfies

f3(P = 0) < 0 ; lim
P!1

f3(P ) > 0: (7.5)

To simplify the analysis we make a substitution of variables V ! E and get a
system

8<
:

_N = f1(E)N;
_P = f2(E)N � ÆP;
_E = f3(P )E � f1(E)E:

(7.6)

The next step towards the purpose of mathematically demonstrating the phe-
nomena observed empirically, is the analysis of Hopf bifurcation points. For mathe-
matical background on Hopf points we refer the reader to [49]. To this end, we shall
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only clarify, that Hopf points are specific cases of fixed points essentially admitting
small oscillations in their vicinity. Their biological equivalent are steady states in
which the biological system is expected to demonstrate oscillatory behaviour. Since
such a behaviour was observed in the empirical results, it was of high interest to
research the existence of such points in each of the systems suggested.

For each set of parameters which determine f1, f2, and f3, the model has one
fixed point Q(1) = (N (1); P (1); E(1)) with N (1) > 0, given by

f1(E
(1)) = 0 ; f3(P

(1)) = 0 ; N (1) =
ÆP (1)

f2(E(1))
:

We claim that there are no Hopf bifurcation points among this family of steady
states.

Here is an explanation: the matrix of the system linearised at such a point is

M =

0
@ 0 0 f 01(E

(1))N (1)

f2(E
(1)) �Æ f 02(E

(1))N (1)

0 f 03(P
(1))E(1) �f 01(E

(1))E(1)

1
A =

0
@0 0 a0N (1)

b �Æ �b0N (1)

0 c0E(1) �a0E(1)

1
A ;

(7.7)
where all the new parameters a0 = f 01(E

(1)), b = f2(E
(1)), b0 = �f 02(E

(1)), and
c0 = f 03(P

(1)) are positive.
We calculate the characteristic equation

det(M��I) = ��3��2(a0E(1)+Æ)��(a0ÆE(1)+b0c0N (1)E(1))+a0bc0N (1)E(1)

(7.8)
Hopf points arise when the characteristic polynomial at the fixed point admits a pair
of pure imaginary roots. If a cubic polynomial admits such a pair �Ai;A 2 R then
it has the form

�(�2 +A2)(�+B) = �(�3 +B�2 + A2�+A2B); (7.9)

for some B 2 R. Since the coefficients of det(M��I) satisfy�(a0bc0N (1)E(1)) <
0 and a0E(1) + Æ > 0; a0ÆE(1) + b0c0N (1)E(1) > 0, we have that the characteristic
polynomial cannot have pure imaginary roots and thus there are no Hopf points with
N 6= 0 in Equation (7.6).

7.3.1.3 Introducing time delays into the three-dimensional model

While analysing empirical results (see the above section “analysis of experi-
mental results” ), the introduction of time delay elicited the appearance of oscillatory
behaviour, as well as improved by far the correlation between two major processes,
namely the dynamics of vessel density and tumour growth. This correlation may
indicate that the correct way for describing the mutual dependence between the pro-
cesses must involve time delay. The oscillatory behaviour might also indicate that
Hopf points would be found if time delay is introduced into the analytical system.
Thus, the next step was to apply time delay and analyse its effect.
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Two time delays were introduced: �1 in the proliferation/death response to stim-
uli and �2, in the vessel formation/regression response to stimuli.

Let E�1 = E(t� �1); P�2 = P (t� �2); then system (7.3) is modified, yielding:

8<
:

_N = f1(E�1)N;
_P = f2(E)N � ÆP;
_E = f3(P�2)E � f1(E�1))E:

(7.10)

This system has the same fixed points as (7.6). Again we are only interested in
the family of fixed pointsQ(1). The analysis of the behaviour of 7.10 nearQ (1) gives
rise to the following transcendental analogue of Equation (7.8):

�3 + c1�
2e���1 + Æ�2 + (c1Æ)�e

���1 + c2�e
���2 � c3e

��(�1+�2) = 0; (7.11)

where c1 = a0E(1); c2 = b0c0E(1)N (1); c3 = a0bc0N (1)E(1) are independent posi-
tive parameters.

The rigidity of the algebraic equation (7.8) is relaxed in Equation (7.11) by
the time delays which appear in the exponential factors. This enables us to find
appropriate positive parameters for f1, f2, and f3 such that there are pure imaginary
solutions to Equation (7.11). (The computation is not given here and appears in [48].)
As already mentioned, existence of Hopf bifurcation points is conditioned by pure
imaginary solutions, therefore we deduce that for every (� 1; �2) 6= (0; 0) the family
Q(1) contains Hopf points.

7.3.1.4 A five-dimensional model with time delays

To make our models more elaborate and realistic, we introduce more compart-
ments representing vessels and proteins. First, the inclusive representation of vessels
effective volume V , is replaced by separate descriptions of the effective immature
and mature vessel volumes denoted by V1 and V2, respectively. The values of ei-
ther vessel subpopulation will be separately analysed. Hence, the model allows both
maturation of immature vessels and destabilisation of mature vessels. Secondly, the
general term protein, denoted P , is now replaced by two specific proteins namely
V EGF , denoted P1 and Ang1, denoted P2. We assume that V EGF is produced
by the tumour at a rate sigmoidally dependent on the effective vessel density and
decays at a constant rate Æ1, and that Ang1 is produced by the tumour at a constant
rate � and decays at a constant rate Æ2. Note that another growth factor, Ang2, is not
modelled here as an additional dimension, rather it is assumed to exist in a constant
amount. Hence, it is represented as one of the constant parameters wherever relevant
in the functions f1, f2, and f3. Let us also introduce time delays �1, �2, and �3 for tu-
mour proliferation/death, immature vessel formation/regression and destabilisation,
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respectively. We get the system:

8>>>><
>>>>:

_N = f1(E�1)N;
_P1 = f2(E)N � Æ1P1;
_P2 = �N � Æ2P2;
_V1 = f3(P1�2)V1 � f4(P2)V1 + f5(P2�3)V2;
_V2 = f4(P2)V1 � f5(P2�3)V2;

(7.12)

where f1, f2, and f3 satisfy (7.2), (7.4), and (7.5), respectively and

� f4 is the maturation rate, it is a positive increasing function of P2.

� f5 is the destabilisation rate, it is a positive decreasing function of P2 and
satisfies

lim
P2!1

f5(P2) = 0: (7.13)

After making the substitutions Vi ! Ei = Vi=N and E2 ! E = E1 + E2 we get
the system

8>>>><
>>>>:

_N = f1(E�1)N;
_P1 = f2(E)N � Æ1P1;
_P2 = �N � Æ2P2;
_E1 = f3(P1�2)E1 � f4(P2)E1 + f5(P2�3)(E �E1)� f1(E�1)E1;
_E = f3(P1�2)E1 � f1(E�1)E:

(7.14)

For each set of parameters which determine f1, f2, f3, f4, and f5, the model
has one fixed point Q(2) = (N (2); P

(2)
1 ; P

(2)
2 ; E

(2)
1 ; E(2)) with N (2) > 0 given by

the conditions

f1(E
(2)) = 0 ; f3(P

(2)
1 ) = 0 ; N (2) =

Æ1P
(2)
1

f2(E(2))
;

P
(2)
2 =

�Æ1P
(2)
1

Æ2f2(E(2))
; E

(2)
1 =

f5(P
(2)
2 )E(2)

f4(P
(2)
2 ) + f5(P

(2)
2 )

(7.15)

while exercising on the system the same analysis (full analysis appears in [48]), we
find that for every pair (�1; �2) 6= (0; 0), there always exist parameter sets such that
Q(2) is a Hopf bifurcation point of the system (7.14).

We summarise the results about 3 � D and 5 � D models in the following
proposition:

Proposition 7.3.1 The ODE systems (7.10) and (7.14) admit a Hopf bifurcation
point if and only if at least one of the time delays is nonzero.
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7.3.1.5 Further extension of the model

We further extended the model, by allowingAng2 not to be constant, but rather
to be produced by immature vessels, thus being a function of their quantity. Hence,
we introduced an additional dimension to the model. In this case, the matura-
tion/destabilisation process depends both on Ang1 and on Ang2. Here too, time
delays were implemented. The analysis of this last system (not shown), demon-
strated again the existence of Hopf points when at least one of the time delays is
nonzero.

Another possibility for extension that was exercised, was the addition of protein
consumption by growing vessels, rather than assuming it is merely constantly cleared
by entities outside the modelled system. This was performed on the 3 � D model
without time delay and had no Hopf points, similarly to other systems with no time
delay.

7.3.1.6 Interpreting the results

A biological observed phenomenon is a given, for which we seek an explana-
tion or at least a description. In the case of the empirical results presented above,
a major apparent phenomenon is an oscillatory behaviour. One of the means for
analytically describing oscillatory behaviour is a system of equations with Hopf bi-
furcation points. Introduced above were several modelling suggestions describing
angiogenesis, with or without time delays. As demonstrated, whenever time delay
was introduced into the system, Hopf points were found, leading to oscillatory be-
haviour. This might mean that the more appropriate candidate for describing the
biological system in question is the alternative that includes time delays. While it is
recognised that time delay will often elicit Hopf points, here it was shown that the
latter were to be found for any angiogenesis model with time delay. Note that the
introduction of time delay was also mandatory for the analysis of the empirical re-
sults. These conclusions underline the possible significance of time delays in tumour
dynamics.

7.3.2 A Discrete Model

7.3.2.1 Description of the algorithm

The algorithm of the discrete mathematical model includes six major processes
simultaneously, namely tumour cell proliferation and death, immature vessel forma-
tion and regression, immature vessel maturation, and mature vessel destabilisation
(the complete algorithm is described in detail in [50,51]). A simplified scheme of
the algorithm (Figure 7.5) presents three interconnected modules, within which these
six subprocesses are included: tumour growth (proliferation and death), angiogenesis
(immature vessel growth and regression), and maturation (formation and destabilisa-
tion of mature vessels). Each of these modules operates on three scales: molecular,
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The simplified algorithm describing the principal interactions affecting a vascu-
lar tumour growth. It defines three major entities indicated as “ boxes;” tumour
growth, immature vessels (angiogenesis), and mature vessels, and conveys the
interrelationships between them. These interactions occur across three organ-
isation scales: molecular, cellular, and organ level (for a full description of this
algorithm, we refer to [50,51]).

cellular and macroscopic (tissue level).
The tumour module consists of tumour cell proliferation and death, further sub-

dividing into:

� a genetically determined block, which is cell type-specific and does not vary
in time, and

� a block which is time-variant and nutrient-dependent.

A crucial factor in the tumour module is the density of the total perfused vascu-
lature (to be denoted effective vascular density, EVD). Proliferation rate is directly
proportional to EVD and death rate is inversely proportional to it. In addition, pro-
liferation and death rates are both nutrient-dependent [52]. Two additional quantities
are calculated in this module, namely VEGF and PDGF production. They are both
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inversely related to EVD so that aggravation of nutrient depletion results in increas-
ing secretion of proangiogenic factors [7–9]. The tumour growth module interacts
with the angiogenesis and the maturation modules via the relevant regulatory pro-
teins.

In the angiogenesis module we calculate immature vessel volume. Immature
vessel volume increases proportionally to VEGF concentration, once above a given
threshold level, and regresses if VEGF is below a given, possibly different, threshold
level. The latter threshold is generally referred to as “survival level” [30] to [33].

In the maturation module, we calculate mature vessels volume according to per-
icyte concentration [52,53] and according to Ang1/Ang2 ratio [54]. Pericytes pro-
liferate proportionally to PDGF concentration [34,35]. Ang1 and Ang2 are continu-
ously secreted by tumour cells and immature vessels, respectively [36,37,41,42,52,
53,55]. Additionally, Ang2 can be secreted by tumour cells, if the latter are nutrient-
depleted [37]. We assume that maturation of immature vessels occurs if pericytes
concentration and Ang1/Ang2 ratio are above their respective threshold levels, oth-
erwise, if under these thresholds, immature vessels do not undergo maturation, while
mature vessels undergo destabilisation and become immature [38] to [42].

7.3.2.2 Numerical calculations

The above algorithm is precisely described mathematically by a large set of
formulas underlying each and every interaction in Figure 7.5 and more. This full
mathematical model has been studied by numerical simulations only, as it is much
too complex to be tractable to mathematical analysis (but see the analysis of less
complex forms of the model in the previous section, “continuous models” ). Some
simulation results of the full model are presented in section 7.4.1.

Recursive numerical simulations of the model have been performed. Note that
at this point, we needed to define the parameter space within which simulations will
be conducted. Owing to the relative novelty of the field of angiogenesis, and hence,
the scarcity of experimentally evaluated parameters, we used arbitrary dimension-
less units for all model parameters. Initial conditions were 100 tumour units and
zero vascular densities. Calculation step duration is equivalent to generation time of
tumour cells, that is, to one cell cycle.

At every time step the model calculates the tumour size, which is determined as
a function of tumour cell number, the number of free endothelial cells and pericytes,
the concentrations of the regulatory factors (VEGF, PDGF, Ang1, and Ang2), and
the volume of immature and of mature vessels.

In addition, immature and mature vessel densities (the volumes of correspond-
ing vessels divided by tumour size) are calculated and summed into EVD. EVD is
defined as the sum of the densities of any perfused vessels, whether immature or ma-
ture. For simplicity we assume here that perfusion efficiency is the same in immature
and mature vessels. However, this constraint can be easily alleviated.

The model assumes several threshold-dependent and ratio-dependent effects of
regulatory factors, as follows:
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� A threshold of VEGF concentration above which endothelial cell proliferation
takes place

� A threshold of VEGF concentration under which endothelial cells, either in-
corporated into immature blood vessels or unattached, undergo apoptosis

� A threshold concentration of free unattached pericytes above which immature
vessels can mature

� Ang1/Ang2 ratio above which immature vessels mature and below which ma-
ture vessels are destabilised

7.4 Applying the Models: From Theory to the
Clinic

One can utilise angiogenesis mathematical modelling to serve several purposes.
As we saw above, empirical data may reflect very intriguing phenomena, the analysis
of which is enabled using such tools. The better understanding of such phenomena
will lead to novel ideas for research and therapy. In addition, this work gives new
options for the evaluation of novel antiangiogenic therapies. This will be demon-
strated in the results section below. Clearly, if one wishes to apply such models for
pharmaceutical or clinical uses, an additional module will have to be added to them,
addressing the question of the pharmacodynamics and pharmacokinetics of the mod-
elled drugs. This will be addressed towards the end of this section.

7.4.1 Simulation Results

The computer simulation of the tumour growth and angiogenesis discrete model
described above, was represented as time series of the measured quantities: the ef-
fective vascular density, the tumour size, the concentrations of VEGF, Ang1 and
Ang2, Ang1/Ang2 ratio, the immature and mature vessel volume, and more. Time
is measured in cell cycles, while values on the y-axes in all graphs are expressed in
arbitrary units.

7.4.1.1 Simulation of antiangiogenic and antimaturation therapies

One interesting application of this model may be the simulation of “prototyp-
ical” antiangiogenic and antimaturation therapies. Continuous administration was
simulated, of two different hypothetical drugs affecting vascular dynamics, namely
a VEGF-production inhibitor (drug A) and an Ang1 production inhibitor (drug B).
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Monotherapy by drug A only, drug B only, or combination of both drugs, were sim-
ulated and compared with disease progression with no intervention. The different
therapies were applied under similar conditions in terms of initial tumour size, re-
action coefficients, and initial total vessel volume. For each of the initial sets, the
simulated aspects of tumour growth were vascular volume, concentrations of Ang1
and Ang2, and tumour size. Those are presented in Figures 7.6 and 7.7 as a function
of time in the upper, middle, and lower graphs, respectively.

However, for some of these therapies, three different sets of initial proportions
of immature vessels were applied, being 50%, 95%, or 5%, as will be indicated in
each of the examples herein.

Figure 7.6 shows simulation results of tumor growth characteristics under no
therapy (left), drug A monotherapy (middle), and drug B monotherapy (right). The
therapies were applied under the same initial conditions for the disease and under
the assumption that initial volumes of immature and mature vessels were equal. One
may notice in these simulations that drug A therapy (middle) slows down tumour
growth without eliminating it. Rather, tumour size continues to increase nonlinearly,
even under a prolonged treatment period and increased drug dose (not shown). As
for drug B, (right) its application seems to cause a substantial deceleration in tumour
growth, yet when observed under a smaller scale (inserts of Figure 7.6, right), one
may appreciate that the trend of nonlinear growth still exists.

Figure 7.7 presents the simulation results of the combination therapy of drugs A
and B with 50%, 95%, and 5% initial immature vessel percentage (left, middle, and
right, respectively). All combination treatments simulated appear to cause prolonged
suppression of tumour growth and a significant linear decrease in average tumour
size. In the case of the immature vessel density being 95% (Figure 7.7, middle), the
suppression was much more remarkable. Hence, in addition to having an advantage
over the monotherapies simulated (Figure 7.6), it is demonstrated that the relative
deceleration in tumour growth caused by this particular combination therapy is a
function of the initial relative proportion of immature/mature vessel volume. Thus,
the suggested combination therapy seems to yield an even better result when the
proportion of immature vessels is relatively large (Figure 7.7, middle). Note that
this general result is independent of initial conditions, other than immature vessel
proportion.

In order to check whether the phenomenon of oscillatory growth behaviour, is
also apparent in simulation results, two simulations were performed, the results of
which are brought in Figure 7.8. The difference in the setting of the system between
the two simulations, is in the intrinsic level of Ang1 which is defined as genetically
determined. This Ang1 level was assumed to be 1 unit (upper Figure 7.8) or 35 units
(lower Figure 7.8). All other simulation conditions (parameters) were set as equal
in both cases. On the right side of Figure 7.8, simulated tumour growth is presented
(size as a function of time in days). Observing the left part of Figure 7.8, one may
appreciate that this simulated tumour growth is characterized by fluctuations, in both
upper and lower parts (Ang1 equals 1 and 35 respectively). This is coherent with the
findings presented in section “defining the challenge” where such fluctuations were
demonstrated in the experimental results.
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Figure 7.8

Results of two simulated situations, where the difference in the setting of the
system is in the intrinsic level of Ang1. It was assumed to be 1 unit (upper) or 35
units (lower). Left: Phase plane representation of simulation results, showing
EVD (x axis) as a function of tumour size (Ntum, y axis). (See phase plane
representation of the experimental results in Figure 7.4). Right: Simulation
results of tumour growth as a function of time in days.

In the first example above one may see how the utilization of the discrete math-
ematical model may help exploring therapy options and coming across new ideas
to be further empirically tested. In the latter example, we have demonstrated the
appearance of oscillatory growth phenomena in simulations of the discrete model.
Similar phenomena were observed in the preceding section “analysis of experimen-
tal results.”

7.4.2 Devising Drug Pharmacokinetic and Pharmacodynamic
Models for Angiogenesis Simulations

One of the purposes in modeling angiogenesis is to predict the outcomes of a
treatment, using a known drug and a well defined schedule. Once this is achieved,
the model could be used for more sophisticated tasks, e.g., exploring new drugs or
novel treatment protocol options for existing drugs.
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7.4.2.1 The general structure

In order to make all these applications possible, we have to implement drug
pharmacokinetics (PK) and pharmacodynamics (PD) as a part of the selected angio-
genesis model. The PK model enables calculating drug concentration in the tissues
where the drug effect occurs or in any other modeled compartments. The drug PD
model accounts for the interaction between the drug and the modeled disease. The
PD model interacts with the drug PK model, correlating the drug effect on the system
to its concentration.

The drug PK can be modeled by one of the classical PK models [56], chosen
according to the properties of the drug. The drug PK model includes a description of
drug delivery and absorption, drug distribution in the body (both in the central com-
partment and in the peripheral compartments) and drug elimination from the body.
The design of the PK model is adapted to the specific properties of the modeled drug.
Thus, delivery method, absorption characteristics, number and nature of distribution
compartments, the exchange between the compartments, and the metabolism and
elimination patterns are chosen according to the information we have on the drug.

The drug PD model applies the drug effects to all the components of the math-
ematical models which simulate the biological processes of the target tissues. The
effect of the drug is a function of the drug concentration in the target tissue or in the
central compartment. In terms of the model, this effect can be expressed as a change
in values of certain variables (e.g., the inhibition of production of a substance can
be represented as a reduction of its production rate). Practically any drug effect can
be described within this framework, given that the affected cell population or sub-
stance is represented in the disease model. Consequently, the same model can serve
for describing the side-effects of the drug, which might require implementation of
additional compartments simulating the tissues where the side effects take place.

7.4.2.2 Implementing PK/PD in the cancer model

Below we describe an example of drug PK and PD implementation in our an-
giogenesis model. The drug administration device in this example is a tablet. The
drug is absorbed from the device by a first-order kinetics process, and enters the cen-
tral compartment, which represents the blood. The volume of distribution of the drug
(V d) is not constant. Rather, it is elevating as a function of the drug amount. This
represents the effect of a concentration-dependent drug binding by tissue proteins. In
addition to the central compartment (blood), the model includes two peripheral com-
partments. One of the two represents the target tissue (in our case the tumour), where
the drug concentration defines the effect of the drug on the disease. The drug con-
centration in the target tissue can differ from that in the blood. The rate of exchange
between the blood (central compartment) and the tumour (target peripheral compart-
ment), and so the resulting target tissue drug concentration, depends on the tumour
tissue perfusion. The second peripheral compartment represents an additional distri-
bution compartment for the drug. While differing from the central compartment in
its drug distribution properties, it is implemented in order to complete the simulation
of the drug pharmacokinetics and plays no role in the effect of the drug on the dis-
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ease (pharmacodynamics). The clearance of the drug from the body is described by
elimination from the central compartment by a first order kinetics process.

The drug effect is a function of the drug concentration in the target compart-
ment. This function is of a sigmoid type: an increase in drug concentration leads to
an increase in the effect, with saturation. In our example, the drug has three indepen-
dent effects: (i) reducing the proliferation rate of the tumour cells, (ii) increasing the
apoptotic rate of the tumour cells, and (iii) inhibiting VEGF production by the tu-
mour cells. All these effects are expressed as sigmoid-like concentration-dependant
functions, altogether yielding the resulting effect of the treatment.

7.5 Discussion
The complexity of angiogenesis and its significance in potential cancer therapy

are well recognised. In experimental data brought here, several growth behaviours
have been observed. Rapid tumour growth seems to have coincided with large ranges
of vessel densities. In addition, growth seemed to be either in progress or in regress
with no apparent direct relation with vessel density at the time of measurements.
We have identified an oscillatory behaviour of tumour size in the periods in which
growth rate was mild. This oscillatory behaviour may represent a limit-cycle fixed
point, where both tumour size and vessel density fluctuate with a relatively fixed
amplitude. Since there is a mutual effect of these two processes, it would be difficult
to pinpoint cause and effect relationships. Still, one should expect to find some cyclic
behaviour in the interaction of these two processes. The graphics of the relation
between vessel density measurements and tumour size measurements, as it unfolds
with time, are presented in Figure 7.4. In Figure 7.4 (lower), where an assumption
of time delay was implemented, an oscillatory behaviour was observed, suggesting
an interdependent path of development for these two processes. The concept of time
delay falls into place with the biological intuition that there is a time gap between
the appearance of the stimulus and the response to it. It also falls to reason that the
duration of such a time gap would be variable between individuals, a function of
genetic or environmental variability.

In addition, the fact that contrasting growth trends were observed under the
same vessel density indicates that tumour growth is not a simple function of vessel
density. Rather, growth rate is a function of several coexisting effects. This stresses
the significance of separating the analysis of the involved processes, such as the
dynamics of mature vs. immature vessels, or functional vessels, and checking the
role of each one of them in controlling tumour growth status. Also, it is very likely
that different time delays should be considered when checking the correlation with
the tumour growth of each of the separate processes (e.g., the influence on growth
of immature vs. mature vessels, may be kinetically different). The comparison of
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time delays between individual cases and between different effectors, is a substantial
issue to be addressed in future work.

Tumour growth and angiogenesis were modelled both in an analytical continu-
ous way and in a discrete way, later implemented into a computer simulation.

As discussed already, the analytical model can aid in understanding the phe-
nomena under research, but carries with it an inherent limit on complexity. Analysing
the continuous models, we have shown that only if time delay is implemented into
the models, is it possible to identify Hopf points. Hopf points are stable fixed points,
which potentially can account for situations in which tumour size does not progress,
rather it fluctuates between maxima and minima that are relatively similar. The lat-
ter result underlies the global properties of angiogenic dynamics, and supports the
significance of time delay in the description of this process. It is also important for
showing how connected the mathematical description brought herein is to the bio-
logical reality.

The discrete modelling proves to be an apparatus enabling the interactive inte-
gration of many different processes which occur on different biological organisation
levels. We showed here that such an apparatus is essential for incorporating the high
level of complexity in the description of the relevant processes. Hence, this provides
an opportunity to study empirical phenomena, novel antiangiogenic drugs, new drug
combinations, new drug schedules, etc. Some of the results are summarised herein
(see [51] for complete results) and suggest that the combination of antiVEGF and
antiAng1 therapies may be advantageous over the possibility of adopting a regime
applying just one of them.

Looking into future work, we suggest that mathematical modelling can be highly
instrumental in unravelling the complexity of cancer growth and therapy. Modelling
tools may be used both for reaching a better understanding of the causality of the
processes in question, and for easily testing new drugs. Our discrete mathemati-
cal algorithm suggests that there are many points in this complex dynamics, where
suppression or stimulation by new drugs can be examined. This would require the
addition of pharmacokinetics and pharmacodynamics modelling to the work already
presented here.

7.6 Conclusions
Angiogenesis dynamics is highly complex, including several processes which

operate on different levels of the biological system. Fragile new vessels form and
regress, and at the same time can be covered by pericytes and mature into more
resilient forms which, subsequently, may still be destabilised. The rates of these
dynamics are determined by a plurality of factors, such as the genetic characteris-
tics of the organism, the availability of nutrients at certain moments, and of proteins
like VEGF and other stimulatory factors, affecting endothelial cell proliferation and
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migration during other moments. Moreover, the different dynamical processes are
interconnected by several feed-back loops, which can accelerate some of them while
decelerating others. In order to concurrently account for the interactive dynamics
of the relevant nutrients and growth factors, the different cell types, tumour mass,
and the various blood vessel types, the model of angiogenesis should necessarily be
a multi-scale one. Several continuous models with increasing complexity were dis-
cussed here. They were all shown to require the inclusion of time delays in order to
identify Hopf points, which possibly represent the oscillatory phenomena observed
empirically. The discrete model discussed here, included a highly complex descrip-
tion of the relevant processes. This description served as a basis for constructing
a simulation apparatus which offers further research opportunities. One such ap-
plication was presented here, suggesting a major advantage to the combination of
antiVEGF and antiAng1 therapy over a monotherapy, which uses just one of such
drugs. It is our hope that cancer therapy will be aided by using modelling tools such
as those presented here, both for reaching a better understanding of the processes in
question and for easily testing new therapies.
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