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Abstract 

Introduction: Recently, cancer immunotherapy has shown considerable success, 

but due to the complexity of the immune-cancer interactions, clinical outcomes vary 

largely between patients. A possible approach to overcome this difficulty may be to 

develop new methodologies for personal predictions of therapy outcomes, by the 

integration of patient data with dynamical mathematical models of the drug-affected 

pathophysiological processes.  

Areas covered: This review unfolds the story of mathematical modeling in cancer 

immunotherapy, and examines the feasibility of using these models for 

immunotherapy personalization. The reviewed studies suggest that response to 

immunotherapy can be improved by patient-specific regimens, which can be worked 

out by personalized mathematical models. These studies further indicate that 

personalized models can be constructed and validated relatively early in treatment.  

Expert opinion: The suggested methodology has the potential to raise the overall 

efficacy of the developed immunotherapy. If implemented already during clinical 

trials, it may increase the prospects of the technology being approved for clinical 

use. However, schedule personalization, per se, does not comply with the current, 

“one size fits all,” paradigm of clinical trials. It is worthwhile considering 

adjustment of the current paradigm to involve personally tailored immunotherapy 

regimens.  



 

1. Introduction – the arsenal of cancer immunotherapy      

The immune system plays a pivotal role in the maintenance of the organism's 

integrity. In addition to the protection against pathogens, it is intensely involved in 

recognition and elimination of transformed cells and, therefore, in cancer prevention 

and in the inhibition of its progression. The latter process is referred to as immune 

surveillance. Diminished immune system function, due to organ transplantation or 

immunosuppressive agents, can predispose an individual to the development of 

spontaneous or virally induced cancers [1]. Cancer immune-editing emerges as a 

necessary condition for cancer progression. New cancer cell variants appear during 

this process, having various mutations that suppress immunity, either systemically, 

or by generating immunosuppressive microenvironments for the growing tumor. 

Reduced expression of tumor antigens, expression of surface proteins that induce 

immune cell inactivation, and induction of surrounding cells to release immune-

suppressive substances, are some of the mechanisms that the progressing tumor 

exploits to ward off the immune system [2-4]. 

Different methods for increasing the potency of immune responses against cancer 

have been introduced over the last years, collectively termed immunotherapy. Anti-

cancer immunotherapy employs biological substances to either enhance the 

activities of specific components of the immune system, or to counteract cancer-



induced immune suppression. Cancer immunotherapies comprise nonspecific 

immune system activators, monoclonal antibodies targeting tumor antigens, 

cytokines, adoptive cell transfer (ACT), therapeutic cancer vaccines and 

immunological checkpoint inhibitors [2, 5]. The first immunotherapy approved by 

the Food and Drug Administration (FDA) was a weakened bacterium, bacillus 

Calmette-Guérin (BCG). For many decades, BCG was used to treat early stage 

bladder cancer, reducing the risk of disease recurrence by stimulating the immune 

response against both the bacteria and the cancer. Approximately 70% of bladder 

cancer patients go into remission after BCG therapy [6, 7].   

A more specific immunotherapy is achieved by tumor-specific monoclonal 

antibodies, which instigate cancer cell death by eliciting the immune response via 

various mechanisms of action. Some monoclonal antibodies operate by blocking 

essential signaling pathways; others trigger immune-mediated cytotoxic responses, 

etc. Several monoclonal antibody therapies comprise antibodies, or fragments of 

antibodies, chemically linked to a toxic substance. The antibody portion enables 

binding to the target molecule on the surface of cancer cells, and the toxic substance 

can be a poison, such as a bacterial toxin, a small-molecule drug, or a radioactive 

compound. Tumor-specific monoclonal antibodies are in common use in the 

treatment of leukemia, breast cancer, colorectal cancer, and head and neck cancer, 

having shown to improve overall survival and progression-free survival in 

randomized, Phase III clinical trials [8-11]. 



 

The first immunotherapies by cytokines, namely, interleukin 2 (IL-2) and interferon 

alpha-2b (hIFN-α-2b), were approved by the FDA for cancer treatment already in 

the 1990s.  IL-2 stimulates T cell proliferation, continued cytokine production, and 

activation of multiple types of immune cells [12]. High dose IL-2 treatment is 

approved for metastatic melanoma and renal cell carcinoma, leading to objective 

response in 15-20% of patients [13]. Interferon-alfa 2b affecting the growth of 

various cancer cells via the JAK-STAT signaling pathway, has been approved as 

monotherapy or in combination with another anticancer drug, for the treatment of 

hairy cell leukemia, melanoma, follicular lymphoma, renal cell carcinoma, AIDS-

related Kaposi’s sarcoma, and chronic myelogenous leukemia [14]. 

 

 More recently, identification of tumor-associated antigens (TAA) has prompted the 

development of different strategies for antitumor vaccination, aimed at inducing 

specific recognition of TAA. The underlying objective here is to elicit a persistent 

immune memory which may cause elimination of residual tumor cells and prevent 

relapses. Antitumor vaccine activity mostly depends on antigen-specific CD8+ T 

cells that become cytotoxic T lymphocytes (CTL) capable of eliminating cancer cells. 

Two main strategies have been employed to stimulate antitumor CTL: passive 

immunization and therapeutic vaccination. In passive immunization by adoptive T 

cell therapy, autologous or allogeneic T cells, tumor-infiltrating lymphocytes (TIL), 

or engineered T cells, are transfused into cancer-bearing patients. In therapeutic 

cancer vaccination, the administrated vaccines are aimed at intensifying the patient's 

own immune responses [15, 16]. An innovative treatment by gene-modified T cells, 



expressing chimeric antigen receptors (CARs), has been developed (named CAR T-

Cell Therapy). The chimeric receptors comprise extracellular tumor targeting 

antibody fragments, fused to the intracellular signaling domains of T cell receptors. 

This enables the T cells to recognize specific antigens on tumor cells. CAR T-cell 

Therapy has demonstrated success in eradicating hematological malignancies and 

various other clinical trials are still going on. Recently, encouraging preliminary signs 

of efficacy have been demonstrated in solid tumors [17]. 

 

In 2010, the FDA approved the first therapeutic cancer vaccine for use in men 

bearing metastatic prostate cancer (PCa), a dendritic cell-based vaccine, sipuleucel-

T (Provenge®). Reduction of 22% in the risk of death was shown in the clinical 

trial, and the 36-month survival probability was 31.7% in the sipuleucel-T group, 

versus 23.0% in the placebo group [18]. Other therapeutic vaccines are currently in 

clinical trials for treating a range of cancers, including brain cancer, breast cancer, 

and lung cancer [19]. 

 

This wealth of new methods for increasing the potency of anticancer immune 

responses has revolutionized the field of cancer immunotherapy. Most notably, 

immunologic checkpoint inhibitors, having shown promise in a variety of 

malignancies, may cause a paradigm shift in the way oncology patients are being 

treated [20, 21]. Yet, significant challenges still exist, hindering this innovative 

approach from reaching its full potential [22].  

  



2. Current challenges in immunotherapy application – the 

need to personalize therapy regimens 

Unlike chemotherapy, which directly attacks the tumor, immunotherapies act via 

their effects on the immune system. Therefore, for immunotherapy to show success, 

it must keep in check the complex dynamic interactions between the patient's 

immune system and the disease. Since these multifaceted interactions are 

significantly more variable than tumor progression alone, it can be well understood 

why immunotherapy is much more difficult to route than chemotherapy. 

 

Response of cancer patients to immunotherapy can be divided into three phases, 

which operate on different time scales: i) immune activation and T-cell 

proliferation, starting early after first administration and lasting for hours or days, 

up to the acquisition of functional properties [23],  ii) clinically measurable changes 

in tumor size, mediated by activated immune cells and lasting over weeks or even 

months, and iii) delayed effects on patient survival, potentially occurring many 

months after first administration [24].  Unlike what is expected based on experience 

from chemotherapy, the effects of immunotherapies on the host antitumor response 

may require long periods of time to become observable. It remains unclear, though, 

how long a patient has to be under surveillance for inferring drug efficacy; do the 

delayed response patterns, reported in patients with melanoma, occur within the 



same time frame and to the same extent in all patients with this indication, or in 

patients with other solid tumors? 

 

The difficulty in determining the time to achieve an observable response to 

immunotherapy is intertwined with the problem that the standard of care (SOC) 

response criteria may be ill-suited to the characteristic patterns of immunotherapy 

dynamics. Conventional response criteria assume that early increase in tumor 

growth or development of new lesions indicate progressive disease, and, hence, 

drug failure. For immunotherapeutic agents, however, initial tumor growth, or 

appearance of new metastases, does not necessarily reflect immunotherapy failure. 

For example, in some cases, significant response has been observed only after an 

initial increase in total tumor burden. To attune to the specific clinical patterns 

associated with immunotherapy, new response criteria have been already defined 

[25], but these do not seem to be sufficient for reflecting all the decisive clinical 

phenomena in cancer patients receiving immunotherapies. 

 

 Yet, fundamental problems still prevail, even if improved response criteria are 

found. How to match the immunotherapeutic treatments to patients who are most 

likely to benefit from it is a crucial problem for oncologists applying 

immunotherapy. A small retrospective study evaluated the response to 

pembrolizumab in 96 previously treated patients bearing different metastatic cancers 



who received the drug off-trial. When these patients were classified into three 

groups according to their performance status, no response to treatment was observed 

in more than 30 patients with the most compromised performance status (bed-ridden 

or moribund), persumably because the immune system of these patients was already 

too exhausted to be effectively stimulated by the drug. If one could predict the 

magnitude of the immunotherapy effect on the individual patient’s lesions, one 

could avoid creating false hopes and save treatment costs. The accumulating 

knowledge on response biomarkers encourages the hope that in the near future these 

will be used in combination with immunotherapies, to forecast the patient’s 

response (R. Leibowitz-Amit, personal communication). 

Notwithstanding the general optimism, predicting patient response to cancer 

immunotherapy is a major issue. In spite of the tremendous efforts invested, 

diagnostic biomarkers for anti-cancer drugs have not provided a sufficient 

instrument for identifying patients who are most likely to benefit from treatment. 

More specifically, no single immunologic or tumor characteristic in a patient has 

been found to determine response to an immunotherapeutic agent.   Given the high 

cost of current immuno-oncology monotherapy agents and the fact that many will 

be used in combination, together with the potentially higher hurdles in less 

immunogenic tumor types, the field is ripe for an 'out-of-the-box’ innovation [26-

28]. 



Recently, the potential role of computational biology in precision medicine has been 

highlighted, and it has been suggested that the effects of therapy may become more 

predictable by the integration of the effects of drug treatment in dynamical 

mathematical models of the pathophysiological process [29]. Indeed, mathematical 

models can be used to disentangle complex systems, such as mutually interacting 

immunity, tumor growth and immunotherapy. The models make relatively simple 

assumptions about the different processes in the system, which are then "verbalized” 

by the succinct language of mathematics. The formal mathematical description of 

the intricate biological processes allows simulation of the system’s behavior under 

different conditions, thus predicting the patient’s response to different 

administration schedules of the immunotherapy drug at hand. Below, we reviewed 

mathematical models for various cancer indications and diverse immunotherapy 

modalities, which are aimed at cracking the complexity involved in 

immunotherapy-host interactions.  Next, we examined in more detail the 

development and analysis of a mathematical model for brain cancer, whose results 

pinpoint the need to personalize immunotherapy. Next, we went over the 

development and validation of a model for PCa progression, and its use for 

exemplifying the feasibility of tailoring personalized regimens early in treatment. 

Finally, we briefly discussed the potential of these computational developments to 

aid in solving some of the major dilemmas in this emerging clinical area. 

 



3. Disentangling the complexity of cancer immunotherapy 

by mathematical models 

Various approaches have been adopted in the biomathematical investigation of 

cancer immunotherapy, either analyzing a “universal” cancer immunotherapy 

system, or focusing on a specific immunotherapy type. This section briefly reviews 

some of the prominent mathematical models developed for the investigation of 

different specific cancer immunotherapy methodologies. 

  

An interesting insight on cancer immunotherapy is given by De Angelis et al., [30], 

who investigated tumor–immune interactions, by methods borrowed from non-

equilibrium statistical mechanics and generalized kinetic theory. The authors 

developed and numerically simulated a model for the competition between the 

tumor and the immune system with or without cytokine therapy,  and numerically 

analyzed its global behavior, using bifurcation maps. Analysis shows that the 

system can have only two distinct fates, depending on its initial parameters: 

activation of the immune system and suppression of the tumor or, alternatively, 

inhibition of immune cells, leading to uncontrolled tumor growth. The general 

conclusion from this study is that immunotherapy by cytokines, counteracting 

cancer-induced immunosuppression, might cause a futile hyperactivation of the 

immune system. The authors stress that the only way to render immunotherapy 

efficacious is by controlling the cancer’s immune inhibitory activity. This insight, 



based on the analysis of a simple mathematical model was obtained long before the 

recent success of checkpoint blockade therapies; it highlights one of the important 

roles of biomathematics in cancer research, namely, to predict possible outcomes of 

different treatment scenarios, and suggest ‘out-of-the-box’ approaches.   

 

The work by Kirschner and Panetta (KP) [31] generalizes the Lotka-Volterra model 

introduced by Kuznetsov to describe tumor-immune dynamics under immunotherapy 

by IL-2 or by ACT [32]. Non-intuitive results, obtained via theoretical analysis by 

stability and bifurcation theory, suggest different effects of tumor antigenicity in 

different settings. The work shows that although untreated tumors with low 

antigenicity can progress to large sizes, any little increase in antigenicity may lead to 

sizeable oscillations with period of about eleven years. During the first two months of 

each oscillation, the tumor mass grows to a maximum, but then shrinks significantly 

and remains small, i.e. dormant, in the rest of the period. Analysis of  IL-2 and ACT 

application reveals interesting dynamic properties. When ACT is applied alone, 

treatment efficacy depends on its intensity and the antigenicity of the tumor. Thus, 

when both the antigenicity and the number of injected cells are small, the tumor 

progresses to become large and stable. In contrast, if antigenicity remains small, but 

the number of injected cells increases, a bistable state is observed- either tumor-free 

or a large tumor, depending on the initial conditions, namely, on three factors: the 

initial tumor size, the initial number of effector cells and IL-2 concentration in blood. 



This implies that the success or failure of an immunotherapeutic treatment depend on 

the condition of the immune system and the tumor at treatment onset.  

 

Analysis of the KP model suggests that IL-2 monotherapy will have no effect when 

applied at low doses.  However, independently of the degree of tumor antigenicity, 

administration of large IL-2 doses yields an interesting theoretical result: the tumor 

is cleared and the number of effector cells grows with no limit (in the model) while 

the concentration of IL-2 reaches a steady-state value. This unbounded expansion of 

the immune system may reflect the adverse effects observed in patients receiving 

IL-2 treatments (e.g. the capillary leak syndrome associated with IL-2 dose 

escalation treatments). The theoretical results show that these adverse effects cannot 

be eliminated by combining IL-2 with ACT therapy; under large IL-2 doses the 

tumor can be cleared but adverse effects of an over-activated immune system 

compromise the benefits of tumor clearance [33]. Overall, this work indicates that 

mathematical models may enable an informed selection of the proper treatment, 

based on the state of the patient.  

 

However, the KP model is too simple to enable clinical or even experimental 

validation, thus justifying the motivation to improve it to better account for the 

observed clinical dynamics. This was the motivation of Banerjee [34], who 

modified the KP model to reflect the clinically observed time-lag between IL-2 



production by activated T cells and the stimulation of effector cells by IL-2 

treatment [33, 35-37]. The analysis of  [34] shows that IL-2 therapy alone can lead 

to tumor regression. Moreover, in contrast to KP [31], it is shown that the immune 

system can stabilize under IL-2 monotherapy, indicating that IL-2 therapy has the 

potential to completely eradicate the cancer with negligible side effects. But as the 

Banerjee itself was not validated experimentally or clinically, the contradicting 

conclusions stemming from the two model variations cannot be resolved at present.  

 

Nani and Freedman developed a mathematical model for cancer treatment by ACT. 

The model, comprising four differential equations for immune cells, cytokines, 

cancer cells and normal cells, is analyzed thoroughly with regard to boundedness, 

dissipativity, invariance of non-negativity, stability, nature of equilibria, and 

bifurcations. Criteria for total cure, i.e. necessary and sufficient criteria for total 

elimination of all cancer cells, are derived. To this end, the conditions for global 

asymptotic stability of a rest point with zero cancer cells are derived by means of a 

Liapunov function. The authors show that bifurcations can lead to periodic orbits, 

and consequently to complications in cancer treatment [38].    

 

Attempting to improve existing immunotherapeutic regimens of IL-21, Cappuccio 

et al. developed a mathematical model for IL-21 antitumor effects, to which they 

applied an optimization methodology [39, 40]. The results suggest that by 



optimizing the inter-dosing intervals and the dosages, tumor burden and cumulative 

IL-21 toxicity can be minimized, so that maximal efficacy/toxicity ratio can be 

obtained; the optimal regimens included relatively early drug administration and 

sequentially decreased IL-21 intensities. In a following work, Elishemreni et. al. 

calibrated the mathematical model by data acquired from a preclinical study of IL-

21 therapy in mice bearing various solid tumors. The accuracy of model predictions 

was validated retrospectively by comparison to data from independent murine 

experiments. Next, these predictions were  validated in-vivo, in melanoma-bearing 

mice, possibly being the first instance of prospective validation of computational 

immunotherapy models  [41]. 

 

In [40], the authors use optimal control theory to identify optimal dosages and inter-

dosing intervals, ensuring maximal efficacy and minimal toxicity of IL-21. The 

work shows theoretically that the optimized schedules can lead to substantial cancer 

regression even with relatively low drug concentrations, and points towards the 

critical effect of the inter-dosing interval on immunotherapy efficacy. Working 

along similar methodological lines, Castiglione and Piccoli studied the efficacy of 

dendritic cell (DC) vaccination by a mathematical model of the tumor–immune 

interactions and applied optimal control theory to identify optimal treatment 

regimens [42]. Results show that the optimal regimen is a high dose vaccination at 

the beginning of treatment, followed by lower doses distributed over the rest of the 

treatment period. Of note, analysis by optimal control theory has an important 



bearing on the clinical world: even though the mathematical model of the studied 

biomedical system must be much simplified to enable optimal control analysis, if 

carefully formalized, this analysis can add important insight on the universally 

optimal treatment strategy. Even if not applicable in the clinic at the present stage, 

the optimally identified policy can direct future pharmaco-medical developments.  

 

De Pillis and Radunskaya developed and analyzed a mathematical model for tumor 

growth dynamics under immunotherapy, chemotherapy or combination of both [43]. 

The immunotherapy treatments considered are IL-2, TIL and cancer vaccines. 

Supported by mouse and human data, the theoretical results show that in some 

situations only combination of immunotherapy and chemotherapy can eradicate the 

disease. Model simulations imply that treatment efficacy strongly depends on 

patient-specific parameters, some of which can be measured experimentally. 

Although other model parameters are currently unmeasurable, these results lend 

support to the notion of customizing treatment regimens for individual patients by 

personalized mathematical models.  

 

Isaeva and Osipov analyzed a mathematical model for the immune response in 

patients with avascular tumors under chemotherapy, immunotherapy by IL-2, IFN-

α or vaccination, or by a combination of immunotherapy and chemotherapy [44]. 

Similarly to [43], their findings suggest that in the case of a weak immune response, 



neither immunotherapy nor chemotherapy can diminish the tumor. The authors find 

that sequential application of chemotherapy and immunotherapy is more efficacious 

than concurrent administration of the two modalities.  

 

Bunimovich-Mendrazitsky et. al. developed a mathematical model for tumor-

immune interactions in the bladder under  BCG vaccinations [45]. They identified 

multiple equilibrium points that are distinct in their stability properties, and 

characterized bi-stable regions in the parameter space. In these regions, BCG 

treatment can lead either to tumor-free equilibrium or to uncontrolled tumor growth, 

depending on initial conditions. Model analysis suggests that under low  treatment 

intensity, the tumor can grow unrestrained; under intermediate treatment intensity 

the tumor is eradicated with transient adverse effects; when treatment intensity is 

large, the tumor can be eradicated exponentially fast.   

 

The mathematical models reviewed in this section were developed for investigating 

the potential effects of different immunotherapy modalities.  Most of these models 

have not been validated for their ability to depict the clinical setting, so that their 

conclusions should be taken with a grain of salt. Nevertheless, the body of work 

reviewed here is important in demonstrating the potential value of the mathematical 

models, which can illuminate the directions different immunotherapies can lead to, 

and the non-intuitive predictions which can arise from model analysis. Given the 



clinical challenges in cancer immunotherapy, perhaps the most important role of 

mathematical models would be to serve as “virtual response biomarkers,” predicting 

the clinical response of individual patients to varying immunotherapy protocols.  

The sections below show how mathematical models can be used for verifying the 

feasibility and benefit in immunotherapy personalization.  As will be shown, 

immunotherapy personalization can be achieved by integrating clinical information 

into mathematical models of disease progression under different therapy regimens.  

 

4. Immunotherapy of Malignant Glioma –  personalization 

is essential 

Malignant glioma (MG) is an aggressive brain cancer, with median survival of less 

than six months and about 6%, five-years survival, for the grade IV disease – 

Glioblastoma Multiforme (GBM) [46]. Significant efforts were invested in 

developing immunotherapy for gliomas, for supplementing the standard treatments 

(surgery, radiotherapy and chemotherapy) [47], and many of the tested modalities 

have reached clinical trials [48]. These approaches share the general idea that 

stimulation can help the immune system overcome the cancer-induced suppression, 

especially prominent in MG, and the limited access of immune cells to the brain, 

due to the blood brain barrier (BBB) [49, 50]. 

 



Cellular therapy of GBM by direct delivery of ex vivo activated CTL was developed 

to overcome the obstacles to effective immune reaction against brain cancer [51, 

52]. Early results of alloreactive CTL (alloCTL) application were promising, yet 

they uncovered large variability in patient response. Inspired by systems thinking, a 

mathematical model of the MG treated by alloCTL immunotherapy was formulated 

and studied [53, 54]. The approach was to explain the population behavior, as well 

as account for individual variability, by theoretical analysis of the interactions 

between the major components of the system. For example, it may be discovered 

that a specific parameter, which varies in the population, accounts for most of the 

inter-patient difference in treatment response. Development of methods for 

estimating this parameter and consequently adapting the treatment can be the 

practical result of such discovery.  

 

The MG model reflects the biological understanding of the major host-

immunotherapy interactions. It describes the quantitative dynamics of six 

components (see Figure 1): tumor cells (T), CTL (C), two major cytokines: 

Interferon-gamma and Transforming Growth Factor-beta (IFN-γ and TGF-β; 

denoted by y and x, respectively), Major Histocompatibility Complex (MHC) class I 

receptors on a tumor cell (u) and MHC class II receptors on an antigen-presenting 

cell (v). The value of the variable T is related to the clinically observable tumor 



volume by assuming a linear relation between cell number and observable volume, 

ca. 106 cells/cm3 

  

Figure 1. A schematic description of the model of MG undergoing 

alloCTL immunotherapy (drawing) and the mathematical model 

reflecting these interactions (box). Endogenous CD4+ and CD8+ 

lymphocytes occasionally cross the BBB, attach to MHC class II on 

the surface of APC, eventually leading to CTL activation and 

recruitment; exogenous activated CTL are added by infusion; 

activated CTL attach to MHC class I molecules on the surface of 

tumor cells and destroy them (light green arrows).  Tumor cells 

produce TGF-	ߚ	ܽ݊݀ CTL produce IFN-ߛ (dashed dot black arrows); 



TGF-	ߚ reduces both BBB permeability, expression of MHC II 

molecules and activity of T lymphocytes (dashed black arrows). IFN-ߛ 

increases BBB permeability and activation of MHC I and II molecules 

(black arrows). In the first equation in the box, tumor cells (T) grow 

with rate ݎ(ܶ), and their elimination by CTL (C) follows the law of 

mass action with saturation for large T (ℎ(ܶ)), suppressed by TGF-ߚ 

(்݂  In the .((ݑ)்݃) and encouraged by MHC class I receptors ((ݔ)

second equation in the box, the CTL are recruited, depending on 

antigen presentation, being proportional to both tumor size  and the 

abundance of MHC class II receptors ( ஼݂(ܶݒ)). Further, CTL are 

injected externally (ܵ(ݐ)), and eliminated at a rate	ߤ஼. The recruitment 

is suppressed by TGF-ߚ (݃஼(ݔ)). In the third and fourth equations, 

TGF-ߚ and IFN-ߛ are secreted by tumor cells ( ௫݂(ܶ)) and CTL 

( ௬݂(ܥ)) respectively; they are eliminated at the respective constant 

rates. The last two equations describe degradation and production of 

MHC class I and II receptors, both stimulated by IFN-ߛ, while MHC 

class II receptors are downregulated by TGF-ߚ. 

 

The model was used to analyze the reasons for treatment failure, and the likelihood 

of overcoming them. To this end, model parameters were fixed at the values 

estimated for the average patient, except for tumor growth rate which was set either 



at a relatively large value to represent grade IV disease, or at a relatively small value 

to represent grade III disease.  In the clinical trial, grade III patients responded well 

to alloCTL treatment, while grade IV patients progressed quickly and died [52]. 

Model analysis shows that this difference can be accounted for by the cancer growth 

rate: grade IV tumors whose growth is more aggressive overcome the treatment, due 

to faster expansion; the intrinsic growth rate of grade IV patients is estimated to be 

three-fold higher than that of grade III patients. Treatment can fail also in slowly 

growing cancers, as a result of higher initial tumor burden or smaller CTL efficacy. 

The MG model was simulated to indicate how to overcome such problems: in all 

these cases, response can be achieved by increasing the numbers of transferred 

CTL, in line with the personal patient’s parameters [54]. 

 

Further mathematical investigation yields additional insights [53]. Theoretical 

analysis of scenarios with constant infusion shows dependence of outcomes on the 

infusion rate. Treatment is ineffective under low infusion rates for tumors of any 

size, while small tumors can be eliminated by ACT applied at intermediate infusion 

rates. With sufficiently large infusion rates, treatment eventually eliminates tumors 

of any size. The treatment intensity required to overcome the disease can be 

calculated from the initial tumor size and patient-specific parameters. The more 

realistic treatment scenario of intermittent daily CTL injections was studied 

numerically [53]. Also in this case, the outcomes depend on the dose: a low dose 



allows the tumor to continue growing, while increased doses force a faster decline. 

This work demonstrates how, using a computational model, the dose-effect relation 

can be estimated, given individual patient parameters and the treatment schedule.  

 

Preliminary clinical trials indicate that MG immunotherapy can be efficacious, but it 

has yet to become part of the SOC treatment. As in other indications, complex 

interactions between different arms of immune system and cancer generate a 

sizeable inter-patient variability in the response. The uniqueness in MG 

immunotherapy stems from the need to maintain a subtle balance between anti-

cancer immune reaction and harmful brain inflammation, as the brain is isolated 

from the body’s immunity [48]. Therefore, methods for using personal 

characteristics to predict patient’s response are essential. The models reviewed here 

integrate the effects of biologically relevant parameters on the system behavior, 

predicting the effect of the treatment on a patient based on its personal parameters 

[53, 54].  Extending this work to integrate clinical patient data will allow 

developing personalized MG immunotherapy by computational models to evaluate 

an expected response based on personal clinical information.  

 

5. Immunotherapy of PCa – the mathematical model as a 

personalization tool 



The second most common cancer and the fifth leading cause of cancer death in 

males worldwide is PCa [55]. Following a hormone-sensitive stage of variable 

length (median is eight years), treated mainly by androgen deprivation therapy 

(ADT), patients progress to the most advanced disease stage, castrate resistant PCa 

(CRPC). The large variability in tumor progression among patients and lack of 

reliable predictive biomarkers impede prediction of the patient’s response to 

therapy, thus complicating adequate planning of treatment for PCa patients [56-58]. 

The approval of sipuleucel-T for treatment of CRPC patients has been viewed as a 

milestone in the development of cellular immunotherapy. This success has 

strengthened the interest in vaccination therapy of cancer, a field that earlier had lost 

its appeal, partly, due to the absence of significant clinical progress [59].  But then, 

some of the recent experimental vaccines, which showed promising results in early 

studies, failed to meet the primary end point, in more advanced clinical studies. In a 

phase II clinical study an allogeneic PCa whole-cell vaccine stimulated expansion of 

tumor-specific immune cells in non-metastatic androgen-independent patients. The 

treatment was safe, but showed insufficient efficacy: the rate of increase of the 

prostate specific antigen (PSA; ‘PSA velocity’’), which serves as a surrogate marker 

for disease load in PCa, was reduced only in 11 out of the 26 studied patients [60]. 

The observed variability in PSA profiles, presumably, due to differences in 

individual immune characteristics and in tumor biology, points toward the 

possibility that trial results may be improved by personalized immunotherapy 



regimens. This premise has been motivated by theoretical and experimental work, 

showing that the efficacy of chemotherapy may be improved by altering the inter-

dosing intervals, rather than the dose itself, both in the patient population and in 

individual patients [e.g., [61-63]. The idea that adaptation of the immunotherapy 

regimen to the personal dynamics of the immune and disease processes would 

improve treatment efficacy differs from the more prevalent notion of personalized 

treatment, whose motivation is usually the expected toxicity of the drug, its price or 

the paucity of material for its preparation.  

In view of the aforementioned need for personalized immunotherapy regimens, it is 

important to note that, a priori, it seems that the complexity of the cancer-immune 

system interactions would defy any attempt to determine the best individual 

regimen, based on the biomedical understanding alone. For this reason, the ability to 

personalize the adoptive immunotherapy treatment was studied by mathematical 

modeling, which had already shown success in methodically studying complex 

cancer-immune interactions (see Sections 3, 4 above).  Accordingly, the first 

mathematical model for PCa therapy by an investigational vaccination was 

constructed and further used for studying the need for immunotherapy 

personalization, and the advantages of the computational approach. The model was 

initially validated by data from the above-mentioned phase II clinical study, hence 

establishing the feasibility of designing and validating robust mathematical models 



and using them  to suggest efficacious patient-specific immunotherapy regimens 

[64].  

The constructed mathematical model describes the dynamic interactions of PCa 

cancer cells, immune cells and a cellular vaccine. The immune system components 

include antigen-presenting dermal DC, mature DC, “exhausted” DC and 

regulatory/inhibitory antigen-specific cells and CTL. A graphical portrayal of the 

model and its formulation can be found in Figure 2 [60]. 

 



 Figure 2. A graphical representation (drawing) of the mathematical 

model (box). The model is based on several assumptions, as follows.  

A vaccine, ܸ, is injected into the skin where it stimulates, maturation 

of naïve sentinel dendritic cells (DC) precursors into antigen-

presenting DC. The vaccine is taken up by the naïve DC at rate ݇௜ 
(first equation in box). During maturation, each DC takes up vaccine 

of amount ݊௏, so that the available vaccine is reduced at a linear rate, ݇௜݊௏. Maturing DC migrate into lymph nodes at a constant rate ݇௠ 

(second equation in box). The pool of functional antigen-presenting 



DC in the lymph nodes, ܦ஼	, grows with the addition of migrating DC, 

with probability ߙ௟; functional DC become “exhausted” at the 

constant rate	݇஼ோ   (third equation in box). Exhausted DC give rise to 

regulatory DC, ܦோ, which are eliminated at the constant rate ߤ஽ 

(fourth equation in box). Functional antigen-presenting DC stimulate 

Th1-type immunity by recruiting and activating tumor–specific CTL, ܥ, at the rate ܽ஼. CTL die at the rate ߤ஼, or are inactivated by 

regulatory/inhibitory cells, ܴ, at the rate	݇ோ (fifth equation in box). 

Regulatory/inhibitory cells,ܴ, are recruited by regulatory DC at the 

rate ܽோ	and die at the rate ߤோ	(the sixth equation in box).  With no 

immune suppression, the PCa cell population, ܲ, is assumed to grow 

exponentially at a rate	ݎ. Tumor cells are removed by CTL at a rate 

proportional to CTL numbers; killing efficacy of CTL is taken as 

decreasing with increasing tumor burden, with coefficient 	ܽ௉	(seventh 

equation in box). 

 

Next, the mathematical model was validated for its ability to predict the personal 

PSA profiles of the patients in the “real life” clinical study. To personalize the 

model, the PSA levels, measured in each patient before and during the initial five to 

nine treatment cycles, were used for adjusting the model parameters to reflect the 

characteristic biologic reaction rates of the individual patients (“training set”). 



Individual models successfully predicted the PSA course during the subsequent 

cycles and beyond treatment in 12 out of 15 responders (R2=.972 in the “validation 

set”; Figure 3). Two important conclusions emerge from this simulation experiment: 

(i) by inputting pre-treatment and initial in-treatment PSA measurements, the 

mathematical model can be personalized and further used for accurately predicting 

future PSA dynamics of individual patients; (ii) an input of different numbers of 

PSA counts is required in order to obtain a sufficiently accurate personal model. 

 



Figure 3. Validation of the personalized models. Patient–specific 

models were obtained using the respective pretreatment and the 

patients’ initial in–treatment PSA values (“training set”; black dots). 

The personal models were further employed for predicting subsequent 

individual PSA levels (“validation set”; red dots), showing high 

prediction accuracy (purple line; R2=0.972); green vertical broken 

lines mark timing of vaccination onset. Note that a different size of the 

”training set” for each patient was required for reaching good 

predictive power. 

Having validated the accuracy of the model, it was then employed to examine 

whether personal changes in the immunotherapy regimens can increase their 

efficacy, e.g., stabilize the disease. Consequently, the personalized models were 

simulated with treatments which were different from the real-life protocol by 

various combinations of increased vaccine doses and reduced inter-dosing intervals.  

The results of this “virtual trial” suggest that  disease in different patients can 

potentially be stabilized by patient-specific regimens: a one week reduction in the 

inter-dosing interval is predicted to suffice for stabilizing disease in one patient, 

whereas other patients may require more frequent vaccinations with the standard 

dose (2.4×107 cells), or a double dose (Figure 4).  



 

Figure 4. Model–suggested modification of the vaccination regimen, 

predicted to cause disease stabilization. Personalized models were 

used to predict PSA dynamics under individually intensified 

vaccination regimens. Black lines represent the best-fit curves to the 

PSA dynamics clinically observed under the standard treatment 

regimen (red dots; 2.4×107 vaccine cells administered every 28 days; 

compare to Figure 3); blue lines are the predicted PSA levels under 

the individually modified vaccination regimens. The modified regimens 

simulated were standard treatment dose (STD)×10  once weekly (for 



Patients 3, 12, 20), STD×5 once weekly (Patient 22), STD×1 once 

weekly (Patients 5, 18, 21), or STD×1 bi-weekly (Patients 7,14). The 

times of treatment onset and treatment arrest are marked by vertical 

broken lines. 

Simulation results indicate that personalized mathematical immunotherapy models 

can be created and employed for tailoring immunotherapy regimens to individual 

patients. In the above retrospective study, successive PSA counts were input until 

the precision of the personalized model was effectively validated; a different 

number of data points were required for validating the personal models of different 

patients. In reality, however, it may be desired to identify improved personal 

treatment schedules as early as possible during the actual treatment. This creates a 

new problem: how can we achieve this optimal balance between sufficiently reliable 

in–treatment validation of the personal model, and the earliest possible clinical 

implementation of the model-recommended regimen? 

A solution to this optimization problem was suggested, which appears to be a new 

concept for personalizing cancer immunotherapy in real time [65]. The suggested 

solution is to optimize the balance between maximum model accuracy and 

minimum time for its realization by creating personal models that are sufficiently 

accurate for determining significantly better personal treatment regimens, yet are 

obtained in the minimum necessary time, that is, by the minimally necessary 

number of input data points. This concept, termed in-treatment personalization, 



essentially prescribes how to employ the first cycles of treatment for i) continuously 

personalizing a mathematical immunotherapy model, ii) validating the personal 

model relatively early in-treatment, and iii) using the validated model to suggest 

improved personal treatments. 

The suggested method was implemented as an algorithm encompassing four stages: 

preparation, personalization, prediction of an improved treatment and monitoring. 

The method trains and validates personalized mathematical models iteratively, using 

data of the patient collected before and early in treatment as “training sets”. The 

algorithm employs a customized Success-of-Validation criterion to determine when 

the personalized model can reliably predict individual treatment outcomes under 

various treatment regimens (Figure 5; for further details, see Supplementary 

Material, Section 2 in [65]).  



 

Figure 5. The algorithm for in-treatment personalization. Model 

validation is iteratively assessed by a customized Success-of-

Validation criterion, in order to determine the reliability of the 

predictions of individual treatment outcomes by the personalized 

model and to suggest improved personal regimens. 

To prove the concept of the suggested method, it was retrospectively applied to the 

clinical data set of the PCa patients under vaccination therapy (see above and in [60]). 

Results show that a reasonable model validation for individual patients enables a 

relatively early prediction of the observed individual PSA changes under the 



currently applied regimen, and can indicate valuable treatment modifications; for 

most of the studied patients the model-suggested regimens would have stabilized 

PSA levels until the end of planned treatment. These results prove the feasibility of 

the method, namely, that it is possible to obtain a reliable personalized mathematical 

model of immunotherapy early in-treatment, and use it for improving  personal 

immunotherapy regimen [65].  

 

Note, however, that the PCa model describes PSA dynamics in treatment sensitive 

patients. From the results of the clinical trial it appears that 13 out of the 25 patients 

in the trial were completely unaffected by the treatment, so that a change in regimen 

was not expected to change their PSA profiles, or at least, such a possibility could not 

be explored by the dynamic mathematical models. These patients could not be 

included in the model validation exercise. Due to the small number of responsive 

patients in the original clinical trial, one may argue that the clinical results of this trial 

do not capture the full variation of response profiles in the patient population. 

Therefore, it is mandatory to revalidate both the PCa model and the regimen 

personalization methodology on larger groups of patients.    

  

5. Conclusions 

The research reviewed here represents an early exploratory stage in the development 

of a coherent methodology for using dynamical computational models in precision 



medicine. We focused on immunotherapy and investigated the potential value and 

practicality of personalizing immunotherapy regimens by mathematical modelling, 

in conjunction with clinical data. Underlying this approach is the hypothesis that 

personalized models enable to forecast the patient's response to specific 

immunotherapy protocols, thus overcoming some major caveats to the full success 

of this treatment modality. The lesson learned from the mathematical explorations 

suggests that the efficacy of immunotherapy can be improved significantly by 

patient-specific regimens which can be worked out by personalized mathematical 

models, and that personalized models can be constructed early in treatment. 

Hopefully, increased use of predictive biomarkers in immunotherapy will enable 

efficient integration of personal covariates in the mathematical models, so that 

model personalization and schedule tailoring can be done pre-treatment. 

 

The reviewed models are relatively simple. For example, when considering the 

efficacy of ACT  by CTL it is borne in mind that dominant immunogenic mutations 

on the surface of cancer cells can vary among patients and can be replaced by others 

during the course of therapy. Consequently, the efficacy of ACT depends on the 

ability of the specific ACT treatment to focus on the most abundant mutations [28]. 

In the reviewed MG models, these considerations are partly reflected in the 

parameter of cytotoxic efficacy, which can vary among patients, accounting for the 

differences in response. However, in the future, when mathematical models are 



developed for evaluating specific ACT modalities, it may become necessary to 

consider the selection rate of pertinent mutations. We expect that the recent advent 

of systems biology will enable this, especially, as increasingly relevant data become 

available from human specimens. 

 

Information gathered from patient-specific in vitro or in vivo experimental models, 

for example by use of patient-derived xenografts, may be valuable for predicting 

individual response, hence, lead to better personalization. The predictive success of 

such a collaborative effort has been shown in the case of mesenchymal 

chondrosarcoma treated by chemotherapeutic and biological drugs [62]We are not 

aware of a similar endeavor in the field of immunotherapy, in spite of the numerous 

attempts to derive personal predictive markers from experimental analysis of patient 

samples. We believe that application of this information in conjunction with 

dynamic mathematical models will become inevitable in future research. 

 

 

6. Expert Opinion  

We anticipate that the use of personalized mathematical models for improving the 

efficacy of immunotherapy will be implemented already during clinical trials, thus 

raising the overall efficacy of the developed technology and increasing its prospects 

of being approved for clinical use. 



 

However, the schedule personalization option per se does not comply with the “one 

size fits all” paradigm of drug development, which involves predetermined 

treatment schedules, applied uniformly to all patients in the trial arm. Therefore, we 

suggest altering the current paradigm of clinical trials for adapting it to this new 

concept of personalized immunotherapy (“P-trials”). Accordingly, in Phase II 

studies, the established paradigm by which each arm tests the patient response to 

one uniform dosing schedule, would be replaced by trials testing dosing schedules 

that are personalized during the course of treatment, within a restricted range 

previously determined by toxicity tests only. Acceptance of this new paradigm by 

regulatory authorities will hopefully lead to improved individual response and, 

hence, to more significant trial results of new immunotherapy modalities. The 

suggested method should be extended to the clinical practice and be validated and 

approved for different cancer indications [66, 67].  

 

The vision of in-treatment regimen personalization and P-trials is delimited to 

cancer therapy by agents that are administered over relatively long periods of time, 

and are expected to elicit variable response in the population. In other 

immunotherapy modalities considerations may vary. For example, CAR T-cell 

therapy (see  Section 1) may induce rapid and massive antitumor immune response, 

possibly associated with cytokine storms [68]. When such technology is approved, 

it may be important to predict patient response prior to treatment onset. This may 



also be the case of drugs such as Imatinib, exhibiting 60% response in a Phase II 

study [69], but showing suboptimal efficacy in the clinic. In this case, the "one type 

fits all" paradigm may have been justified during drug development, but is less 

adequate for the clinic, where in-treatment regimen adjustment [70], or a prior 

evaluation of the individual patient response may be advantageous.  

The results reported here suggest that it is feasible to create personalized 

mathematical models during treatment, rather than before its onset. In contrast, there 

exist various statistical algorithms for predicting individual response to anticancer 

drugs before treatment begins. Most notably, a number of nomograms (user-friendly 

graphic calculating scales designed to provide the likelihood of occurrence of a 

specific event) have been developed and used to predict the probability of particular 

treatment outcomes in an individual, including in prostate cancers, gastric cancers 

and colorectal cancers [71].  Yet, these nomograms are hardly employed in the 

clinic, probably due to the large variability in the quality of their predictions. More 

generally, the available statistical algorithms predicting response to cancer therapy, 

in general, show limited clinical utility. This is mainly because these methodologies 

are based on analysis of big data from past clinical trials and are incapable of 

predicting the outcome of any event, which is not recorded in a substantial patient 

data base. So, it is most likely that in the near future, statistical methods, per se, will 

not suffice for personal prediction of immunotherapy outcomes. 



 Another potential approach, which still requires validation, is the application of 

Machine Learning methods, integrating patient information e.g., clinical and 

biochemical metrics or genetic information, in order to adjust the personal 

mathematical models [72]. If successful, this integrated mathematical/statistical 

methodology can replace or improve the In-Treatment Personalization 

methodology reviewed here. These novel computational approaches give us hope 

that in the near future new predictive software tools will be introduced into the 

rather vacant toolbox of methods for immunotherapy personalization. 
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Article highlights box  

• How to match the immunotherapeutic treatments to patients, who are most 

likely to benefit from it, is a major issue for oncologists applying 

immunotherapy. 

• Analysis of a mathematical model for brain cancer progression under 

immunotherapy by alloreactive cytotoxic T cells demonstrates the benefit of 

using mathematically-predicted personalized immunotherapy regimens. 

• Application of a mathematical model for prostate cancer treatment by an 

allogeneic whole-cell vaccine shows that the efficacy of immunotherapy can 

be improved by patient-specific regimens obtained by personalized 

mathematical models, and that sufficiently precise personalized models can be 

constructed early in treatment. 

• The authors anticipate that the use of personalized mathematical models for 

improving the efficacy of immunotherapy will be implemented already during 

clinical trials (P-trials), thus raising the overall efficacy of the developed 

technology, and increasing its prospects of being approved for clinical use. 

• The most important role of mathematical models in the clinic may be to serve 

as “virtual response biomarkers,” predicting the clinical response of individual 

patients to different immunotherapy protocols.   

 




