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”We unfortunately learned the slow
way that intuitive trial and error
combination of drugs—without any
quantitative guidance as to the in-
fluence of each manipulation on end
results is apt to result in no improve-
ment, only discouragement and lit-
tle useful information for future
planning” (Skipper,1986).

Abstract

Models of population dynamics, under various distributions of
environmentally-inflicted loss processes, suggest that popula-
tion persistence depends on the level of synchronization of the
environmental and population processes. Population growth
is maximized when disturbance periodicity is an integer or
fractional multiple of the population characteristic periodic-
ity. This Resonance Phenomenon is observed in as diverse
models as those of mussels in the intertidal zone under harsh
weather regimes, those of humans exposed to pulsed measles
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vaccination policies and those of cancer and host cell popula-
tions under periodic chemotherapy. In each case resonances
result from some specific properties of the system at hand,
thus suggesting the universality of this phenomenon. A large
variance in the intrinsic biological periodicity damps-down the
resonance effect and a similar ”Anti-Resonance” effect is cre-
ated by random drug pulsing. Based on model analysis it was
suggested that chemotherapy by cell-cycle phase-specific drugs
can be optimized by schedules, employing the Resonance/Anti-
Resonance effect in conjunction with known differences in cell-
cycle distributions of host and cancer cells. This method,
termed Z-Method, was verified both in vitro and in vivo. For
tuning-up the method to clinical needs a new heuristic opti-
mization method was developed, complying with complex cri-
teria for treatment efficacy and the mathematical models of
both pathology and physiology were upgraded to fit the Non-
Hodgkin Lymphoma disease (NHL) and thrombocytopenia.
Quantitative predictions about the optimal administration of
the chemotherapy supportive drug, TPO, were validated in
preclinical trials and it was suggested that the developed mod-
els and their validation procedures provide solid grounds for
further employment of biomathematics in medicine.

1 INTRODUCTION

Why has so little progress been made in the last three decades of
war against cancer? While there have been substantial achievements
in this field, the overall result of this war, launched by the USA
government in 1971, is more than 73% increase in USA annual cancer
death toll over the last thirty years. One of the major reasons for that
is investigators’ reliance on animal models, which are consistently
bad in predicting treatment success. Moreover, today, researchers
invest most of their efforts in the study of intracellular drug effects,
but altogether ignore the effects on the body of the patient as a whole
(Clifton Leaf, Fortune Magazine, March 2004).

In the 1980’s there was a consensus in the biomedical research
community that cancer progresses hazardously and, hence, does not
yield to prediction at any level of accuracy. In general, it was be-
lieved that biological systems are too complex to be accurately re-
trieved by mathematical models. This declarable mistrust in the
power of biomathematics left the biomedical sciences lagging behind
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other sciences, as an immature sequel of experimental observations.

During the same years, bio-mathematicians constructed various
models for nonlinear population dynamics in diverse environments.
Among those was the Resonance Theory of population persistence
in randomly fluctuating environments, which was later applied to
cancer chemotherapy. This theory, its various implementation in
oncology, and its prospective validation in the pre-clinical setting, is
the subject-matter of the present review.

The most important premise, underlying the application of the
Resonance Theory in oncology, is that biology and medicine obey
universal laws, as classical sciences do, and that these laws should
be applicable at all levels of biological organization. Therefore, it
can be expected that the laws that are shown to operate on one
organization level of the biological system also describe the behavior
of the system on other levels of organization. Thus, infererence from
the laws governing the dynamics on the populations level of whole
organisms can aid in understanding the dynamics of intra-organismic
physiological and pathological processes [5]. The resulting theory,
once validated experimentally, can help in substantiating biology as
a mature science.

The current review is ultimately aimed at illustrating how the
paradigm of medical treatment can be changed: from the prevalent,
trial-and-error paradigm into a new paradigm of prediction-based
decision-making in the choice of treatment schedules. This possible
transition will be illustrated by briefly relating the Resonance The-
ory, its various applications, most notably in cancer chemotherapy,
the biomedical validation of the theory in cancer and the implications
for cancer therapy. We will underline significant milestones in the
development of the concept: (i) problem-focused simple models; (ii)
universal theories applicable to different biological organization lev-
els; (iii) testable treatment optimization concepts; (iv) experiments
to test theories; (v) quantitatively accurate models; (vi) preclinical
and clinical validation.
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2 THE RESONANCE PHENOMENON IN

POPULATION DYNAMICS

In the early 1980’s it was recognized that different models of pop-
ulation dynamics, in environments that are characterized by alter-
nating episodes of disturbance and favorable conditions, have a com-
mon conceptual basis: if the environmental conditions exhibit pe-
riodic variation whose frequency is similar to that of the internal
population periodicity, then population growth is periodically am-
plified. Thus, Nisbet and Gurney [48] analyze age-structured species
whose intrinsic, damped-oscillatory population growth pattern res-
onates with some external environmental quantity, which exhibits
periodic variation. Nisbet and Gurney show that, in such cases, the
effect of the external oscillations is strongly amplified and large pop-
ulation oscillations may arise from small driving oscillations. These
authors argue that age-structure effects can cause such resonance
when the frequency of the driving oscillations is equal to, or to an
integral multiple of, the reciprocal of the duration of the infertile
phase.

Agur and colleagues obtained comparable results in several com-
plex life-cycle population models. In these models populations are
subjected to a loss process due to randomly occurring environmental
disturbances that are effective only during a portion of the life-cycle.
The models were studied over a large range of time-scales of the
environmental change and for different degrees of variance in the
system parameters [1, 2, 12, 16]. Analysis shows that the mean
extinction time has a strong non-monotonic dependence on the rela-
tion between the duration of the disturbance-resistent life-stage and
the period of the environmental disturbance. This effect, the Res-

onance Phenomenon, was found at integer and fractional multiple
of this relation. Using non-Markov probabilistic models it is shown
that, when the disturbance and the resistant stage have comparable
time scales, population persistence can increase with increasing dis-
turbance duration. Persistence in all harshly varying environments
is shown to depend on the level of synchronization of the environ-
mental and population processes. These results are independent of
the exact details of the deterministic equation, whereas the distribu-
tion pattern of intervals between disturbances appears to determine
the general pattern of extinction. Moreover, the Resonance Phe-
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nomenon may depend on a simple relation of the parameters, as in
[2, 7, 8, 9, 12, 25], or it may be a complex implicit relation of the
temporal parameters, which can only be approximated heuristically
[14, 59].

2.1 A Simple Model for Populations with Complex

Life-Cycle that are Subjected to Stochastic Envi-

ronmental Disturbances

Populations with complex life-cycle, in regimes of harsh environmen-
tal disturbances whose time-scale is comparable to that of the pop-
ulation generation time, have complicated dynamics. In contrast,
model’s simplicity is a prerequisite for its formal analysis. For de-
ciphering the universal laws underlying these dynamics one is re-
quired to trade-off the detailed description of population structure
for achieving analytic tractability and, hence, for uncovering the dy-
namic rules underlying the model [2].

Thus, it is assumed in [2] that the environment is characterized
by alternating harsh and favorable episodes. Population’s complex
life-cycle is clustered into two main life-stages, with respect to the
environmental disturbance: a juvenile stage of length τ , resistant to
the disturbance, and an adult, susceptible, stage, which produces ju-
veniles continuously. Harsh disturbances, of duration, δ, completely
obliterate all adults. The duration of the intervals between distur-
bances, i.e. the favorable episodes, ω, is assumed to be strictly pos-
itive (see Fig. 1). The rate of population increase is not described
explicitly. Rather, it is just assumed to be large enough to guarantee
that as long as there is recruitment in an interval between distur-
bances some adults will persist to the end of that interval. Other
details of the deterministic population dynamics are ignored. This
model represents an extreme case of harsh conditions, having no birth
during the unfavorable episode.

Recruitment in any given interval between disturbances can be
committed by juveniles born during one or more of the preceding
intervals, depending on the relative time-scale of the biological and
environmental periodicity. Thus, the relative time scale, N, of a
given system is defined as the maximal number of environmental
disturbances that can occur in one biological generation. It is shown
hereafter that this definition plays an essential role in the analysis of
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Figure 1: The dynamics of the system in the region 1 < τ/δ ≤ 2. A.

The process leading to extinction. The stable interval of duration,
W 1 < (τ − δ), initiates a sequence of danger intervals. Extinction
occurs in the nth interval, Wn

a = 0, when Wn−1
a + Wn ≤ (τ − δ). B.

The system returns to a ”stable state” in the nth interval, Wn = Wn
a ,

when Wn−1
a ≥ (τ − δ).
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extinction patterns.

Notations: Parameters and variables to be used in this section are
defined as follows:

τ — duration of the juvenile stage

δ — duration of environmental disturbance

ϕ — disturbances frequency (so that ϕ−1 denotes the period of
disturbance)

W i — duration of the interval i between two subsequent distur-
bances

W i
a — episode of adult presence during the i-th inter-disturbance

interval

ti — epoch of initiation of adult recruitment in interval i

2.1.1 Disturbances and resistant form having comparable

time scales

This section is intended to describe the pattern of extinction when
disturbance period and the population generation time are of com-
parable durations, (N = 1), and to prove that in such systems the
time to extinction increases with increasing duration of disturbance.

In the region

1 < τ/δ ≤ 2 (1)

N = 1, for all distributions of intervals. When τ and δ obey (1) and
as long as the intervals are large enough, the epoch of initiation of
adult recruitment in an interval, i, ti, coincides with the initiation
of that interval. Once there occurs an interval whose duration, W i,
obeys

W i < (τ − δ)

then the initiation of recruitment in all subsequent intervals will have
a fixed period, τ , with the position of the epoch ti+1, ti+2, ..., varying
within inter-disturbance intervals ( Fig 1 ). Population is extinct
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upon the occurrence of an interval, the nth, say, which is too short
to include the epoch tn, so that recruitment is fully overlapped by
the following disturbance. The state of the population in any interval
belongs, therefore, to one of three categories:

1. A stable state, when the epoch ti coincides with the initiation of
the interval, i, so that the period of adults, W i

a that commences with
ti and terminates with the beginning of the next disturbance obeys

W i
a = W i.

2. A danger state, when the epoch ti falls within the interval i, so
that

W i
a < W i.

3. Extinction, when the epoch ti coincides with a disturbance, so
that

W i
a = 0.

The inter- relationships between these three states is sketched in Fig.
2.

The process of extinction is described, then, by the episodes of
adult presence in the chain of intervals. Let W i be an interval in a
stable state so that

W 1 = W 1
a

W 1 < (τ − δ). (2)

From condition (1) it is clear that the following interval is in a danger
state, W 2

a < W 2 (see Fig. 1A). W 2 and all subsequent intervals are
danger intervals as long as each one of them contains an episode of
adults satisfying

(τ − δ) ≥ W i
a > 0

Wn
a = 0 ifWn

≤ (τ − δ) − Wn−1
a (3)

Wn−1
a = Wn−1

− (τ − δ) + Wn−2
a (4)

and from this recursion and the first equation in (2) we obtain

Wn−1
a =

n−1∑

i=1

W i
− (n − 2)(τ − δ). (5)
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Figure 2: The state-chart of population dynamics, determined by the
episodes of adults within favorable periods. The trajectory leading
from a stable state to extinction, directly or through the intermedi-
ate, danger state, is described by equation (6). The trajectory from
a stable state to a danger state and back to a stable state is described
by equation (7).

Thus, the conditions for extinction in the nth interval are

W 1 = W 1
a

W 1 < (τ − δ)
n∑

i=1

W i
≤ (n − 1)(τ − δ). (6)

If Wn
a ≥ (τ − δ), then the next interval will be stable (Fig. 1B), that

is:

if Wn
a ≥ (τ − δ), then Wn+1

a = Wn+1.

Now,

Wn
a ≥ (τ − δ) if Wn

≥ 2(τ − δ) − Wn−1
a ,

and from (5) it is clear that the conditions for returning to a stable
state in the interval n + 1 are

W 1 = W 1
a

W 1 < (τ − δ)
n∑

i=1

W i
≥ n(τ − δ). (7)
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The population will still be in a danger state in the nth interval if:

n(τ − δ) >
n∑

i=1

W i > (n − 1)(τ − δ). (8)

From the system (7) and the second condition in (6) it is evident
that for a given distribution of intervals extinction occurs earlier,
both in calendar time and in the count of intervals (the period index),
the larger is the value of τ − δ. The process returns to a stable state
earlier for smaller values of τ − δ. This conclusion can be restated in
the following manner.

Corollary 1. For any distribution of the process (W 1, W 2, W 3, ....),
the extinction time and the extinction period index in environment
B are stochastically larger than those in environment A, when

τ/2 ≤ δA < δB < τ.

Corollary 2. For any distribution of the process (W 1, W 2, W 3, ....),
the extinction period index of population B are stochastically larger
than those of population A, when

τA/2 ≤ δ < τB < τA.

Maximum synchronization of population growth with the inter-disturbance
interval under the described stochastic environmental process is achieved
when

τ/δ → 1+.

2.1.2 Disturbances of a relatively small time scale

The dependence of the average time to extinction on the frequency
of disturbance will be analyzed for N = 2. Extinction occurs here in
the interval n, given that

Wn−2
a > 0

if

Wn−1
a = 0 and Wn

a = 0. (9)
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The probability of the event, described in equation (9), depends on
the state of the interval n − 3. Given Wn−3

a > 0, the conditions for
equation (9) are defined as follows:

Wn−3
a + Wn−2 + Wn−1

≤ τ − 2δ (10)

and

Wn−2
a + Wn−1 + Wn

≤ τ − 2δ (Fig. 3A)

(11)

or

Wn−2
a ≥ τ − 2δ (12)

and

Wn−1
a ≥ τ − 2δ (13)

and

Wn−2
a + Wn−1

≤ τ − δ (Fig. 3B)

(14)

or
Wn−2

a + Wn−1 + Wn
≤ τ − 2δ

and

Wn−2
≥ τ − 2δ (Fig. 3C)

(15)

The conditions for extinction during Wn−3
a , are easy to define.

Doing so, it becomes evident that extinction probability is always
higher when Wn−3

a > 0. Moreover, when the frequency of distur-
bance is very large, extinction will most probably occur through the
combination of events (10) and (11). Note that (10) and (11) can be
generalized for all relative time scales: for all N and large frequency
of disturbance, the condition for Wn

a = 0 is given by

Wn−N
a +

n∑

i=n−N+1

W i
≤ τ − Nδ. (16)


