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1. INTRODUCTION 

At present cancer patients are treated by traditional as well as novel modes of anti-
cancer therapy. The traditional modes include surgery, radiotherapy and classical 
chemotherapy, inhibiting growth of rapidly proliferating cells. The novel anti-cancer 
therapies involve, for example, the disruption of signal transduction pathways that are 
important for tumor growth, the inhibition of tumor-induced angiogenesis, or immune-
therapy, which exploits tumor-specific antigens. Cancer treatment strategies employed for 
the majority of the patients are currently multi-modal. This multi-modality and the ongoing 
development of new treatment approaches, generate a fast growing number of different 
possible protocols for the treatment of cancer. Given the limited human and financial 
resources for clinical trials, optimal protocols cannot be determined empirically, that is, by 
trial-and-error alone, as is presently the only existing medical paradigm. Rather, a formal 
method is necessary for a priori suggesting improved drug schedules, according to criteria 
set by the physician. These criteria may be, for example, life expectancy of the patient, time 
to reach a specified disease stage, side effects, quality of life, cost of treatment, etc. 

Cancer progression in a patient undergoing chemotherapy is a highly nonlinear 
process. As a result it is impossible to predict, on the basis of biological knowledge and 
intuition alone, the therapeutic results of changes in treatment schedules. Rather, such 
predictions must take account of the specific effects of the treatment schedule on the 
relevant cellular and molecular dynamics of the patient. Calculating these detailed dynamics 
one can predict the effects of each individual treatment scenario and, subsequently, suggest 
improved treatment schedules for the drugs in question. 

A mathematical model that takes account of cell-cycle dynamics of tumor and host 
cellular dynamics suggests that intermittent delivery of cell-cycle phase-specific drugs, at 
intervals equivalent to the mean cell-cycle time, might minimize harmful toxicity without 
compromising therapeutic effects on target cells (The Z-Method, [1,4]). Subsequently, the 
explicit general formulae has been derived for the growth or decay of cell populations that 
are subjected to repeated pulse delivery of cell-cycle phase-specific drugs [9, 11], and an 
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algorithm has been developed for calculating the required length of treatment for this 
protocol [10]. The existence of this "resonance" phenomenon has been further demonstrated 
for a general class of chemotherapy functions, thus supporting the underlying theory [18, 
13, 15, 16]. 

The predictions of the Z-method have been verified in experiments in mice bearing 
lymphoma, treated by repeated pulse delivery of the anti-cancer drug, Ara-C, and by the 
anti-viral drug AZT. In these experiments it has been shown that when the rhythm of drug 
delivery roughly coincides with the characteristic marrow cell-cycle time, animals survive 
and myelo-toxicity is significantly reduced. The optimal spacing of repeated treatments was 
determined by measurements of the kinetics of cell movement through different cell-cycle 
phases. These experiments showed that it is feasible to control host toxicity by rational drug 
scheduling, based on the Z-method [5, 6, 17, 8]. 

Only periodic policies were considered in the above mentioned models. Therefore 
treatments were to be given at regular times t0+il , for i = 1,..., n and a given time, l, 
between the onsets of consecutive treatments. It was also assumed that all treatment periods 
are of the same given length. Concluding from [10], if the treatment duration is shorter than 
the host cells life cycle, and if we choose l to be a multiple of the host cells life cycle, each 
treatment will strike the host cell and its descendants at the same point of the life cycle and 
therefore, except for the damage caused to host cells by the first treatment, no further 
damage will be caused by the following treatments. 

For some specific types of cell-cycle-duration's distributions (normal in [4] and some 
other [18, 11] described later in this work) it was showed numerically ([4, 18, 11]) that 
resonance in cells population growth takes place when drug is supplied regularly in short 
pulses every τ, where τ equals the mean cell-cycle-duration or is its integer or a fractional 
multiple. It is shown that resonance becomes sharper as variance of the cell-cycle-duration's 
distribution is smaller. 

In this work we show that the cell population dynamics under drug treatment can be 
modelled by iterative compact operator application on initial cell age-distribution. It is 
further shown that the model can be chosen discrete. Methods for fast estimation of 
population growth-rate are proposed. 

2. DEFINITION OF THE PROBLEM 

2.1. EFFICIENT TREATMENT CRITERIA 

In this section we consider medical criteria of effective cancer treatment. As many 
phase-specific drugs can have cumulative toxicity and sometimes even carcinogenicity, the 
overall duration of the treatment, in principle, should be limited. In addition, at at any 
moment of treatment, the number of drug-susceptible host cells that must exceed a certain 
level, in order not to endanger the patient's life. We consider a tumor as eliminated if the 
number of tumor cells drops beneath some threshold number. Thus we suppose that there 
are three major cancer treatment criteria: time of treatment, minimal quantity of host cells 
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that must survive, efficacy of treatment (minimal fraction of tumor cells that must be 
eliminated). 

We state the problem of effective treatment search as follows: find any plausible 
treatment subject to the above mentioned three strict requirements, posed by medical 
observations, and prove that the constraints are indeed fulfilled. The approach adopted here 
is that the question of optimization is dispensable: if a given protocol fulfills prescribed 
criteria, then it seems unnecessary to search for a better one, especially if it is hard to do so. 
Generally, in order to analytically prove that a given treatment is optimal, it is necessary to 
significantly simplify the model. Such simplifications could render the model inapplicable 
to real-life. It also seems that numerical optimization procedures, such as in [7], cannot 
always guarantee that the resulting treatment will fulfill all the prescribed constraints. 
Indeed, the general idea of the cited work is as follows: each criterion has been assigned 
with some weight and in each time step the algorithm chooses the best performance. Some 
randomness has been introduced in order to make optimization "more global" (Monte-Carlo, 
annealing methods). Evidently, this method does not guarantee that the resulting treatment 
always satisfies the strict medical demands. 

In order to develop efficient treatment strategies (as defined above) it is necessary to 
develop fast methods for estimating the number of host and cancer cells at any time. The 
present work dwells in this task. 

3. MATHEMATICAL AND COMPUTATIONAL MODELS 

3.1. NOTATIONS AND ASSUMPTIONS 

We assume that the drug eliminates all cells during the S-phase of their cycle. 
Let us also denote the first moment during a cell's S-phase as age zero. Let n(a, t) be 

the age density of cells at time t. Assume that the drug is present in the organism every τ 
time units for a short period δ. Only the cells which enter zeroth age at time intervals  
[mτ + δ, (m + 1) τ − |S|] can survive. Such an interval will be denoted "m-th drug-free 
interval". 

The distinct feature of the present model is that we consider cells at fixed age (age 
zero) between subsequent treatments n(0, t),t∈ [mτ+δ, (m+1) τ − |S|], rather than cell's ages 
distribution for fixed time t (this resembles the distinction between Eulerian versus 
Lagrangian formalism in fluid mechanics). 

We propose to consider two different models, based on discrete and continuous time 
scale respectively. The major benefit of the discrete model is its finite dimensional matrix 
formalism, whereas the continuous model is characterised by operator formalism. It is 
assumed in both cases that cell's life-span may vary from Tb to Tm with a distribution 
function f having a single maximum. It is further assumed that Tb > 0 and Tm are either 
positive numbers or ∞. 
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3.2. MODELS' PRECISION 

It should be noted that currently, experimental measurements of most of cells 
parameter (such as distribution function f of cell-cycle duration) have low precision. 
Evidently, the maximal precision of mathematical models is determined by the precision of 
the experimental data. For example, most existing models (e.g., [11]) assume that the 
distribution function f(t) decays nearly exponentially to zero when t tends to ∞. Thus, there 

exists t0, such that for any 
 
and f(t) are less than the resolution of the 

experimental measurements. In this case we may assume that f(t) ≡ 0 for  without 
affecting the model's precision. 

∫
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3.3. CONTINUOUS MODEL 

The equations, describing cell age distribution are (Appendix A) 
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where na and nt mean partial derivatives ∂n/∂a and ∂n/∂t, respectively. The age specific 
division rate of cells is β(a), the age specific mortality rate (due to natural and external 
courses) of cells is η(a,t), and the initial age distribution of cells is n0(a). The function β(a) 

satisfies β(a) = f(a)/α(a), where is the probability that a cell divides between ages 

a1 and a2 and . The function α(a) gives the fraction of cells undivided by 
age a. In our case the support of β (the set of all of points on which β has nonzero values) is 
a subset of [Tb,Tm]. 
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In this particular model we assume that division and mortality rates of population 
growth are independent from population density. In very general case division rate of cell 
population can depend on the overall cell number. This event can take place in 
noncancerous cells populations. In this cases β and η depends also on the total quantity of he 
cells, . ∫

mT
datantN

0
),()(

Thus in this case, which is out of the scope of the present article, β(N, a) is a 
decreasing and η(N, a, t) is an increasing functions of N (negative feedback regulation of 
overall cell's quantity). 

Let us find general solutions of (1-3) in the form n(a, t) = m(a, t − a) (it is clear that  
η = t − a is a characteristic curve of the equation (1)). Let us denote ),(),( atata +=ηη .  
The equations (1-3) take the following form: 
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because (f is distribution function on [Tb ,Tm]). ∫ =m

b

T

T
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Thus the general solution of (4) is 
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where r(ζ) is any C1 (continuously differentiable) function, which in each specific case is 
determined by given boundary conditions. Thus 
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The boundary condition (3) looks as 
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or 
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It follows from (9) that 

 ).(),0( trtn =  (12) 

Boundary condition (2) reads as 
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From (7) follows that 
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From (13) and (14) follows that 

 ∫ ∫−=
−−m

b

a
T

T

dat
daeatraftr .)()(2)( 0

),( ααη

 (15) 

Now we restrict ourselves to less general and slightly different model. We assume an 
extreme discontinuous case in which mortality is caused to all cells instantly by the applied 
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drug and only during the drug applications. This model is close to reality, indeed, the drug's 
efficiency is high and the time of drug solution in blood is relatively short. 

It was also assumed that rate of population growth is independent from population 
density. Thus cells, entering phase S less than |S| (S-phase duration) before treatment die 
inevitably and thus can be considered as dying in the age 0 without any consequences to the 
model. These facts leads to the following equation for r: 
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where θ(t) has only two values 0 (for all t less than |S| before treatment or during the 
treatment) and 1 in all other cases. Thus θ(t) represents the drug action on cell population. 

General solution of n(a, t) looks as 
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Note that from (12) follows that r(t) is a cell's density at age 0 at time t. In order to 
determine n(a, t) it is necessary and sufficient to determine r(t). In our model cell population 
dynamics is described completely by n(0, t) and this is Eulerian formalism, as mentioned 
before. 

Equation (11) determines r(t) for negative t, equation (16) (and equation (15) in 
general case) defines r(t) recursively for positive t. Indeed, the right-hand side of (16) is 
either zero or contains r(t − a), where 0 < Tb < a < Tm. Let us define the following partition 
of R: 
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From (16) and from the fact that support [ ]mb TTf ,)( ⊆ follows that for any [ ]bTt ,0∈  
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From (20) and (21) follows that 
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where Ti is a linear integral operator defined as 

  (23) 
{ }∫

∫

∈∈−=

=−++=

b

b

T
i

T

bi

Lgnidgtf

dgTitftgT

0

1

0

,,,...,1,0)()(

)())1(()(

υυυ

υυυ

where . In more convenient from (22) can be presented as ))1(()( b
i Tixfxf ++≡

  (24) ,

)(
...

)(
)(

0...0
...

0...0
...

)(2

)(
...

)(
)(

1

2

110

0
1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−

−

−

−

−

tr

tr
tr

Id

Id
TTT

nTt

tr

tr
tr

Mn

n

nM

Mn

n

n

θ
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In the next section we shall see that functions rn(t) may be represented as vectors in RN 
for some big N, and operators Ti may be represented as matrices with any accuracy 
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(depending on N). θ(t + nTb) should be represented as a matrix Θn of dimension N · M × N, 
such that 
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where k = 0,1,...,M−1. Thus (24) may be presented as linear equation. The population 
properties depend upon consequential application of the matrix 
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 on vector which contains initial conditions. 

If the treatment is cyclic, and cycle size is equal to a divisor of MTb than Θn is 
independent from n and the population dynamics is described by iteration of matrix A ≡ An. 
In this case the population properties depend on spectral properties of A, as is shown bellow. 
In what follows we discuss this particular case. 

3.4. DISCRETE TIME FORMULATION 

In this section we describe discrete time formalism, i.e. finite dimensional vectors are 
used instead continuous functions. 

Let N be a big natural number, let ZiniTt bi ∈= ,/
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where g is an N-dimensional vector . Thus the matrix kA in (26)is 
defined as follows: 
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It is clear that the matrix kA has the following properties: kAi,j ≥ 0 for any  
and for any i, j for which the last equality is defined. The equation (23) may be 
formulated in discrete form as follows: 
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It is proved in Appendix B that accuracy grows as N is chosen bigger. 

3.5. DISTRIBUTION FUNCTION F 

According to Dibrov et al ([11]), the cell-cycle-length distribution function is of the 
form 
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We assume that in the case of cancer cells m is larger and k is smaller than that of 
normal cells, so that the distribution function f of cancer cells has larger variance and its 
maximum is shifted to the right. We assume, as mentioned earlier, that Tb is the same for the 
cancer and the normal cell populations. In any case f has a single maximum and tends 
exponentially to 0 for large a. Thus, given any accuracy ε, it is possible to assume that f(a) ≡ 
0 for t > Tm where Tm depends on ε, k and m. 

3.6. CELL-POPULATION GROWTH RATE AND SPECTRAL PROPERTIES OF OPERATOR T 

In this part we use matrix and operator formalism, developed in the previous sections 
in order to investigate the dynamics of cell populations that are subjected to regular phase-
specific drug treatment. The main questions are as follows: 

1. Do qualitative differences in the population dynamics exist between the 
cases of constant and distributed life-cycle durations? 

2. Will the given population grow or decay in the course of treatment? 
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Fig. 1. A graph of f(a − Tb) 

3. Will population growth-rate and age-distribution tend to some constant 
values after sufficiently many iterations? If so, how are these values related 
to the operator's properties? 

4. What is the "resonance phenomenon" from the mathematical point of 
view? 

The answer to the first question is affirmative: in the case of constant life-cycle 
duration, τττ ′≠′ if,  then cell population will be inevitably eliminated ([18, 13, 7]) and the 
time of elimination is bounded by )/( 2 τττ ′− , as may be easily inferred from the above cited 
papers. In the case of varying cell-cycle duration, even if the mean cell-cycle duration, 
τ ′has a different periodicity than that of drug treatment, the population may grow with each 
iteration. Matrix formalism can illustrate this event: let f(a),a∈Z a∈Z be defined in the 

table and in Fig.1 (its support is {-3,...,5}). The expectation equals to 1.5423, i.e.  

the distribution is shifted strongly to the right and this expectation is a deviation of the mean 
cycle duration from the treatment period. This fact, inevitably, leads to population 
extinction in the constant cycle duration model. In contrast, for 10 × 10 matrix the 
eigenvalue of maximal absolute value is 1.1515. This means, that in the case where the 
initial discrete time-distribution of cells at the age 0 equals to the eigenvector, 
corresponding to the maximal eigenvalue, the population will increase by 1.1515 following 
each treatment cycle. 

∑
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n
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N -3 -2 -1 0 1 2 3 4 5 6 
f(n) 0.002 0.021 0.214 0.322 0.429 0.429 0.322 0.214 0.043 0.004

 
In order to answer the second and third questions we use the following statements 

from matrix theory: 
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[i] If all elements of a matrix A are nonnegative, than there is a real nonneg-ative 
eigenvalue of A, which equals its spectral radius. We call it maximal eigenvalue of 
A. This theorem may be found in ([14]). 

[ii] In generic case, the discrete time-distribution of cells tends to some superposition 
of eigenvectors of the eigenvalues of A with the absolute values being equal to the 
spectral radius of A. The population growth rate tends to this spectral radius, as the 
number of steps increases (Appendix C). 

[iii] If the matrix A has a single eigenvalue, which is equal to its spectral radius, and if 
this eigenvalue has one corresponding dimensional space of eigenvectors, then the 
process described in [ii] is exponential (Appendix C). This was also the case in 50 
computer simulations we have performed for checking this result. We have yet to 
understand whether or not this is a generic case. 

It is clear from the above discussion that after many generations of cyclic treatment, 
with cycle size being equal to a divisor of M Tb, the population growth rate generically 
approaches the spectral radius of the matrix (operator) describing it. It is easy to numerically 
compute the spectral radius of any matrix (see [14]). Therefore, it follows that it is possible 
to evaluate the growth rate of the population after many iterations for any cell-cycle-
duration distribution function f, and a regular treatment by a phase-specific drug: it is 
necessary to perform a discrete approximation with appropriate accuracy and subsequently, 
to calculate the spectral radius of the resulting matrix. 

3.7. SUMMARY OF MATHEMATICAL RESULTS 

The above results are summarized as follows: 
1. Analytical solution of differential equations, describing cell-age-distribution (whose 

growth is independent of cell density) dynamics under drug treatment, has been 
obtained. Euler formulation has been used (in analogy to fluid mechanics), i.e. 
distributions of the zeroth age in time, rather than the age distribution for fixed time has 
been studied. 

2. Under regular drug treatment this solution has been represented as iterative application 
of compact integral operator on the distribution of the zeroth aged cells in the initial time 
interval. 

3. Finite dimensional approximation has been developed and its accuracy has been 
estimated. 

4. It has been shown that the finite dimensional operators from (3) have a real positive 
eigenvalue, equal to their spectral radius. The eigenvectors, corresponding to this 
eigenvalue, correspond to distributions whose growth rate is maximal. The cell 
population growth-rate tends to the spectral radius as number of iterations increases. In 
the generic case, any initial distribution tends to some linear combination of of 
eigenvalues' eigenvectors with the absolute values equalling the operator's spectral 
radius. This process is exponential in the case of only one eigenvalue having maximal 
absolute value, and in the case of the space of its eigenvectors being one dimensional. 

5. The resonance (antiresonance) phenomenon is stated mathematically: the resonance 
(antiresonance) is the existence of maximum (minimum) in the dependence of the 
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operator's spectral radius on the relation between the age-distribution function f and the 
treatment period, τ. Numerically it has been shown that the spectral radius increases as τ' 
(mean cell cycle duration) approaches τ and the variation of f decreases. We have yet to 
prove this result analytically. 

4. PERSPECTIVES 

As stated above, the maximal rate of population growth during each drug-free interval 
tends (after a large number of treatments) to the spectral radius of the matrix A. Our future 
investigation will focus on the influence of the cell-cycle distribution on the spectral 
properties of the matrix A. In particular we will investigate how the variance in cell-cycle 
duration and the deviation of the treatment cycle from the mean cell-cycle influence the
spectral radius of the matrix A (in the case of a cyclic treatment). Non-cyclic treatments are 
studied at present as well as cell populations whose growth rates depend on cell density. We 
also investigate the dynamics of heterogeneous cell tissues, in which cells from different 
regions have different distributions of cell-cycle-duration. This is particular relevant to 
cancer tissues with inhomogeneous nutrition of different tumor parts. 

5. APPENDIX 

5.1. DERIVATION OF CELL AGE DENSITY EQUATION 

In this section differential equations for cell population dynamics are derived (these 
equations appear in many different works ([18],[11]) with no derivation).In age-structured 
cell population models individual cells are distinguished by cell age a. The age-density of 
cells at time t is n(a,t). The total population of cells at time t is f0

∞ n(a, t) da. The equations 
for the untreated tumor cell population are 

 ,0,0),,()),()((),(),( >>+−=+ tatantaatantan at ηβ  (30) 

  (31) ∫ >=
0

,0,),()(2),0( tdatanatn β
∞

.0),(),0( > 0= aantn  (32) 

The age specific division rate of cells is β(a), the mortality rate of cells is η(a,t), and 
the initial age distribution of cells is n0(a) . The function β(a)satisfies β(a) = f(a)/α(a), 

where is the probability that a cell divides between ages a1 and a2 

and . The function α(a) gives the fraction of cells undivided by age a. 

)(0 an

∫
2

1

)(
a

a
daaf

∫
∞

=
α

ˆ()( afaα )ˆ) ad
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Comments Let us denote the number of cells at the ages ranging from a to b at the time as 
N(a, b, t). It is obvious that 

  (33) ∫=
b

a
dtntbaN .),(),,( αα

Differentiating (33) relative to t we obtain 

  (34)  ∫=
b

a tt dtntbaN .),(),,( αα

On the other hands, let us consider the changes in the number of cells at the ages 
ranging from a to b during short time interval Δt, b > a > 0: 

  (35) ∫ +Δ−−Δ≈−Δ+
b

a
dtntttbntanttbaNttbaN .),()),()(()),(),((),,(),,( αααηαβ

Indeed, during interval Δt approximately Δtn(a,t) cells enter the age interval and Δt 
n(b, t) exit it in natural way. When the cell dies or divides (offsprings are always in the age 
0) it exits the age interval [a, b]. Variation of η(α, t) is assumed to be of order Δt, so it 
contribute to variation of  with term of order (Δt)2 that is omitted. αααη dtntt

b

a∫Δ ),(),(

Dividing both sides of (35) with Δt and tending Δt to 0 we get 

  (36) ( )∫ >>>∀+−−=
b

at tabdtnttbntantbaN .0,0,),(),()(),(),(),,( αααηαβ

Equating right hand sides of (34) and (36) we get 

  (37) ( )∫ ∫ >>>∀+−−=
b

a

b

at tabdtnttbntandtan .0,0,),(),()(),(),(),( αααηαβα

Dividing (37) by b − a, tending b to a we get (30).  
The expression (31) is obtained in the following way: all new cells (age 0) come from 

cells from all ages proportional to age density. Every mature cell gives two cells of the  
age 0. 

5.2. DISCRETE CASE 

In this appendix we show that (22) and (24) can be approximated in a discrete form to 
any accuracy. 
Lemma 1 Assume that for some ε > 0, some k ∈ {0, ...,M} there exists δ, so that 
from δ<− 21 tt for follows ε<−∈∀ )()(],0[, 2121 tftfTtt kk

b  Then for any and 
any from

1Lg∈

},...,0{ Mk ∈ ],0[, 2121 bTtttt ∈∀<− δ  follows
121 ))(())(( gtgTtgT kk ε<−  
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Proof 

:],,0[, 2121 δ<−∈∀ ttTtt b  

≤−−−≤− ∫ duugutfutftgTtgT kk
kk

0
2121 )()()())(())((

bT

.
1

gε  (38) 

Definition For any given ε > 0 let us denote by Wδ,ε a subspace of  such that for 
any from

]),0([1
bTL

εδ ,Wh∈ δ<− 21 tt for ],[, 21 bb TTtt −∈∀  follows ε<− )()( 21 thth  
Lemma 1 states that if  thenεδ ,Wf k ∈

1,)( gk WgT εδ∈ for any . For any given ε > 0 
let N be a natural number such that

],0[1
bTLg∈

ε,1
N

Wf ∈ (fk is continuous on compact interval [−Tb,Tb], 

so it is easy to see that for any ε > 0 there exists such N). Let 
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1,1 g

N

Wg
ε

∈ , and for any },...,0{ Nj∈  we have 

=−−∑
−

=

1

0

/)()())((
N

i
iij

k
jk NtgttftgT  

=−−−∫ ∑
=i

iij
k

j
k Ntgttfduugutf

0 0

/)()()()(
−bT N 1

 

=⎟
⎟
⎠

⎜
⎜
⎝

−−−= ∑ ∫
=0 /

/)()()()(
i Ni

iij
k

j
k Ntgttfduugutf

⎞⎛− +1 /)1(N Ni

 

( ) =−−−= ∑ ∫
=0 /

)()()()(
i Ni

iij
k

j
k dutgttfugutf

− +1 /)1(N Ni

 

(∑ ∫
=

−−=
0 /

)()(
i Ni

j
k ugutf

− +1 /)1(N Ni

)

 

≤−−−+−− dutgttfugttfugttf kkk )()()()()()( iijijij  

( ) +−−−≤ ∑ ∫
=0 /

)()()(
i Ni

ij
k

j
k duttfutfug

− +1 /)1(N Ni

 

 MM - 25



MODELLING AND MONITORING SYSTEMS 

( ) ≤−−+ ∑ ∫
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(using the fact that is always nonnegative) kf
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From the fact that 
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follows that for N big enough 5.1
)(1

0
≤

−
∑ −
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N

i
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and using (40) we obtain 

 
1
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N

i
iij

k
jk ε≤−−∑

−

−

 (41) 

The inequality 41 means that given any accuracy, any number G and any function g in 
L1[0,Tb] there exists natural number N, such that for any point tj , j ∈ {0, ...,N}, defined in 
39, Tk(g)(tj) can be approximated with  , provided that ||g||1 ≤ G. In 
tumor treatment simulation we consider only the cases that quantities of hosts and tumor 
cells are bounded. Thus G is prescribed in each model by biological conditions. 

∑ −

=
−

1

0
/)()(N

i iij
k Ntgttf

5.3. DEPENDANCE OF THE OF POPULATION GROWTH-RATE ON THE SPECTRAL RADIUS  
OF THE MATRIX A 

Let us consider any matrix A iteratively applied on some vector v . In this section we 
would like to answer two following questions: 

a) Does the limit 
vA

vA
m

m

m
r

r1

lim
+

∞→
 exist and what is its value? 

b) Does the limit 
vA
vA

m

m

m
r

r

∞→
lim  exist and what is its value? 

In the case that if is an eigenvector of A relative to eigenvalue λ the answers to the 

above questions are trivial: v
vA
vA

m

m r
r

r

λ=
+1

 and v
v

m

m

vA
vA

r
r

r

r

= . In order to answer the above 

questions let us work in the coordinates, in which A has Jordanian form. 
The following lemma can be easily proved by induction: 
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Lemma Assume that  matrix B has the form of Jordan block, i.e. nn×
1)1,(,),( =+= iiBiiB λ and B(i,j) = 0 for ij ≠ ,,i + 1. Let  be standard basis of Rn. Than 

for any natural m and for any k ≤ n. 
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in the case that k0 ≤ n is the largest index such that 0≠ka  
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This means that for 
1
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r λ . Any matrix can be represented 

in Jordan form by passage to some coordinates. So, without loss of generality we assume 
that A has Jordan form, than A= sAA ⊗⊗ ...1  , where Aj are Jordan blocks with eigenvalues λj 
of dimension . Let ρ(A) denotes the sector radius of A. Let us assume, 
without loss of generality, that 

sjnn jj ,..,1, =×

≥>==== +121 ...)( ttA λλλλρ  

trrs nnnnn ≥≥>===≥ + ......and... 121λ . Let N = n1 + ... + ns. Given any vector NRv ∈r there is 
probability 1 that all it's components are nonzero (generic case). From (43) it follows that 
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Thus in generic case it is easy to see that 
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