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Abstract. The ability of a few stem-cells to repopulate a severely damaged bone marrow
(BM) guarantees the stability of our physical existence, and facilitates successful BM trans-
plantations. What are the basic properties of stem cells that enable the maintenance of the
system’s homeostasis? In the present work we attempt to answer this question by investigat-
ing a discrete (in time and phase-space) dynamical system. The model we present is shown
to retrieve the essential properties of homeostasis, as reflected in BM functioning, namely,
(a) to produce a constant amount of mature cells, and (b) to be capable of returning to this
production after very large perturbations. The mechanism guaranteeing the fulfillment of
these properties isextrinsic- negative feedback control in the micro-environment - and does
not need additional stochastic assumptions. Nevertheless, the existence of a simpleintrinsic
control mechanism, a clock which determines the switch to differentiation, ascertains that
the system does not admit non-trivial extinction states. This result may help clarifying some
of the controversy about extrinsic versus intrinsic control over stem cell fate. It should be
stressed that all conclusions are valid for any system containing progenitor and maturing
cells.

0. Introduction

As was already recognized by the ancients, blood is our "life preserving fluid",
whose major three functions are nutrients and oxygen supply to the tissues, self-
immunity and defense against pathogens. In order to carry out these tasks human
blood contains a variety of cells, each precisely adapted to its specific objective.
All the different blood cells develop from a kind of master cell - the hemopoietic
(blood forming) stem cell, which inhabits primarily the BM. Hemopoietic cells vary
in their degree of “stemness”, ranging from the most primitive stem-cells, which
can only replicate, through intermediate levels, which can replicate and differen-
tiate, to fully differentiated, mature blood cells, which migrate into the peripheral
blood. The transition of stem cells from quiescence into proliferation, or differen-
tiation, is governed by their cell-cycling status, by stimulatory hormones secreted
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by neighboring cells in the micro-environment and by the level of amplification of
the stem-cell population [5,12].

It is commonly believed that one primitive stem cell is sufficient for reconsti-
tuting the entire blood and immune systems [4]. This extraordinary regenerative
ability of the BM is not surprising, bearing in mind that its vital role must remain
unaffected by stem cells depletion, e.g. as a result of chemotherapy, radiation or
disease. It should be emphasized that though the supply of blood cells in the pe-
riphery is steady, the BM, considered as a physical entity, is not remotely static.
Rather, it is dynamic in the sense that it constantly changes in its constitution and
arrangement, and these changes occur at varying rates.

Our aim in this paper is to mathematically investigate BMhomeostasis. More
precisely, we wish to define simple properties that enable the BM to rapidly return
to a steady supply of blood cells after relatively large perturbations in stem-cell
numbers.

Our model contains the following basic types of cells:

• Stemcells, denoted byS, which can either proliferate, generating new stem cells,
or differentiate, resulting in new mature cells.

• Differentiated cells, denoted byD, which are the product of stem cells. After
maturation they leave the BM and circulate in blood, leaving the space they
occupied earlier empty.

• Null cells, which simply represent vacant space in the BM , and can be thought
of as its resources. We denote these byN .

The BM is represented geometrically as a connected, locally finite undirected graph.
This describes neighborhoods of BM cells. The reader may think of the two or three
dimensional discrete lattices, although the results hold for any arbitrary locally fi-
nite graph, whose cells do not necessarily have uniform neighborhoods.

The family of models we present is aimed to simulate a situation in which
a cell’s behavior is determined by a combination of (1) the states of cells in its
proximity and (2) its cell cycle:

(1) Stem cell behavior is determined by the number of its stem cell neighbors.
This assumption is aimed at simply describing the fact that cytokines, secreted by
cells into the micro-environment are capable of activating quiescent stem cells into
proliferation and differentiation [5].

(2) Each cell has internal counters, which determine stem cell proliferation, stem
cell transition into differentiation, as well as the transit time of a differentiated cell
before migrating to the peripheral blood.

1. Description of the model

We begin with a few notations.
Let G = (V , E) be a connected, locally finite undirected graph. Its verticesV and
edgesE describe the cells and their neighborhood of influence in the BM respec-
tively.
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For everyv, u ∈ V denote byρ(u, v) the distance between these vertices in the
shortest-path metric induced byG.
Let N(v) = {u ∈ V |ρ(u, v) = 1} denote the neighborhood of a vertexv ∈ V , i.e.
the set of vertices joined tov by an edge.
Similarly, theball of radiusn centered inv ∈ V is the set of all vertices such that
their distances fromv do not exceedn. We writeB(v, n) = {u ∈ V |ρ(u, v) ≤ n}.
If U ⊆ V is a nonempty subset of vertices then for everyv ∈ V let ρU(v) =
minu∈U ρ(u, v) be the distance betweenv and the setU .
A stateof a vertex is a 2-tuple. The first coordinate denotes the cell’s character
(eitherS, D or N ) while the second is a non-negative integerτ which denotes its
internal counter. Let� be the set of states of a vertex.
A mapx : V → � is the state of the entire graph.
The set of all states ofG is denoted by�V .
A statex ∈ �V at timet is denoted byxt .
We are ready to define an iterative operator on�V . It depends on three non-negative
integers8, 9, 2.

xt (v)=(D, τ)H⇒xt+1(v)=
{
(N, 0) if τ = 8

(D, τ + 1) otherwise;
(1)

xt (v)=(S, τ )H⇒xt+1(v)=


(D, 0) if ∀u ∈ N(v), xt (u) = (S, ∗) ∧ τ = 9

(S, τ) if ∃u ∈ N(v), xt (u) 6= (S, ∗) ∧ τ = 9

(S,τ +1) otherwise;

(2)

xt (v)=(N, τ) H⇒ xt+1(v)=



(S, 0) if v has a stem neighbor andτ = 2

(N, τ + 1) if v has a stem neighbor andτ < 2

(N, 0) otherwise.

(3)

Explanation. Rule (1) reflects the time8 of a cell maturation in the BM before it
migrates to the peripheral blood.
Rule (2) states that a stem cell matures, if its internal counter – representing its
cycling phase – exceeds a threshold9, and its neighborhood consists of stem cells
alone (which corresponds to receiving signals that the environment is saturated
with stem cells; see [5] for biological evidence for such negative feedback).
In (3) we state that when a stem cell identifies an empty neighboring site, it pro-
liferates after2 time steps, such that one of the descendants occupies the vacant
site.

Remark.The above can be regarded as a family of cellular automata. It is also
easy to see how one can change this definition to get other threshold-like automata.
Threshold cellular automata have been employed for the analysis of biological in-
formation processing in [1,3] (for general definition and other types of threshold
automata see, e.g. [2,7,8,11,13]).

We show next that the above model has strong ‘homeostatic’ properties.
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1.1. Expansion of stem cells

We begin by investigating the property of stem cells to expand throughout the BM.
The following lemma shows that any point becomes occupied by a stem cell, given
that initially there is at least one stem cell in the BM.

Proposition 1.1.For any9, 8, 2 if there exist two verticesv, u ∈ V such that at
some timet , the vertexv is not occupied by a stem cell andu is, then there exists
an s > 0 such thatv will be occupied by a stem cell at timet + s.

Proof. From (2) and (3) we conclude that ifu andv are neighbors thenu keeps
its stem value as long asv is not a stem cell. The vertexv itself turns into stem
in no more than8 + 2 time steps, which is the time forv to migrate (in case it
was a differentiated cell), turn into a null cell and as it is a neighbor of a stem cell,
become a stem cell after2 time steps.
We proceed by a way of induction on the distanceρ(u, v) to obtain a bound on the
time that is needed forv to turn into a stem cell:

s ≤ 8 + ρ(u, v)2. (4)

�
The arguments above provide that the distanceρU(t)(v) between a vertexv,

which is not occupied by a stem cell at timet , to the subsetU(t) ⊆ V of vertices
which entertain a stem cell at timet is a non-increasing function. Furthermore,
there existss ≤ 8 + ρU(t)(v)2 such thatρU(t+s)(v) = 0.
What happens then? We assert that if9 > 0 andr ≥ t + s thenρU(r)(v) ≤ 2,
This means that from the timet + s on there always is a stem cell not farther than
two edges fromv. We record this discussion in the following proposition. Note that
its formulation excludes the pathological initial state of synchronized stem cells
(discussed in subsection 1.3) by demanding a change of the state ofv at a certain
time t0.

Proposition 1.2.Let 9 > 0. Suppose that a vertexv becomes a stem cell at time
t0, then for everyt ≥ t0 there is a vertexu ∈ B(v, 2) which is occupied by a stem
cell.

Proof.A necessary condition for the production of a stem cell inv at timet0 is that
∃v′ ∈ N(v), xt0−1(v′) = (S, τ ) for someτ ≥ 2. Note that the internal counter
of v differs from the internal counter ofv′ (and they do not equalize at least until
the counter ofv is 9). Now, the vertexv stays stem until both conditions in (2)
hold. Therefore, ifv differentiates at timet1 > t0, either it still has a stem neighbor
at time t1 or all of its neighbors differentiate simultaneously withv. The second
scenario can happen only if there is at least one vertexv′′ ∈ B(v, 2) that turned to
stem at timet1 − 1. In any case, as long as the vertexv is not a stem cell, there is a
stem cell inB(v, 2). Apply now proposition 1.1 to ensure that until the next time
the vertexv is occupied by a stem cell (and then the arguments can be repeated
inductively), the distance fromv to the closest stem cell will not exceed 2. �
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A direct conclusion from 1.2 is an estimation for the density of stem cells in a
bounded vicinity. Although it can be formulated for every connected, locally com-
pact graph, we state the following corollary for graphs with bounded degree (as
will be explained herein after), since in this case sizes of balls can be estimated
uniformly.
We need two more notations:
If the graphG has the property that there existsd such that|N(v)| ≤ d, ∀v ∈ V ,
we say thatG hasbounded degree, and writedeg(G) ≤ d (It is indeed reasonable
to assume that the BM is described as a graph of bounded degree).
Thedensityof stem cells in a given finite subset of verticesU ⊂ V at timet is the
proportion at timet of the number of stem cellsS in U and the total number of
vertices inU . It is denoted byδt (U). We have:

Corollary 1.3. Let G be a graph of bounded degree and let9 > 0. Suppose that
at some timet0 a vertexv is not occupied by a stem cell and a vertexu is, then for
every ballB = B(v, 2) ⊂ G, lim inf t→∞ δt (B) ≥ 1

deg(G)2+1
.

Proof. By 1.1 and 1.2, any ball of radius 2 admits a stem cell from a certain moment
on. The size of such a ball contains no more thandeg(G)2 + 1 vertices. �

In essence propositions 1.1, 1.2 and 1.3 show that not only is it true that one
stem cell is sufficient to bring back the system to a normal state, that is a state where
each vertex is used at some time for cell proliferation, it is also true that the BM has
a ‘built-in’ mechanism guaranteeing that stem cells do not become too scattered.

1.2. Production of mature cells

We have seen that stem cells do fill the graph nicely. In this subsection we show
that the system generates enough mature blood cells.

Proposition 1.4.Suppose that a vertexv ∈ V is occupied by a stem cell at timet .
Then eitherv or one of its neighbors will be occupied by a differentiated cell within
max(9 + 1, 2 + 2) iterations.

Proof. Assume thatv has no differentiated neighbors (otherwise we are done), then
N(v) will consist only of stem cells by at most2 + 1 time steps, unless one of its
neighbors differentiates in the meantime (and again we are done). The time thatv

has to wait for its differentiation in this situation is no longer than9 − 2, if this
term is nonnegative. �

Note that in this model one cannot guarantee that a particular stem cell will
differentiate. The lemma above does guarantee that in the close vicinity of any
stem cell some cell differentiates during a fixed bounded time interval.
An immediate consequence of the above is a lower bound on the supply of mature
cells to the peripheral blood:

Corollary 1.5. Let9 > 0. Suppose that at some timet0 a vertexv is not occupied
by a stem cell and a vertexu is, then every ball of radius3 eventually supplies at
least one mature cell everymax(9 + 1, 2 + 2) + 8 iterations.



6 Z. Agur et al.

Proof. By 1.3, in this situation every ball of radius 2 admits a stem cell from a
certain moment on. Proposition 1.4 says that either this cell or one of its neighbors
(and so we argue about balls of radius 3) differentiate within max(9 + 1, 2 + 2)

iterations and migrate from the BM as mature cells after8 additional iterations.�

1.3. Steady states and dying out states

We consider the (unique) state satisfying∀v ∈ V, x(v) = N as thedeath stateof
the system. A statext for which there exists ak ∈ Z+ such thatxt+k is the death
state, will be called adying out state. Clearly, any state consisting of no stem cells
is a dying out state. The other extreme case, a state consisting only of stem cells the
counters of which are identical (we regard such states assynchronized), is a dying
out state. We claim that if9 > 0 then there are no other dying out states.

Proposition 1.6.Let 9 > 0, then the only dying out states are either those con-
sisting of no stem cells or only of synchronized stem cells.

Proof. Let xt ∈ � be a state, which is not one of the dying out states as in the
hypothesis. If there existsv ∈ V which is not a stem cell at timet , then since there
exists a stem cell at timet , v turns to a stem cell (by 1.1) and so by 1.2 there is
always a stem cell inB(v, 2). The system does not die out.
Assume, therefore, thatV admits only stem cells at timet . By the hypothesis, the
counters are not synchronized. This condition ensures that they do not differentiate
together and again the system does not die out. �

Next, we are after statesx ∈ � for which for allk ∈ Z+, xt+k = xt . These are
thesteady statesof the system. The fact that each differentiated cell matures and
leaves the BM eventually, combined with Proposition 1.1 implies

Proposition 1.7.For every8, 9, 2 the model does not have steady states other
than the death state.

Finally, we would like to demonstrate the significance of the condition9 > 0.
The following example shows that 1.2, 1.3, 1.5 and 1.6 do not hold when9 = 0.

Example.Let G = (V , E) be the graph whose verticesV correspond to the inte-
gers such that every two consecutive integers are connected by an edge inE. Let
9 = 0 (8 and2 are arbitrary), and start iterating beginning with the initial state
x0 ∈ � as follows:

x0(v) =
{

(S, 0) if v ≡ 0(mod3)

(N, 0) otherwise

Clearly, at timet = 2 + 1 we havex2+1(v) = (S, 0) for everyv.
The synchronization of stem cell counters yields a death state at time2 + 2.
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2. Discussion

In this work we attempted to characterize the universal properties of stem cells
which account for a constant production of mature cells and for the ability to re-
cover from severe perturbations. Our model determines the common sense ground
rules governing stem cell behavior, while allowing factors which influence the "de-
cision" of individual stem cells to proliferate, differentiate or remain quiescent to
be modulated.

The main properties of our model are achieved from the negative feedback
demand in (2), namely that a stem cell does not differentiate unless its immedi-
ate micro-environment is saturated with stem cells. The second demand in (2) is
also significant: If we assume the existence of an internal clock determining the
differentiation onset to9 > 0 ( We understand this condition as guaranteeing de-
synchronization of neighboring stem cells), then we obtain the results that stem
cells are eventually dense (1.2, 1.3) and that, let alone sporadic cases, the system
never dies out (1.6). The other constituents of the system, such as the geometry
of the graph, and the parameters of maturation,8, and of proliferation,2, seem
to play a secondary role only. They do determine factors such as speed of cell
manufacturing and lengths of periods, but not the basic behavior of the system.

The above conclusion is very significant. It states that even though our repre-
sentation of the developing system is very simple, the properties that emerge are
general, and hold for more complex descriptions. That is to say that the above
principles will not be upset if BM’s description as a conglomerate of cells, each
subjected to cell-to-cell signaling in the micro-environment and to its internal mi-
totic clock, will be replaced by more elaborate rules. We would like to mention two
examples of refining the model, still obtaining the same results.
1) The internal counter of the cells can be updated as a function of the number of stem
cells in the micro-environment. This refinement may represent the stimulation of
stem cell-cycle by cytokines secreted by other stem cells in the micro-environment .
2) An empty cell resets its counter to 0 if any of its empty neighbors became a
stem cell. This condition, representing a strong negative feedback control of stem
cells on their neighbors’ cell cycle time, somehow limits a stem cell’s proliferating
potential. Note that this demand gives a more subtle control on level of cell-to-cell
signaling.
One can easily see that the non-quantitative theorems are not affected by these two
refinements.

Other options of bringing the model closer to reality are obviously possible.
Nevertheless, the basic rules of this model are sufficient, so that one does not need
to assume the existence of more elaborate mechanisms in order to explain the fun-
damental rules governing stem cell behaviour in general and BM homeostasis in
particular. For example, unlike previous authors [9], we believe that stem cells’
behavior in a functioning BM does not need to be stochastic (one may take the
existence of a stochastic generator in each cell as an additional complexity).
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